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Abstract: There is an evident increase in the importance that remote sensing sensors play in the
monitoring and evaluation of natural hazards susceptibility and risk. The present study aims to assess
the flash-flood potential values, in a small catchment from Romania, using information provided
remote sensing sensors and Geographic Informational Systems (GIS) databases which were involved
as input data into a number of four ensemble models. In a first phase, with the help of high-resolution
satellite images from the Google Earth application, 481 points affected by torrential processes were
acquired, another 481 points being randomly positioned in areas without torrential processes. Seventy
percent of the dataset was kept as training data, while the other 30% was assigned to validating
sample. Further, in order to train the machine learning models, information regarding the 10 flash-
flood predictors was extracted in the training sample locations. Finally, the following four ensembles
were used to calculate the Flash-Flood Potential Index across the Bâsca Chiojdului river basin: Deep
Learning Neural Network–Frequency Ratio (DLNN-FR), Deep Learning Neural Network–Weights
of Evidence (DLNN-WOE), Alternating Decision Trees–Frequency Ratio (ADT-FR) and Alternating
Decision Trees–Weights of Evidence (ADT-WOE). The model’s performances were assessed using
several statistical metrics. Thus, in terms of Sensitivity, the highest value of 0.985 was achieved
by the DLNN-FR model, meanwhile the lowest one (0.866) was assigned to ADT-FR ensemble.
Moreover, the specificity analysis shows that the highest value (0.991) was attributed to DLNN-WOE
algorithm, while the lowest value (0.892) was achieved by ADT-FR. During the training procedure,
the models achieved overall accuracies between 0.878 (ADT-FR) and 0.985 (DLNN-WOE). K-index
shows again that the most performant model was DLNN-WOE (0.97). The Flash-Flood Potential
Index (FFPI) values revealed that the surfaces with high and very high flash-flood susceptibility
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cover between 46.57% (DLNN-FR) and 59.38% (ADT-FR) of the study zone. The use of the Receiver
Operating Characteristic (ROC) curve for results validation highlights the fact that FFPIDLNN-WOE is
characterized by the most precise results with an Area Under Curve of 0.96.

Keywords: flash-flood potential index; remote sensing sensors; bivariate statistics; deep learning
neural network; alternating decision trees; ensemble models

1. Introduction

In recent decades, climate change and its related phenomena, e.g., flash floods, have
had significant negative effects worldwide for both human society and environment [1].
The extreme rainfalls, extreme river discharge values, and therefore the flash-flood risk
are characterized by a continuous increasing trend [2]. This trend is also validated by the
huge amount of damages that flash floods generate worldwide. Therefore, an increasing
number of studies in the literature approaching the subject of flash-flood susceptibility
can be also observed [3–6]. Moreover, the estimation of flood risk and vulnerability
became an essential and mandatory procedure which should be included in the Flood
Risk Management strategy [7]. In this regard, the Geographic Informational Systems (GIS)
and Remote Sensing (RS) techniques represent the necessary tools, which facilitate the
spatial modelling and mapping of flash-flood susceptible areas. It is worth emphasizing
the crucial role of Remote Sensing sensors in the observation’s campaigns conducted for
the identification of areas already affected by flash-flood processes [8]. Thus, without
the RS sensors, the correct inventory of the torrential areas, which favor the occurrence
of flash flood, will be impossible. Consideration of the previously affected areas and
their involvement as input data in more advanced techniques such as machine learning
or bivariate statistics, is of a real help to estimate as accurate as possible the flash-flood
susceptibility within a specific catchment [9].

