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ABSTRACT
Clustering is the discovery of latent group structure in data and is a fundamental problem in artificial
intelligence, and a vital procedure in data-driven scientific research over all disciplines. Yet, existing
methods have various limitations, especially weak cognitive interpretability and poor computational
scalability, when it comes to clustering massive datasets that are increasingly available in all domains. Here,
by simulating the multi-scale cognitive observation process of humans, we design a scalable algorithm to
detect clusters hierarchically hidden in massive datasets.The observation scale changes, following the
Weber–Fechner law to capture the gradually emerging meaningful grouping structure. We validated our
approach in real datasets with up to a billion records and 2000 dimensions, including taxi trajectories,
single-cell gene expressions, face images, computer logs and audios. Our approach outperformed popular
methods in usability, efficiency, effectiveness and robustness across different domains.

Keywords:massive data, clustering, psychological observation, Weber–Fechner law, cognitive
interpretability, computational scalability

INTRODUCTION
Clustering is the discovery of unknown group-
ing structure in data in an unsupervised way and
is a long-standing fundamental problem in data
science and artificial intelligence. During the last
century, small-scale clustering analyses (typically
<1000 records) have been widely used in science,
medicine, engineering, economics and humanities
[1–7]. Nowadays, datasets with a million or more
records are increasingly available in all areas of
human endeavors, providing remarkable scientific
insights.

Massive datasets are prone to exhibit significant
hierarchical structures, reflecting the hierarchical
nature of our world. Identifying hierarchical mean-
ingful clusters is essential formassive data clustering,
such as building cell atlases with single-cell RNA
sequencing (scRNA-seq) data [8,9]. However,
most available approaches [10] are computationally
unscalable, while the few scalable ones (e.g. k-means
[11]) suffer from various limitations, including
flat clustering assignments, requiring a given clus-
ter number, sensitivity in parameter tuning and

ineffectiveness on high-dimensional data. These
limitations make clustering a bottleneck of current
large-scale data-driven scientific research [9,10].

We aim to systematically design a universal algo-
rithm to simultaneously achieve the following four
objectives that are highly desired by massive data
clustering: (i) interpretability—the clustering pro-
cess of the algorithm should be interpretable to
better understand and validate clustering results;
(ii) high scalability—the algorithm should easily
scale to massive datasets; (iii) universality—the al-
gorithm should be effective for various tasks without
any prior assumption; and (iv) user friendliness—
the algorithm should be very easy to use in practice.

To this end, we design an approach called
‘Weber–Fechner Clustering’ (WFC), by simulating
the multi-scale observation process of humans with
the Weber–Fechner law [12,13] in psychology.
Humans perceive objects in the world and regard
them as meaningful entities (e.g. cells and organs)
only over a certain range of scales, and different
grouping structures emerge as the observation scale
changes. Similarly, WFC observes a dataset (digital
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Figure 1. Illustrations of multi-scale clustering of WFC. (a) 3000 synthetic two-dimensional data points. (b) Mixed distri-
butions (grouping structures) hidden in the 3000 data samples. (c) WFC captures emerging clusters as observation scale
increases (λ = 1). At scale 2, uniform (mixed with curve and Gaussian) and line (mixed with Gaussian) distributions were
separated. Curve (mixed with Gaussian) distributions were detected at scale 3. Finally, at scale 4, all clusters representing
Gaussian distributions were detected. (d–f) The computation process of WFC, where δs = 1/sims

min represents the corre-
sponding distance threshold at each scale. (d) SD or DM coding enables fast computation of similarities for all pairs of data
points. (e) Similarities at different thresholds (scales) form multiple connected graphs, each connected component represent-
ing a scale-wise cluster. (f) Interpretations of clusters at hierarchical scales according to domain knowledge.

representations of real objects) and captures the
emerging clusters (potentially meaningful entities)
gradually, from the grossest scale s = 1 to the finest
one send. Figure 1a–c provides an example showing
how WFC identifies hierarchically overlapping
clusters (mixed distributions) over scales.

The problem here is how to define and update
scales to ensure a reasonable finite total number of
scales and no information loss between scales. Our
previous work [14] adopts scale-space theory to
precisely model the scale changing process, but this
is computationally prohibitive for massive data clus-
tering. Alternatively,WFCupdates scales�s = λs
by using the concept of just noticeable difference
(JND) in theWeber–Fechner law, i.e. the ratioλ be-
tween JND in stimuli and the background stimulus
is a constant, which is approximately true far beyond
human senses [15,16]. Here, the similarity thresh-

old is treated as stimuli and multi-scale clustering
is performed within the above constructed Weber–
Fechner observation system with parameter λ.

