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Abstract

Detecting divergence between oncogenic tumors plays a pivotal role in cancer diagnosis and therapy. This research work
was focused on designing a computational strategy to predict the class of lung cancer tumors from the structural and
physicochemical properties (1497 attributes) of protein sequences obtained from genes defined by microarray analysis. The
proposed methodology involved the use of hybrid feature selection techniques (gain ratio and correlation based subset
evaluators with Incremental Feature Selection) followed by Bayesian Network prediction to discriminate lung cancer tumors
as Small Cell Lung Cancer (SCLC), Non-Small Cell Lung Cancer (NSCLC) and the COMMON classes. Moreover, this
methodology eliminated the need for extensive data cleansing strategies on the protein properties and revealed the
optimal and minimal set of features that contributed to lung cancer tumor classification with an improved accuracy
compared to previous work. We also attempted to predict via supervised clustering the possible clusters in the lung tumor
data. Our results revealed that supervised clustering algorithms exhibited poor performance in differentiating the lung
tumor classes. Hybrid feature selection identified the distribution of solvent accessibility, polarizability and hydrophobicity
as the highest ranked features with Incremental feature selection and Bayesian Network prediction generating the optimal
Jack-knife cross validation accuracy of 87.6%. Precise categorization of oncogenic genes causing SCLC and NSCLC based on
the structural and physicochemical properties of their protein sequences is expected to unravel the functionality of proteins
that are essential in maintaining the genomic integrity of a cell and also act as an informative source for drug design,
targeting essential protein properties and their composition that are found to exist in lung cancer tumors.
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Introduction

Oncogenic tumors are the leading cause of death around the

world with Lung Cancer bearing the major toll of malignant

fatalities [1–3]. Smoking and use of tobacco along with diverse

environmental carcinogens increased human susceptibility to this

deadly ailment [4–5]. Gene Polymorphisms concerned with

detoxification of carcinogens have been associated with formation

of lung tumors. Lung tumors have been broadly categorized as

Non-Small Cell Lung Cancer (NSCLC) affecting nearly two-thirds

of patients with a low-survival rate and Small Cell Lung Cancer

(SCLC), both of which respond to different forms of therapy [6–

10]. This drives the need to precisely identify pathological

differences between these two types of tumors.

Gene expression patterns from microarray analysis enabled the

sub-categorization of lung cancer types that related to the degree

of tumor demarcation, nature of therapy and victim survival rate

[11–14]. It was an established fact that Lung carcinogenesis was a

process that involved gradual phenotypic changes that occurred as

a result of onco-gene activation and deactivation of tumor

suppressor genes [8]. Reports thus far in literature have failed to

identify any reliable biomarkers for this condition since wet-lab

experiments often consumed more time, expertise and capital with

unsure returns [1][4–6]. Microarray technology has been utilized

in the recent past to detect appropriate biomarkers but present

methodologies were more susceptible to overlook potential facts

contained in patient tissue samples [14]. Hence determination of

potential and informative markers (diagnostic and prognostic)

from both the biological and molecular perspective is highly

essential to study and evaluate the genetic and molecular

distinctiveness that characterized tumors and Tumor Node

metastasis (TNM) staging in lung carcinogenesis to make possible

effective diagnosis, and corroborate therapeutic strategies.

In recent research undertakings, several classifiers and data

mining models have been used that targeted the appropriate

categorization of lung cancer tumors. Forty-one samples charac-

terized by 26 attributes computed from the mass-to-charge ratio

(m/z) and peak heights of proteins identified by mass spectroscopy

of blood serum samples from lung cancer affected and non-

affected patients was utilized to train a classification and regression
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tree (CART) model [13]. Molecular classification of NSCLC