In recent years, new techniques and models have been developed by researchers
worldwide [10–35]. During the last 6 years, several studies have been individualized
regarding the flash-flood susceptibility investigations, which were carried out through
the integration of GIS techniques with bivariate statistical models such as: frequency
ratio [36], weights of evidence [37], statistical index [38], evidential belief function [39],
certainty factor [40], or index of entropy [41]. Another category of methods successfully
used in this type of study are those included in Multicriteria Decision Making such as:
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [42], Analytical
Hierarchy Process (AHP) [43], Analytical Network Process (ANP) [44] or Vlse Kriterijuska
Optamizacija I Komoromisno Resenje (VIKOR) [45]. Promising results in terms of flash-
flood susceptibility were also provided by machine learning models such as: logistic
regression [46], naïve bayes [47], artificial neural network [48], random forest [49,50],
support vector machine [51], neuro-fuzzy inference system [52], k-nearest neighbor [53] or
deep learning neural network [54]. The attempts of researchers to combine models from
the same category or from different categories to generate ensemble algorithms that are
considered much more accurate than the stand-alone ones should also be noted [55]. In
this regard, the following examples can be provided: Fuzzy Unordered Rules Induction
Algorithm (FURIA) [3], Bayesian-based machine learning models [9], machine learning
and multicriteria decision making ensembles [7], machine learning and bivariate statistics
ensembles [56].

Taking into account the previously presented aspects, the main purpose of the pro-
posed research work is to estimate the susceptibility to flash floods in the basin of the
Bâsca Chiojdului river from Romania. Estimation of flash-flood exposure will be based
on the data collected using Remote Sensing sensors and the GIS database and their use
in a number of four ensemble models generated by combining bivariate statistics with
deep learning neural networks and alternating decision trees. Thus, on the one hand,
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the Frequency Ratio and Weights of Evidence bivariate statistical models will be used;
these being combined with deep learning neural network and alternating decision trees.
The construction of Receiver Operating Characteristic (ROC) curve and the calculation of
several statistical metrics will ensure the validation of the results and the evaluation of the
models’ performances. It is worthwhile to note that the present study is intended to enrich
the scientific literature regarding the flash-flood susceptibility assessment by proposing, for
the first time in the literature, the combination above mentioned of four machine learning
ensemble models with the GIS and remote sensing techniques.

2. Study Area

The Bâsca Chiojdului river basin from Romania, on which the present research is
focused, has a total area of 340 km2. The basin has an elevation which varies from 242 m
to 1463 m, and a slope angle with an average value of 12.3◦. It should be noted that a
percentage of 79% of the total area is characterized by slope angles higher than 7◦ [57].
The circularity ratio, that is another important feature with a high influence on flash-flood
susceptibility, has a value of 0.46, while the river basin concentration time is 7.27 h [36].
The low concentration time highlights a high predisposition of the study area to the flash-
flood events. The forest vegetation covers a total percentage of 50%, while in terms of
the soil component, the hydrological group B accounts for approximately 41% of the total
research area.

The lithology consists mainly of the sedimentary rocks included in the Paleogene
and Cretaceous flysch. The climate is characterized by a high continentalism degree,
and especially in the warm season, the heavy rainfalls often lead to severe flash-flood
phenomena. Due to the geographical characteristics of the Bâsca Chiojdului river basin, the
socio-economic elements located across its territory suffered material losses following the
flash-flood propagation. The most important flash-flood event occurred in 1975, when the
maximum discharge value (300 m3/s) of the Bâsca Chiojdului river reached the historical
maximum [57]. More information regarding the main flash floods occurred across the
study area, as well as the damages caused by these phenomena, can be found in the
research works carried out by: Costache and Zaharia [10], Prăvălie and Costache [57],
Costache et al. [38], Zarea and Gheorghe [58], Prăvălie and Costache [59].

3. Data

In order to carry out the present study, data consisting of torrential areas polygons
and flash-flood predictors were gathered.