The computation process of WFC is quite sim-
ple (Fig. 1d–f). Each d-dimensional real-valued data
point x in the input dataset X is initially mapped
to a binary code c (x), using splicing/decomposable
(SD) coding [17] or dimension marker (DM) cod-
ing (see Supplementary Data). Geometrically, each
SD code represents a cell in a d-dimensional mesh
grid, while each DM code indicates the informa-
tive dimensions of a data point (see Supplemen-
tary Data). The selection of SD and DM coding de-
pends on both dataset size |X| and data point di-
mension d (Supplementary Fig. 2). WFCmakes the
choice automatically to ensure its sub-quadratic time
complexity with respect to |X| (see Supplementary
Data).
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In the Weber–Fechner observation system, the
similarity of two points x, y ∈ X is defined as

sim (x, y) =
⎧⎨
⎩

1
δ(x,y) , SD coding

H(Ax,y)
H(Ox,y) , DM coding

, (1)

where δ(x, y) is the Chebyshev distance between x
and y, Ax,y = c (x) ∧ c (y), Ox,y = c (x) ∨ c (y)
and H(·) denotes Hamming weight (see Supple-
mentary Data). At scale s , x and y are regarded to
be similar, if sim(x, y) is not smaller than a scale-
wise threshold sims

min. For SD coding, sim(x, y) ≥
sims

min means the SD codes of x and y represent
same or neighboring cells at scale s . For DM coding,
this indicates that x and y have enough common in-
formative dimensions at scale s , defined by Jaccard
index (see Supplementary Data).

Computing sim(x, y), ∀x, y ∈ X requires
quadratic time complexity, which is a fundamental
scalability bottleneck of most clustering algorithms
[10]. WFC avoids this bottleneck by directly
checking whether sim(x, y) ≥ sims

min, ∀x, y ∈ X
in linear time with SD coding, or in sub-quadratic
time with DM coding using MinHash and locality
sensitive hashing [18] (see Supplementary Data).

Considering sims
min as the background stimulus

and setting its increment as JND according to the
Weber–Fechner law, we have

sims+1
min = (1 + λ) sims

min, 1 ≤ s ≤ send.
(2)

At each scale s , a link is added between each pair of
similar codes. This constructs a graph, where each
connected component (maximal connected sub-
graph) is regarded as a cluster (Fig. 1e and f). This
process repeats from scale s = 1 to send. Finally, the
clustering assignments of binary codes at all scales
are mapped back to the original data, and then val-
idated with domain-specific knowledge.

Note that in practice,WFC requires only one pa-
rameter λ to be set, which determines send:

send = 
log1+λ (simmax/simmin)�, (3)

where
·� is thefloor function, and simmin and simmax
are the minimum and maximum similarity values
among all data points in X (see details of SD and
DMin theSupplementaryData). It ismeaningless to
set send > log1+λ(simmax/simmin), at which all data
points become dissimilar.

WFC has been implemented in Python and
Apache Spark for centralized and distributed com-
puting platforms respectively (see Methods). We
validated WFC using six real datasets with up to

a billion records and 2000 dimensions from dis-
tinct domains: urban taxi locations, human face im-
ages, single-cell gene expressions, computer log texts
and audios. Eight popular methods were also tested
for comparison, including k-means [11], density-
based spatial clustering of applications with noise
(DBSCAN) [19], hierarchical aggregation cluster-
ing (HAC) [20], affinity propagation [2], mean-
shift [5], density peak [3], spectral clustering [6]
and Louvain method [21] with k nearest neighbors
[22] (kNN+Louvain). Experimentswith small and
large datasets used the centralized and distributed
computing platforms respectively (Supplementary
Table 1). For fair comparisons, each compared al-
gorithm adopted different parameters across exper-
iments to ensure its best performance (Supplemen-
tary Data Table 2).

RESULTS AND DISCUSSION
We performed clustering analyses to explore the
spatially grouping structure within a dataset of
1 133 769 628 taxi locations in New York City (see
Methods). Figure 2a illustrates results of WFC and
k-means at three different scales. As s increases,
finer-grained clusters emerge, demonstrating the
clustering hierarchy in the spatial distribution of
taxis. For k-means, we set the k values the same
as the cluster numbers identified by WFC, but its
clustering results have no clear meaning. We also
tested the usability and efficiency of all algorithms.
As dataset size increased from 100 to 1 000 000 (us-
ing centralized computing), more methods failed
to operate, except for WFC, kNN + Louvain and
k-means (Fig. 2a). For more than 50 000 000 loca-
tions, only WFC and k-means managed to operate
using distributed computing (Fig. 2b). Finally, for all
1 133 769 628 locations, WFC detected hierarchical
clusters over 25 scales, using only 0.1 running time
of k-means.Multi-scale clustering provided byWFC
could empower various applications of urban-scale
planning and decision making [23].