based on a percentage train-test approach was used to evaluate the

reliability of cDNA microarray-based classifications of resected

human non-small cell lung cancers (NSCLCs) [14]. In further

research Linear Discriminant Analysis and Artificial Neural

Network classification of individual lung cancer cell lines (SCLC

and NSCLC) was performed based on DNA methylation markers

[13]. The results reported that Artificial Neural Network analysis

of DNA methylation data was a potential technique to develop

automated methods for lung cancer classification. In another study

Support Vector Machine [14] was used in lung cancer gene

expression database analysis and the results proposed that

incorporated prior knowledge into cancer classification based on

gene expression data was essential to improve classification

accuracy. Automatic classification of lung TNM cancer stages

from free-text pathology reports using symbolic rule- based

classification was attempted [15]. The methodology was assessed

based on accuracy parameters and confusion matrices against a

database of multidisciplinary team staging by decisions and a

machine learning-based text classification system using support

vector machines.

The current investigation was focussed on a very recent article

by Hosseinzadeh et.al [1] that aimed to classify lung cancer tumors

based on structural and physiochemical properties of proteins

using Bioinformatics models. We chose this paper for three main

reasons. (i) The work is the most recent and the data is publicly

available. (ii) The research involved plenty of data cleaning and

pre-processing strategies which could be avoided. (iii) Their work

involved few assumptions on the obtained data which are not

adopted in this work. Moreover the method proposed in this paper

was able to generate higher classification accuracy in differenti-

ating between lung cancer tumors based on protein properties

while retaining the original data and eliminating assumptions.

Precisely this paper makes the following contributions: (a) Design

of a new methodology with hybrid feature selection techniques to

identify the optimal protein features that distinguished between

lung cancer tumors with higher accuracy. (b) Eliminated the need

for data cleaning and assumptions on attribute significance. (c)

Contributing features identified are believed to influence drug

design that could target the protein property leading to lung

cancer tumors.

Materials and Methods

Dataset
The Gene Set Enrichment Analysis database (GSEA db) [16]

was utilized to obtain the gene sets that contributed to the

development of NSCLC and SCLC. It was obtained from the

Figure 1. Proposed computational methodology for lung tumor classification from protein sequence properties.
doi:10.1371/journal.pone.0058772.g001
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Kyoto Encyclopaedia of Genes and Genomes (KEGG) [17] gene

sets. A total of 84 genes [17] were present in the SCLC gene set

while 54 genes [17] were found contributing to NSCLC. In order

to precisely discriminate between the two classes of tumors, the

genes commonly occurring in both tumors were placed in a

different class called COMMON. The strength of the gene set for

SCLC was 59, NSCLC included 29 while the COMMON gene

set summed up to 25. Proteins for each group of genes were

obtained from the Gene Card database [18] and the correspond-

ing protein sequences extracted from UniProt Knowledgebase

database [19]. These sequences were saved as text file and loaded

onto PROFEAT web server [20–21] to compute the structural

and physicochemical properties associated with the protein. A total

of one thousand four hundred and ninety seven attributes were

computed and represented as Fi.j.k.l where ‘l’ represented the

descriptor value and ‘k’ denoted the descriptor while ‘j’ indicated

the feature and ‘ı́’ signified the feature group [20–21]. The features

and their annotations have been provided as File S1. The

complete data set comprising of 1497 features and 113 tumor

samples [17] were loaded in to WEKA 3.7.7 machine learning

software [22] and the tumor type was set to be the target class. The

complete pre-processed dataset is provided as File S2. The

variation in sample size as compared to previous work is attributed

to possible updations in the database. The methodology proposed

in this research work is described in the following section.

Proposed Computational Methodology
The proposed methodology comprised of two phases: The

training phase and the prediction phase. The training phase

incorporated the data preparation, feature selection and classifi-

cation process while the prediction phase involved evaluation of

the classifier model using Jack-knife cross-validation test based on

the performance parameters [23–24]: Matthews Correlation Co-

efficient (MCC) and Accuracy. The diagrammatic representation

of the proposed methodology is given in Figure 1. The data

preparation phase incorporated categorization of the input gene

sets as SCLC, NSCLC and the COMMON classes. This was

followed by Hybrid feature selection with Incremental Feature

Selection. The classification models were then built and compared

to identify the best performing computational prediction technique

on lung tumor classification using protein structural and physico-

chemical properties.