3.1. Torrential Area Inventory and Sampling

The inventory of surfaces previously affected by a specific process is essential for an
accurate prediction of the areas where that phenomenon can occur in the future [60]. In the
present research work, we consider the torrential surfaces as the spatial indicator for the
areas with a high susceptibility for flash-flood genesis. In order to identify, as accurate as
possible, the areas affected by torrential phenomena, analysis of the images provided by
the Remote Sensing sensors was mandatory. This fact highlights the crucial role that this
type of sensor has in the analysis of natural hazard susceptibility. Thus, using the Google
Earth imagery a total area of 34 km2 was delimited. These surfaces were created by the
accelerated surface runoff occurring on the slopes. The manner in which these surfaces are
delineated is described in the study carried out by Costache [61]. According to Costache
and Zaharia [8], the torrential areas are defined as the areas characterized by the unified
presence of torrential microform of relief such as ravines and gullies, which are generated
by surface runoff. They are located in the upper part of the river basin, where the absence
of vegetation and the high slopes favor the production of such phenomena. In order to be
taken into account in the present study, a sample of 481 points representing locations where
the torrential runoff took place was extracted from the entire delimited area. Moreover,
another sample of 481 points was placed within the study area, representing points without
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torrential processes (Figure 1). Both torrential pixels and non-torrential pixels were divided
into training (70%) and validating (30%) samples. This division was necessary in order to
train the models and then to validate the results regarding the susceptibility to flash floods.
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3.2. Flash-Flood Predictors

For the realization of this study, a number of 10 flash-flood conditioning factors were
taken into account. Their main properties are described in the following lines. Slope
angle was calculated using the Digital Elevation Model (DEM) taken from Shuttle Radar
Topographic Mission (SRTM) 30 m database and processed in ArcGIS 10 software. A high
value of slope angle will influence in a positive water runoff velocity, while the low values
of the same parameter will be restrictive for the surface runoff occurrence [56]. For the study
area, the map of slope angle was designed by splitting its range of values into five classes
as following [12]: <3◦; 3◦–7◦; 7.1◦–15◦; 15.1◦–25◦; >25◦ (Figure 2a). Another water surface
runoff predictor is represented by the Topographic Wetness Index (TWI) calculated by the
DEM processing in SAGA GIS 2.1.0. The algorithm used to calculate this index requires the
use of the area upslope to each pixel and the tangent value of the slope value recorded in
the same pixel [53]. The generation of TWI map was possible following the partition of its
values into the next five classes using Natural Breaks method: 3.15–6.1, 6.11–7.78, 7.79–10.21,
10.22–14.5, 14.51–24.59 (Figure 2b). Topographic Position Index (TPI) is a mandatory
flash-flood predictor which should be involved in the susceptibility related studies because
its values emphasize the altitude difference between the location of a specific point and its
neighboring area [62]. This important morphometric indicator was achieved at a spatial
resolution of 30 m and its values ranging from −20 to 20 were divided into the next
five classes using Natural Breaks method: (−20)–(−3.8), (−3.7)–(−1.1), (−1.1)–1.3, 1.4–4.5,
4.6–20 (Figure 2c). Profile curvature is mainly used to delineate the surfaces on which an
accelerated surface runoff is manifested from those on which a decelerated surface runoff
occurs [63]. According to the literature [38], positive profile curvature is characteristic
for areas with a decelerated water runoff, while the negative values show the surfaces
that increase the water runoff velocity. Across the study area, the profile curvature was
classified into the following three intervals: (−3)–0, 0.1–0.9, 1–2 (Figure 2d). The ability
of convergence index morphometric factor consists of the differentiation of the areas
belonging the river valleys from those which are situated along the interfluvial lines. This
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index, achieved by DEM processing in SAGA GIS 2.1.0, was classified according to the
literature: (−99)–(−3), (−2.9)–(−2), (−1.9)–(−1), (−0.9)–0, 0–99 (Figure 2e). Stream Power
Index (SPI) is another morphometric factor that is generated in SAGA GIS 2.1.0 based on
the values of upslope region that drains into a pixel and the tangent applied to the slope
angle [64]. This predictor, which shows the capacity of the river for sediment transport,
was mapped using the following classes values: <50, 50–500, 501–2000, 2001–5000, >5000
(Figure 2f). Slope aspect (Figure 3a) is the seventh morphometric index taken into account
for the present research. The slope orientation has a big influence in the surface runoff
process because the humidity condition will vary due to the different quantity of solar
radiation [65]. The slope aspect predictor was derived from the DEM.
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Land use, which is the main interface between the torrential rainfalls and the ground
surface, has an important influence on the runoff velocity [66]. For the present study,
the land use layer was taken from the Corine Land Cover 2018 database. According to
Figure 3b, a number of eight land use categories were delineated within the study area
perimeter. Hydrological soil group was considered as a flash-flood predictor in the present
research due to its incontestable influence on vertical infiltration of water in the ground [67].
Within the Bâsca Chiojdului cathcment, all of the four hydrological soil groups are present
(Figure 3c). A similar contribution, as soil groups, in flash-flood genesis is held by the
lithological groups. In the area of the Bâsca Chiojdului catchment, a total of 10 lithological
groups can be found (Figure 3d).