Scalable hierarchical clustering is central to
identifying cell types and building cell atlases based
on scRNA-seq data [8,9]. We used clustering
methods to detect hierarchical anatomical regions
of the mouse nervous system (Fig. 3a) based
on an scRNA-seq dataset of 507 286 cells with
2000-dimensional informative gene expressions
of the mouse nervous system [8] (see Methods).
This dataset was organized and labeled using
kNN + Louvain and polished with domain knowl-
edge. Only WFC, kNN + Louvain and k-means
managed to analyze this dataset computationally.
Figure 3b and d illustrate the hierarchy of tissues
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Figure 2. Clustering 1.1 billion taxi locations in New York City. This dataset contains
1 133 769 628 two-dimensional GPS locations (see Methods). (a) Visualization of WFC
and k-means results. The cluster numbers k were set to match those identified byWFC.
(b) Running time and usability of clustering algorithms with different dataset sizes us-
ing centralized computing. Different dataset sizes are obtained by slicing dataset with
changing time windows (see Methods). WFC (Total) and WFC (Ave.) represent the total
and average per-scale running times of WFC respectively. As dataset size increases,
more and more methods fail computationally, which are not plotted. (c) Running times
of WFC and k-means using distributed computing. The results were computed by 10
runs of each algorithm, and error bars indicate the standard error of the mean.

(clusters) identified by WFC. kNN + Louvain de-
tected all fine-grained tissues, but failed to establish
the clustering hierarchy by changing the resolution
setting r from 0.5 to 2.0 (Fig. 3e and Supplementary
Fig. 4). k-means performed poorly in both accuracy
and clustering hierarchy for k = 10, 11, . . ., 38
(Supplementary Fig. 3). We next applied clustering
to identify cell types of the spinal cord (Fig. 3f).
WFC detected seven clusters with obvious marker
genes (Fig. 3g). Here, identified clusters are well
separated according to the marker genes, and each
of them identifies a known cell type of the spinal
cord (see Methods). kNN + Louvain detected 30
clusters with its optimal setting r = 1 [8], and the
best seven are illustrated in Fig. 3g, in which the
marker genes are much less representative. Com-
plete results are illustrated in the Supplementary
Data. This demonstrates that WFC would be a

better alternative to the popular Louvain method
for massive scRNA-seq data clustering.

We next applied clustering algorithms to a
dataset of 307 784 high-quality face images (512-
dimensional feature vector) of 10 567 people (see
Methods). All methods managed to cluster the
first 500 images (24 people), while WFC achieved
the highest scores of F1-measure and purity
(Fig. 4c), two representative clustering evaluation
metrics [24]. In addition, WFC managed to estab-
lish the clustering hierarchy of face photos (Fig. 4a
and b). To test efficiency, we copied all 307 784
images up to five times (1 538 920 images). k-means
failed to cluster more than 615 568 images, while
WFCrannearly 10 times faster thankNN+Louvain
(Fig. 4b). The effectiveness and efficiency of
multi-scale face clustering would benefit various
applications in social media and public security.

Analysis of log texts is essential for understand-
ing the operational behaviors of computing sys-
tems serving us every day, from smartphones to
the cloud. To test WFC in this context, we con-
sidered 11 197 954 log texts of the Hadoop Dis-
tributed File System (HDFS), a popular software for
large-scale data storage. Each log was represented
as a 600-dimensional feature vector (see Methods).
Except for WFC and k-means, all methods failed
in clustering more than 10 000 000 logs, and WFC
achieved significantly higher validation scores than
others (Supplementary Figs 9 and 10). A meaning-
ful hierarchy of HDFS operations was also success-
fully established byWFC (Fig. 4e), showing the po-
tential of WFC in unsupervised analysis of complex
software behaviors.

WFC also identifiedmulti-scale meaningful clus-
ters in an audio dataset with 22 176 10-second au-
dio segments (see Methods). Different music genre
styles (e.g. opera, Indian music and Latin Ameri-
canmusic) were detected among all audio segments
at s = 95. Then, different instrument types (e.g.
guitars, bowed strings and keyboards) were further
identified at s = 96 (Supplementary Fig. 11).This
could be useful for various data-driven music appli-
cations.