Hybrid Feature Selection. Feature ranking presented sig-

nificant features in the order of their contribution to categorizing

the samples under the different target classes [25–28]. Since most

feature selection algorithms focused on ranking the attributes

according to their significance value, the liability of choosing the

limiting constraint rested with the user [29–31]. Hence in order to

automate the process of finding the minimal yet optimal set of

features, the ranking feature selection algorithms were followed by

Correlation Subset Evaluators [32] that included features highly

correlated to the class and least correlated to each other. Since

both the ranking and subset evaluators were utilized to obtain the

optimal feature set, this was termed the Hybrid Feature Selection

strategy. The description of the methods used in this research is

detailed below.

Gain Ratio Criterion. Gain ratio criterion [33–34], revealed

the association between an attribute and the class value, being

primarily computed from the Information Gain using the

Information Entropy (InfoE) values [35]. After having obtained

the value of the Entropy H(SR), and assuming ‘F’ to be the set of all

features, and SR to be the set of all records, Value(r,f) is taken to be

Figure 2. The IFS curves depicting classification accuracy and MCC in lung tumor categorization. (A) The IFS curve generated using
Classification Accuracy in Lung Tumor categorization. The x-axis represented the number of features while the y-axis represented the jack-knife cross-
validation accuracy. The peak of classification accuracy attained was 87.6% with 36 features. The top 36 features derived by Hybrid Feature Selection
(Gain Ratio +CFS Subset) approach form the optimal feature set. (B) The IFS curve generated using MCC values obtained from classification
algorithms. The peak of MCC is 0.812 with 36 features. The top 36 features derived by the Hybrid Feature Selection approach (Gain Ratio + CFS
Subset) formed the optimal feature set.
doi:10.1371/journal.pone.0058772.g002

Table 1. Optimal classification accuracy with filtered subsets and IFS.

Hybrid Feature Selection Technique Features Classification Algorithm Jack-knife Cross-Validation Accuracy (%)

Gain Ratio + CFS Subset 36 87.6

Information Gain +CFS Subset 32 Bayesian Network 85

Symmetric Uncertainty + CFS Subset 29 85.8

doi:10.1371/journal.pone.0058772.t001

Lung Tumor Classification Using Data Mining Models
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the value of a specific instance ‘r S’ for the feature ‘f F’.

Information Gain for the attribute was computed using Equation

(1) as follows [35]:

InfoG( SR ,f )~H( SR ){
X

v[Values(f )

fr[SR value(r,f )~vgj jj j
SRj j

.H(fr[SR value(r,f )~vg)j j
ð1Þ

In order to compute the Intrinsic Value for a test, the following

formula was adopted:

IntrinV ( SR ,f )~{
X

v[Values(f )

fr[SR value(r,f )~vgj jj j
SRj j

. log2 (
fr[SR value(r,f )~vgj jj j

SR

)

ð2Þ

The Information Gain Ratio [33–35] was calculated as the ratio

between the Information Gain and the Intrinsic value, according

to Equation (3)

IGRatio(r,f )~InfoG=IntrinV ð3Þ

The attributes were thus ranked according to their rank in the

descending order of the Gain Ratio score and were used for the

CFS Subset Evaluator method described below.

Correlation Feature Selection (CFS) Subset

Evaluator. The CFS hypothesis [36] suggested that the most

predictive features needed to be highly correlated to the target

class and least relevant to other predictor attributes. The following

equation [36–37] recorded the value of a feature subset S that

consisted of ‘k’ features

ValueSk
~

krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kzk(k{1)rff

p ð4Þ

Table 2. Comparison of predictor models in lung cancer tumor categorization.