4. Methods

The main steps of the methodological workflow are synthetically described in Figure 4.
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4.1. Linear Support Vector Machine (LSVM) for Feature Selection

In a study that aims to estimate the qualitative flash-flood susceptibility, it is imperative
to analyze the predictive ability of flash-flood conditioning factors in order to see if they all
manage to contribute to some extent to the genesis of flash floods. In the present research
paper, the evaluation of the prediction ability of flash-flood predictors was determined
using Linear Support Vector Machine (LSVM). This method is widely used because it is
able to remove redundant and irrelevant information from input data [68]. The following
equation is used to compute the predictive ability through LSVM algorithm [69]:

f (x) = sign
(

CT ∗ i + j
)

(1)

where CT is equal to the inverse of weight matrix attributed to each flash-flood predictor,
i = (i1, i2, . . . , i11) is the vector containing the ten flash-flood predictors, j is equal to the
offset value calculated from the hyper-plane origin [5].

This algorithm was applied with the help of Weka 9.3 software.

4.2. Weights of Evidence (WOE)

The bivariate statistics model represented by Weights of Evidence (WOE) is a very
frequently used algorithm involved in the studies focused on natural hazards predispo-
sition evaluation [40]. In this study, the WOE model is used to calculate the weight that
each factor class/category has in relation to the genesis of the flash-flood process. In
order to derive the WOE coefficients, first, computing the positive (W+) and negative
(W−) weights is required. The positive weight highlights the association between a factor
class/category and the torrential points, while the negative weight indicates the absence of
this spatial association [36]. The following relations should be employed in the weights
computation [70]:

W+ = ln
P{B|S}
P
{

B
∣∣S} (2)

W− = ln
P
{

B
∣∣S}

P
{

B
∣∣S} (3)

where: W+—positive weight, W−—negative weight, P—the probability, B—the presence of
flash-flood predictor, B—the absence of flash-flood predictor, S—the presence of torrential
pixels, S—the absence of torrential pixels.

The final WOE coefficients can be derived using the next equation [71]:

Wf = Wplus + Wmintotal - Wmin (4)

where: Wplus—positive weight of a class factor, Wmin—negative weight of a class factor,
Wmintotal—the total of all negative weights in a multiclass map.

The final WOE values will be used as input data into the Deep Learning and Alternat-
ing Decision Tree models through which the flash-flood susceptibility will be determined.

4.3. Frequency Ratio (FR)

Frequency Ratio (FR) is the second bivariate statistical model which will be employed
in order to prepare the input data in the Deep Learning and Alternating Decision Tree
algorithms. The FR model consists of the calculation of the ratio between the sum of
torrential pixels within a specific category of predictor, and the sum of torrential pixels
within the entire study zone. The following relation can be used to estimate the FR
coefficients [72]:

FR =

Np(LXi)
∑m

i=1 Np(LXi)
Np(Xj)

∑n
j=1 Np(Xj)

(5)
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where: FR—the frequency ratio of class i of factor j; Np(LXi)—the number of pixels with
torrentiality within class i of factor variable X; Np(Xj)—the number of pixels within factor
variable Xj; m—the number of classes in the factor variable Xi; n—the number of factors in
the study area.