Finally, we studied the impacts of λ, the only
parameter of WFC, on efficiency, effectiveness and
clustering hierarchy. We can see that a smaller λ re-
sults in a higher F1-measure score (Fig. 5c) but a
longer running time (Fig. 5a and b), since more hi-
erarchical layers are conducted and less meaningful
clusters are missing between scales (Fig. 5d and e,
Supplementary Figs 12 and 13). Computationally,
we can also use other functions besides the exponen-
tial function (Weber–Fechner law) to update scales,
although they may have no psychological meaning.
It can be seen that the hyper-exponential updating
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Figure 4. Clustering 1.5 million face images and 11 million HDFS log texts.
(a and b) Results of 28 photos labeled ‘Jon Polito’ in clustering the first 500 images by
using (a) WFC and (b) k-means respectively. There are 24 labels of the first 500 images.
By setting k = 24, k-means achieves its highest F1-measure score (0.809), resulting
in only 21 correctly classified images. WFC identified a cluster with 27 correct images
at s = 120 in a fully unsupervised way. Finer clusters with stronger similarities were
also detected at the next two scales. (c) Validation scores for clustering the first 500
images. (d) Running times and evaluation scores (F1-measure, purity) of WFC, k-means
and kNN-Louvain using distributed computing. Each result in (c and d) was computed
by running each experiment 10 times, and error bars indicate the standard error of the
mean. (e) Multi-scale clusters of HDFS logs detected by WFC, representing meaningful
HDFS operations at different hierarchical levels. The width of each line is proportional
to the logarithm of corresponding cluster size.

policy ismuch faster, which is highly desired formas-
sive data clustering (Fig. 5a and b), but it achieves
very poor F1-measure scores (Fig. 5c) due to the
large number ofmeaningful clustersmissed between
aggressively updated scales. In contrast, theWeber–
Fechner law can achieve both reasonable running
time and efficiency simultaneously.

CONCLUSION
Psychological principles have inspired several solu-
tions to computer science and artificial intelligence
problems, such as the Weber–Fechner law in sig-
nal processing [25], Gestalt laws for clustering [26],
Fitts’s law in the human–computer interface [27]
and the Yerkes–Dodson law for affective comput-
ing [28]. Our work demonstrates the advantages of
applying multi-scale cognitive principles to discover
complex grouping structures hierarchically hidden
in massive datasets. To our knowledge, WFC is the
first method that applies the multi-scale cognition
process with the Weber–Fechner law for massive
data clustering. This simple, fast, effective and inter-
pretable unsupervised learning method could em-
power advanced large-scale data analysis in various
disciplines.

METHODS
Implementation
We provide Python and Apache Spark [29] imple-
mentations for centralized (stand-alone) and dis-
tributed computing respectively. Codes and data
used in this paper are both available at github.com
[30]. WFC takes original dataset data and parame-
ter λ as input. See Supplementary Data for more de-
tailed experiment settings and parameters.

Definition of purity and F-measure
Purity and F-measure are popular validation mea-
sures for flat clustering [24]. For a dataset X par-
titioned by a set of clusters C and a set of labeled
classes L , the global purity score can be computed
as

Purity (C ) = 1
|X|

∑
c∈C

max
l∈L

|c ∩ l | ,

where maxl∈L |c ∩ l | is the purity score of a specific
cluster c ∈ C . Consider a cluster c and a labeled
class l , denote recall Rc ,l = |c ∩ l |/|l | andprecision
Pc ,l = |c ∩ l |/|c |, their F1-measure is

F1 (c , l) = 2Rc ,l Pc ,l
Rc ,l + Pc ,l

.

The global F1-measure score is computed as

F1−measure (C ) = 1
|L |

∑
l∈L

max
c∈C

(F1 (c , l)) .