S.No Hybrid Feature Selection Technique Classifier Training Phase Prediction Phase

MCC Accuracy MCC Accuracy

1 Gain Ratio + CFS Bayesian Network 0.895 92.9 0.77 85

2 Subset Evaluator Random Forest 1 100 0.652 78.8

3 Nearest Neighbor 1 100 0.507 69

4 Support Vector Machine 0.856 91.2 0.603 76.1

5 Random Committee 1 100 0.484 69

1 Information Gain + Bayesian Network 0.895 92.9 0.77 85

2 CFS SubsetEvaluator Random Forest 1 100 0.61 76.1

3 Nearest Neighbor 1 100 0.52 69.9

4 Support Vector Machine 0.856 91.2 0.603 76.1

5 Random Committee 1 100 0.553 72.6

1 Symmetric Bayesian Network 0.895 92.9 0.77 85

2 Uncertainty + CFS Random Forest 1 100 0.521 71.7

3 Subset Evaluator Nearest Neighbor 1 100 0.52 69.9

4 Support Vector Machine 0.84 90.3 0.603 76.1

5 Random Committee 1 100 0.62 77

doi:10.1371/journal.pone.0058772.t002

Table 3. Classes to cluster evaluation.

S.No Clustering Models Classes to Cluster Evaluation Accuracy (%)

Pre- Hybrid feature selection Post- Hybrid feature selection

1 E-M Algorithm 52.2124 51.3274

2 COBWEB 2.6549 5.3097

3 K-Means 53.0973 51.3274

4 Hierarchical Clustering 51.3274 51.3274

5 Density Based Clustering 53.0973 52.2124

6 Filtered Clustering 53.0973 51.3274

7 Farthest First Clustering 48.6726 46.0176

doi:10.1371/journal.pone.0058772.t003

Lung Tumor Classification Using Data Mining Models
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where, rcf was the average value of all feature-classification

correlations, and rff was the average value of all feature-feature

correlations. The CFS criterion [36] was defined as follows:

CFS~ MAX
SK

rcf 1 z rcf 2 z:::z rcfkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kz2( rf 1f 2 z:::z rfifj

p
z:::z rfkf 1 )

" #
ð5Þ

Where rcfiand rfifjvariables were referred to as correlations. The

attributes that portrayed a high correlation to the target class and

least relevance to each other were chosen as the best subset of

attributes.

The attributes filtered by the CFS Subset Evaluator method

were added in an incremental manner to identify the optimal set of

features that contributed to lung tumor categorization. This

methodology is reported below.

Incremental Feature Selection. The predictor attributes

generated by the Gain Ratio and CFS Subset Attribute Evaluator

(Hybrid Feature Selection) method were later utilized for

Incremental Feature Selection (IFS) [38–39] to determine the

minimal and optimal set of features. On adding each feature, a

new feature set was obtained and the kth feature set could be stated

as

ATk ~fat1 , at2 ,::: atkg(1v~kv~M) ð6Þ

Where M denoted the total number of predictor subsets. On

constructing each feature set, the predictor model was constructed

and tested through Jack-knife cross-validation method. The MCC

and Accuracy of cross-validation was measured, leading to the

formation of the IFS table with the number of features and the

classification accuracy they were able to generate. ‘ATo’ was the

minimal and optimal feature set that achieved the highest MCC

and accuracy.

In order to determine the best classification model for lung

tumor classification [40], a total of five benchmark prediction

techniques viz, Support Vector Machine [29], Random Forest [1],

Nearest Neighbor algorithm [39], Bayesian Network Learning

[22] and Random Committee (Ensemble classifier) [22] were

analyzed and compared. Our results affirmed that Bayesian

Network approach generated higher accuracy in tumor classifica-

tion with the optimal feature set.