4.4. Deep Learning Neural Network (DLNN)

Besides one hidden layer neural networks, the Deep Learning Neural Network
(DLNN) is characterized by a feed-forward architecture which contains more than one
hidden layer [73]. Due to this fact, DLNN model is considered better than the simple
neural network in terms of complex classification problems [74]. In the DLNN structure,
the information from the input layer will be transmitted to the hidden layers where it is
processed and then forwarded to the output layer. Further, the backpropagation algorithm
will be employed to send back the error from the output layer to the input layer [75]. The
training procedure of DLNN, which is a type of fee-forward neural network, is ensured
by the application of Rectified Linear Unit (ReLU) activation function [76]. This function,
which is able to reduce the vanishing gradient, is expressed as follows:

r(x) =
{
|x i f x > 0
|0 i f x ≤ 0

= max(0, x) (6)

where x is the input signal transmitted to neuron, while r is the ReLU function.
The derivate associated to the ReLU function, which are required by the back-propagation

algorithm, can be calculated using the following relation:

r′(x) =
{
|1, x > 0
|0, x ≤ 0

(7)

It should be remarked that the cross-entropy function is also involved in the training
procedure because it helps the DLNN to achieve a higher degree of accuracy [77]. The
cross-entropy is mathematically described using the next equation:

E = − 1
N

N

∑
n=1

M ln(P) + (1−M) ln(1− P) (8)

where N is the total number of records in training sample; M is the predictor values, while
P is the predicted values.

The adaptive momentum (Adam) prediction model, implied in the stochastic opti-
mization process, is used to complete the training process of DLNN. Through the Adam
model, the first and second moments could be computed via the exponential moving
averages highlighted through the next relations [78]:

mt = β1mt−1 + (1− β1)gt (9)

vt = β2vt−1 + (1− β2)g2
t (10)

where m and v are the values of the moving averages, g represents current mini-batch
gradient, β is new hyper-parameters computed via the algorithm.

In order to apply the DLNN-FR and DLNN-WOE ensembles, the specific lines of code
were written in R programming language. More specifically, the Keras and Lime package
from R Studio were used in this regard.

4.5. Alternating Decision Tree

Alternating Decision Tree (ADT) model is an ensemble of the decision tree and boost-
ing method [79]. ADT structure has a lower complexity than decision tree models such
as Rotation Forest, Classification and Regression Tree or Random Forest [80]. ADT model
uses a natural extension of decision tree and voted stumps and is formed by prediction
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alternate layers and nodes of decision [81]. Within the ADT algorithm, the decision nodes
will specify the predicate condition; meanwhile the prediction nodes will be characterized
by a single number [80].

Let c1 be the value of a precondition, c2 the value of a base condition, and a and b the
values of two real numbers; then a and b will be computed using the relations [82]:

a = 0.5∗ ln
W+(c1 ∩ c2)

W−(c1 ∩ c2)
, b = 0.5∗ ln

W+(c1 ∩ c2)

W−(c1 ∩ c2)
(11)

where W denotes the sum of the values from any prediction node, and the best c1 and c2
are estimated by minimizing the Zt (c1, c2), determined as follows:

zt(c1c2) = 2
√

W+(c1 ∩ c2) ∗W−(c1 ∩ c2) +
√

W+(c1 ∩ c2) ∗W−(c1 ∩ c2) + W(c2) (12)

The ADT-FR and ADT-WOE ensembles were run and implemented in Weka software.

4.6. Model Performance and Results Validation
4.6.1. Statistical Measures

At the first stage, the models’ performance assessment will consist of the compu-
tation of the next statistical metrics: specificity, sensitivity, accuracy, kappa index. The
aforementioned indices will be computed using the next mathematical relations:

k =
po − pe

1− pe
(13)

Sensitivity =
TP

TP + FN
(14)

Speci f icity =
TN

FP + TN
(15)

Accuracy =
TP + TN

TP + FP + TN + FN
(16)

where TP (True Positive) and TN (True Negative) are the sum of points that will be correctly
classified, FP (False Positive) and FN (False Negative) are the sum of points erroneously
classified; k is kappa coefficient, po is the sum of initially established torrential pixels, and
pe is the sum of predicted torrential pixels.

4.6.2. ROC Curve

The second stage of results validation implied the application of the ROC curve and
Area Under Curve (AUC) to measure the model performance. An AUC closer to 1 will
highlight a performant model, while the values near to 0 will indicate a weak prediction
ability of the models [83,84]. The Success Rate will represent a first form of ROC curve
which will be constructed with the training samples, while the Prediction Rate is the second
variant of ROC curve which will be designed with the help of validation sample. The AUC
values will be determined using the next formula:

AUC =
(∑ TP + ∑ TN)

(P + N)
(17)

where P is the sum of points having torrential phenomena and N is the sum of non-
torrential points.