Page 6 of 9



Natl Sci Rev, 2022, Vol. 9, nwab183

Ru
nn

ing
 tim

e (
ho

ur
s)

30

20

10

0

Weber-Fechner
Hyperexponential

0 10 20
λ

30

Ru
nn

ing
 tim

e (
ho

ur
s)

1.0

0.8

0.6

0.4

0.2

0.0
λ

0.02 0.04 0.06 0.08 0.10

Weber-Fechner
Hyperexponential

F1
 m

ea
su

re

λ
0.02 0.04 0.06 0.08 0.10

1.0

0.8

0.6

0.4

0.2

0.0

Weber-Fechner
Hyperexponential

a c

d e

b

282 294 304
Scale s

0

50

100
Cluster number

282 294 304
Scale s

10

100

1000

Average cluster size 
Isolated point number

… …

λ = 0.02

274
276
278
280
282
284
286
288
290
292
294
296
298
300
302
304

s = 1
2 λ = 0.1

58 62 65
Scale s

0

50

100
Cluster number

…

…

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

s = 1
2
3

58 62 65
Scale s 

10

100

1000

Average cluster size
Isolated point number
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Clustering taxi locations in New York City
Taxi locations used in this experiment are based
on records of yellow taxis from the New York City
(NYC) Taxi & Limousine commission [31]. Each
record includes time tags, latitude–longitude loca-
tions and taxi trip information.We only use the start
and end locations of all taxi trips falling in the area
(N 40.5◦–40.9◦, W 73.6◦–74.2◦). There are a total
of 1 157 184 863 records during exactly seven years
from 1 January 2009 (00 : 00 : 00) to 31 Decem-
ber 2015 (23 : 11 : 59). To reduce outliers, records
with extremely small densities were filtered [30], i.e.
those with densities smaller than 90 locations per
0.01◦ latitude–longitude area. Finally, we obtained
1 133 769 628 locations for clustering. SD coding
was used for this massive and two-dimensional
dataset. By settingλ = 1, we have send = 25. From
scales 1–5, there is one cluster and isolated points,
and validated clustering results emerge at scale 6.

Clustering single-cell gene expressions
of mouse nervous systems
This experiment is based on the level 1 subset
of the Mouse Brain Atlas dataset [32], a collec-
tion of 507 286 single cells represented as 27 998-
dimensional vectors of gene expressions. Each cell
has a label of 19 tissues in themouse nervous system.
We selected the top 2000 informative genes with the
highest variances [8,33] to represent each cell for
clustering. By treating the labels as ground truth, we
first applied clustering algorithms to detect 19 tis-
sues of all 507 286 single cells (Fig. 3a–e, Supple-
mentary Fig. 5).Then we used clustering algorithms
for 37 221 spinal cord cells to identify cell types.
Marker genes shown in Fig. 3f–g and in Supple-
mentary Figs are illustrated using SCANPY1.3 [34].
More detailed specific parameter settings of all clus-
tering algorithms are provided in the Supplementary
Data.
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Clustering face photos
CASIA-webface dataset [30] is a collection of
494 414 facial images of 10 575 people (labels),
and the number of images for each person ranges
from 2 to 817. Since the original dataset contains
many images with low resolution and undetectable
faces, filtering is required for data pre-processing.
We adopted a commonly used face detector [35],
and set theminimal threshold of the returnedquality
score as 1. After filtering, we obtained 307 784 high-
quality facial images of 10 567 people. Then, a 512-
dimensional feature vector of each image was ex-
tracted by the deep learning model LResNet34E-IR
[36]. Minhash-LSH is used for clustering this high-
dimensional dataset. Detailed parameter settings of
all algorithms are summarized in the Supplementary
Data.

Clustering logs of the HDFS
This experiment is based on the SOSP 2009 dataset
[37] containing11 197 705 logsof theHDFS[38] in
a private cloud. Each log consists of four segments of
information: time tag, log type (Information, Warn-
ing, Error), source name (i.e. from which compo-
nent the log is generated) and the operation details.
The dataset has 25 labeled samples as the ground
truth listed in Supplementary Table 8. Each log was
transformed into a 600-dimensional feature vector
using word to vector (Word2Vec) embedding [39].
Parameter settings of both Word2Vec and all tested
algorithms are summarized in the Supplementary
Data.

Clustering audios
This experiment is based on the 22 176 audios
of ‘balanced train segments’ in AudioSet [40]. All
audios have the same length of 10 seconds and
were converted into 128-dimensional feature vec-
tors.This dataset has 527 labels in total, and each au-
dio has at least 59 labels.Theλ of the algorithm is set
as 0.05.Theaudio contents varywidely andmislabel-
ing exists.We focused on ‘Music’ and all instrument-
related labels [41]due to their high accuracy, and the
large number of corresponding audios [42]. These
labels can provide a validated ground truth for eval-
uating the clusters detected byWFC.

DATA AVAILABILITY
The open-source code of WFC is available on
GitHub (https://github.com/IoTDATALab/
WFC). The persistent specific version of WFC
is available at Zenodo [30]. The datasets associ-
ated with this work and the supporting data for

figures are available at https://doi.org/10.5281/
zenodo.4297399 [30].

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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