Bayesian Network Learning. The learning phase in this

approach incorporated the process of finding an appropriate

Bayesian network [41] given a data set D over R where R = {r1,

rn}, n $1 was the set of input variables. The classification task

consisted of classifying a variable V = v0 called the class variable

(NSCLC/SCLC/COMMON) given a set of variables R = r1 . . .

rn. A classifier C: r R v was a function that mapped an instance of

‘r’ to a value of ‘v’. The classifier was learned from a dataset D that

consisted of samples over (r, v) [42]. A Bayesian network over a set

of variables R was a network structure Bs, a directed acyclic graph

(DAG) over the set of variables R and a set of probability tables

[43] was given by

BP ~fp(rjpa(r)) r[Rgj ð7Þ

Where pa(r) was the set of parents of r in BS and the network

represented a probability distribution given by Eq. (8)

P(R)~Pr[R p(r pa(r))j ð8Þ

The inference made from the Bayesian Network [41–43] was to

allocate the category with the maximum probability [44]. The

Simple Estimator with the K2 local search method using Bayes

Score were utilized (default parameters) for the execution of the

algorithm in WEKA 3.7.7 [22]. The clustering methods are

briefed about in the following section.
Supervised Clustering. Supervised clustering [45–47] devi-

ated from unsupervised clustering in that it was applied on already

categorized examples with the prime aim of detecting clusters that

had high probability density with respect to a single class.

Supervised clustering required the number of clusters to be kept

to a minimum, and objects were assigned to clusters using the

notion of closeness with respect to a given distance function [48–

49]. Supervised clustering evaluated a clustering technique based

on the following two criteria [47–49]:

N Class impurity, Impurity(X): It was measured by the percentage of

marginal examples in the different clusters of a clustering X. A

marginal example was an example that belonged to a class

different from the most frequent class in its cluster.

N Number of clusters, k.

In this research we have compared the classes to cluster

evaluation accuracy of seven clustering algorithms [22] namely

Expectation-Maximization (EM) Algorithm, COBWEB [22],

Hierarchical clustering, K-Means clustering, Farthest First Clus-

tering, Density-Based clustering and Filtered Clustering. The

number of clusters was automatically assigned in the COBWEB

algorithm whereas the remaining algorithms allowed the user to

select the desired number of clusters [22]. Some algorithms

exhibited better performance on inclusion of all the attributes for

clustering while the performance deteriorated on the hybrid

feature selection datasets. The performance evaluation methods

and parameters are briefed about in the subsequent sections.
Jack-knife Cross-Validation Test. Statistical prediction

methods [50] were utilized for measuring the predictor perfor-

mance in order to assess their efficiency in practical applications.

In this study, the jack-knife cross validation method [50–51] was

used for verification and validation of classifier accuracy since

previous reports have stated it to be least arbitrary in nature and

widely acclaimed by researchers and practitioners to estimate the

performance of predictors. In jack-knife cross-validation [38–

39][52], each one of the statistical records in the training dataset

was in turn singled out as a test sample and the predictor was

trained by the remaining samples. During the jack-knifing process

[23–24][39], both the training dataset and testing dataset were

actually open, and a statistical sample moved from one group to

the other. In this research, the following indexes [50–52] were

adopted to test the proposed methodology.

=MCC ~
(TP|TN){(FP|FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p ð9Þ

=ACC ~
TPzTN

TPzFPzTNzFN
ð10Þ

where =MCCreflected the Mathews Correlation Coefficient;

=ACCreflected the accuracy, i.e., the rate of correctly predicted

lung cancer tumor class; TP, TN, FP and FN denoted the number

Lung Tumor Classification Using Data Mining Models
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of true positives, true negatives, false positives and false negatives,

respectively.

Experimental Results and Discussion

The experimental results are discussed in three sections. The

foremost describes the ranking of the structural and physicochem-

ical properties according to their gain ratio. The entire list of

attributes was ranked and the file is provided as Table S1. The

second section deals with the results of Incremental Feature

Selection while the final section portrays the comparative

performance of the benchmark classification models on the

protein sequence properties in categorizing lung tumors.

Hybrid Feature Selection
A total of 1497 attributes were initially loaded as the training

data with 113 instances [17–18]. No records were duplicated and

there were no missing values. On ranking the attributes by the

Gain Ratio criterion, a total of 134 attributes were assigned a gain

ratio greater than zero. The CFS subset evaluator returned 39

features as the most optimal subset that was highly correlated to

the target class but least correlated to each other. These features

were then utilized for the Incremental feature Selection process.

The results of the Hybrid Feature Selection techniques are given

as Table S1.

Incremental Feature Selection
The ranked attributes from the CFS subset evaluator were then

input in the descending order of their rank to the classifier. At each

attribute entry, the MCC and accuracy of the classifier on Jack-

knife test was calculated. The Bayesian Network Learning was

found to give the highest prediction MCC of 0.812 and accuracy

of 87.6% with 36 features. The IFS curves generated on classifier

accuracy and the corresponding MCC is represented in Figure 2.

The optimal prediction accuracy with the proposed methodology

for each feature subset is given in Table 1. The complete results of

Incremental Feature Selection process on all the three Hybrid

Feature Selection datasets are given in Table S2.

Classifier Models
Benchmark classification models that have been reported

[14][38–39] [53–54] to generate high accuracy in classification

of biological data were compared to determine the optimal

prediction technique that generated highest accuracy in predic-

tion. The comparative performance of the classification models

with the feature set generated by the Hybrid Feature Selection

technique is depicted in Table 2. The performance is compared

based on the MCC and prediction accuracy.

Clustering Models
This study utilized seven clustering algorithms [22] in order to

compare their performance in categorizing the classes of lung

tumors based on the attribute values. The results of generating the

clustering algorithms on the dataset before and after performing

Figure 3. Decision tree model obtained by the Random Forest classifier.
doi:10.1371/journal.pone.0058772.g003

Lung Tumor Classification Using Data Mining Models
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hybrid feature selection are presented. The classes to cluster

evaluation results are portrayed in Table 3. It is evident from the

tabulated results that clustering algorithms were not useful in

providing any new idea on the attribute significance in detecting

clusters since their performance accuracy was substantially low.

The discussions on the data and the results are presented in the

ensuing section.

Discussion

Influence of Structural and Physicochemical Properties
There have been several researches on lung cancer classification

[55–65] but the only previous computational study on the

influence of protein sequence based structural and physicochem-

ical properties in categorization of lung tumors was done by

Hosseinzadeh et.al [1] who utilized the decision tree generated by

the Random Forest classifier to identify the contributing attributes.

In this study, we utilized the smallest tree among the 10 decision

tree models generated by the Random Forest classifier [66] on the

training dataset in order to identify the most contributing

attributes to lung tumor classification. Albeit the Random

Committee algorithm also depicted 100% accuracy and a high

MCC of 1 in the training phase, the results obtained on Jack-knife

cross-validation were not as high as the Random Forest Model.

The decision tree model with the smallest number of nodes

generated by the Random Forest on the training dataset is

portrayed in Figure 3. The visualization of this tree made it easier

to identify the composition of each protein property in the

different types of lung cancer tumors, thus providing a source for

drug design targeting the protein composition.

The following novel insights on the protein properties were

gained from the Random Forest Model with a new set of

discriminative features being reported for the first time in

discriminating the lung tumor classes.

(a) Dipeptide composition was the most discriminating feature

among the classes. F1.2 [Dipeptide Composition], F5.3

[Distribution Descriptor], F4.1 [Geary Auto-correlation]

and F6.1 [Sequence order coupling number] were the

subsequent significant protein properties used by the

Random Forest Model to discriminate the lung tumor

classes.

(b) A low value of the F5.3.2 [Normalized vdW volumes] and F

[7.1] pseudo amino-acid composition moved the records

into the COMMON class. A high F5.3.1 [distribution of

hydrophobicity] and F5.3.3 [distribution of polarity] was

found among the genes common in both classes of tumors

whereas a lower concentration of the same was found among

the NSCLC tumor genes. This directs molecular research to

design drugs that would lower the distribution of hydropho-

bicity and polarity while raising the normalized vdW

volumes and pseudo amino-acid composition to target the

COMMON classes of tumors.

(c) A high dipeptide composition was characteristic of the

NSCLC genes and a relatively low value represented the

SCLC tumors. A high concentration of F5.3.1 [Distribution

of hydrophobicity] and F5.3.7 [distribution of Solvent

Accessibility] was evident in the COMMON classes of

tumors. These findings suggest designing drugs that raise

dipeptide composition to aid in cure of SCLC tumors and

drugs that lower the dipeptide composition to cure NSCLC

tumors. Moreover design of drugs that lower the distribution

of hydrophobicity and solvent accessibility could aid in

curing tumors of both kinds.

It was evident that a strict demarcation among the tumor

categories was a complicated task since many properties were

found to exhibit similar composition in both the tumor classes.

However the proposed methodology was found to differentiate

between the tumor classes with a high MCC of 0.812 and

classification accuracy of 87.6%, the highest reported thus far in

protein –property based lung tumor categorization.

Comparison to Previous Work
As stated earlier, the only previous computational study on lung

tumor categorization based on the protein sequence-based

structural and physicochemical properties was reported by

Hosseinzadeh et.al [1] that made a comparison of ten different

feature selection techniques and reported the feature set generated

by the Gain Ratio criterion to generate optimal 10-fold cross

validation accuracy of 86% with the Random Forest classifier.

Their methodology incorporated 114 sequences with 30 genes in

the NSCLC class, 59 in the SCLC and 25 in the COMMON class

of tumors. Moreover their methodology also involved extensive

data cleaning and pre-processing. Here we made use of the 113

sequences [16–18] from the KEGG gene sets corresponding to the

NSCLC and SCLC tumor classes and segregated the genes under

the three classes viz, NSCLC, SCLC and COMMON. The

number of records summed up to 113 with 29 genes [16–17] in the

NSCLC class. This study was aimed at identifying the minimal

and optimal set of features to categorize the lung tumor classes for

use in diagnostic practice and drug design. Hence we used the

Gain Ratio criterion, Information Gain criterion and Symmetric

Uncertainty to rank the features and then applied the Correlation

Feature Subset evaluator [22] with a search termination threshold

of 5 and Best First Search approach to identify the smallest subset

Figure 4. Feature relevance graph. The hybrid feature selection techniques are represented as solid diamonds. The optimal features filtered by
each technique are represented by directed edges from the technique to the feature. Results of each hybrid feature selection technique are
represented in different colors.
doi:10.1371/journal.pone.0058772.g004
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of features with a high correlation to the target class and least

correlation to each other. This resulted in a feature subset with 39

features. On comparing the jack-knife cross-validation accuracy of

five benchmark classification models, the Bayesian Network

Learning algorithm was found to generate the highest MCC of

0.77 with an accuracy of 85% with all the three hybrid feature

selection subsets. On applying Incremental Feature Selection we

obtained the most optimal feature set of 36 features (feature subset

of Gain Ratio + CFS) generating an accuracy of 87.6%.

The previous work by Hosseinzadeh et.al reported a high

accuracy of 86% only on the cleaned data after removal of

duplicate records, correlated records and based on the standard

deviation values. When considering the same data, our proposed

work has achieved a higher accuracy with the original, unmodified

data thus saving computational time by the elimination of the data

cleaning process. In order to bring out the comparison more

clearly we have identified the accuracy of Random Forest with

Gain Ratio (previously proposed classifier model) on the original

data which was able to generate an optimal accuracy of only

79.6% with 26 features from the Gain Ratio –CFS feature set

compared to our proposed method which produced 87.6%

accuracy with 36 features from the same feature subset. We

believe our proposed methodology can easily be extended to

classify and discriminate between other oncogenic tumors since

the original data was retained for computational analysis.

However the previous method appears to have generated a high

accuracy (86%) only on the cleaned data which makes it a

limitation when extending the methodology to other cancer

datasets. Moreover the previously proposed model would entail

additional data pre-processing time when applied to new cancer

datasets.

Comparison with Other Methods
We compared three feature selection methods [22] namely

Information Gain, Symmetric Uncertainty and Gain Ratio. We

applied CFS Subset evaluator on all the feature sets ranked by the

three algorithms. All the five benchmark classification algorithms

[67–68] were applied on the reduced feature datasets. The results

are tabulated in Table 2. All the three predictor methods displayed

consistently high accuracy with the Bayesian Network prediction

technique. The optimal accuracy was obtained only during the

process of Incremental Feature Selection with the Gain Ratio and

CFS subset evaluator combination which attained an improved

accuracy of 87.6% with 36 features. Albeit the Bayesian Network

learning algorithm showed consistent accuracy with the reduced

feature sets of the Information Gain and Symmetric Uncertainty

ranked features, yet during the process of Incremental Feature

Selection, substantial decline in accuracy was apparent with the

Information Gain and Symmetric Uncertainty subsets as detailed

in the Table S2. Hence the Gain Ratio based ranking of features

was considered to be the most optimal feature set for lung tumor

categorization. The features selected by all the three hybrid feature

selection techniques and the commonality among the selected

features are displayed as a graph using NodeXL graph visualiza-

tion software [69] in Figure 4. On careful analysis of the graphical

representation of the feature subsets, it could be concluded that

many features were commonly filtered by all the three hybrid

feature selection techniques and hence reasonably similar perfor-

mance accuracy was evident across the filtered subsets. However

the process of Incremental Feature Selection disclosed the optimal

and minimal feature set required for optimum prediction

accuracy.

Benefits of the Bayesian Network Learning Algorithm
Bayesian Networks have been used in several [70–73] clinical

prediction problems. Previous research has stated that a Bayesian

network is a mathematically rigorous way to model a domain

problem, being flexible and adaptable to available knowledge, and

computationally efficient [72][74–75]. Some notable features of

Bayesian Networks [44] for use in clinical prediction are narrated

below.

(i) Bayes net only relates nodes that are probabilistically related

by some sort of causal dependency. This eliminates the need

to store all possible configurations of states. The algorithm

stores and works with all possible combinations of states

between sets of related parent and child nodes that greatly

reduce computational complexity.

(ii) Bayes Net utilizes expert knowledge and data to build models

dynamically. It allows both backward and forward reasoning.

The medical domain is one research area where expert

knowledge always has room for improvement and backward

reasoning is a definite requirement. Hence application of

computational techniques like Bayesian Networks in discriminat-

ing and classifying tumor classes based on protein sequence based

physicochemical properties is expected to advance the current

state of molecular and biological analysis of oncogenic tumor

classes for drug design.

Conclusion

Research on the utilization of computational techniques and

predictions on clinical and biological data has intensified in the

recent past owing to the fact that most wet-lab experiments

consumed more human expertise, time and capital with irresolute

rewards. This research was aimed at identifying the minimal and

optimal set of protein sequence based structural and physico-

chemical properties in lung tumor categorization into NSCLC,

SCLC and the COMMON tumor classes. The findings of this

study are believed to be both a computational and biological

advancement, the former revealing a new combination of feature

selection and prediction techniques for categorizing tumor classes

with enhanced accuracy and the latter acquiring information on

protein properties prevalent in lung tumors that could aid in

diagnostic practice and drug design. Possible extensions to this

work would involve application of this novel computational

framework in categorization of other oncogenic tumors and

detecting properties that could be targeted for cancer therapy.

Moreover computational advancement would require improving

the prediction accuracy of the proposed methodology by possible

updations to the existing algorithms.
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