5. Results
5.1. Feature Selection Using LSVM

According to the results achieved through Weka software, the application of LSVM
provided the next scores: slope (0.659), profile curvature (0.476), land use (0.429), tpi (0.394),
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twi (0.362), convergence index (0.338), hydrological soil group (0.283), spi (0.253), lithol-
ogy (0.231) and aspect (0.162) (Figure 5).
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5.2. FR and WOE Coefficients

The values of FR and WOE coefficients are inserted in Table 1. The largest value of FR
coefficients (7.295) was achieved by TWI class between 14.6 and 24.6, followed by slope
class between 15 and 25◦ (3.925), SPI values lower than 50 (3.205), built-up areas land use
category (2.715) and TPI class between −1 and 1.3 (1.695) (Figure 6). In terms of WOE
weights, the highest score was assigned to built-up areas land use category (3.96), followed
by TWI class between 14.6 and 24.6 (2.67), slope class between 15 and 25◦ (2.48), SPI values
lower than 50 (1.88) and TPI class between −1 and 1.3 (1.39).
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In order to be used as input in ADT and DLNN models, the FR and WOE values were
normalized between 0 and 1.
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Table 1. FR and WOE coefficients.

Factor Class FR
FR

Standardized
Coefficients

WoE
Coefficients

WoE
Standardized
Coefficients

Slope <3◦ 0.000 0.000 0.000 0.307
3.1–7◦ 0.152 0.039 −1.100 0.000
7.1–15◦ 0.245 0.062 −1.100 0.000

15.1–25◦ 3.925 1.000 2.480 1.000
>25◦ 1.125 0.287 1.720 0.788

TPI (−20)–(−3.8) 0.435 0.257 −1.740 0.116
(−3.7)–(−1.1) 1.415 0.835 0.160 0.727

(−1)–1.3 1.695 1.000 1.010 1.000
1.4–4.5 0.000 0.000 −2.100 0.000
4.6–20 0.245 0.145 −2.100 0.000

TWI 3.2–6.1 1.055 0.030 0.160 0.116
6.2–7.8 0.975 0.017 0.010 0.063
7.9–10.2 1.025 0.025 0.080 0.088

10.3–14.5 0.865 0.000 −0.170 0.000
14.6–24.6 7.295 1.000 2.670 1.000

Land use Built-up areas 2.035 0.750 3.960 1.000
Agriculture zone 2.715 1.000 1.610 0.642

Vineyards 0.365 0.134 −2.190 0.063
Fruit trees 0.245 0.090 1.390 0.608
Pastures 0.675 0.249 −0.300 0.351
Forests 0.000 0.000 −2.600 0.000

Transitional
woodland-shrub 0.965 0.355 0.270 0.438

Water bodies 1.485 0.547 0.840 0.524

Lithology 1 0.895 0.768 0.000 0.745
2 0.000 0.000 −2.100 0.000
3 0.000 0.000 −2.100 0.000
4 1.165 1.000 0.450 0.904
5 0.665 0.571 −0.350 0.621
6 0.245 0.210 −2.100 0.000
7 0.435 0.373 −1.230 0.309
8 0.355 0.305 −1.770 0.117
9 0.635 0.545 −0.490 0.571

10 0.815 0.700 −0.070 0.720

Profile
curvature

−3–0 0.705 0.237 −1.370 0.299
0.1–0.9 1.605 1.000 0.980 1.000

1–2 0.425 0.000 −2.370 0.000

SPI <50 3.205 1.000 1.880 1.000
50.1–500 1.615 0.329 0.870 0.498

500.1–2000 1.025 0.080 0.270 0.199
2000.1–5000 0.835 0.000 −0.060 0.035

>5000 0.975 0.059 −0.130 0.000

Aspect Flat surfaces 3.645 1.000 1.560 1.000
North 1.535 0.262 0.610 0.503

North-East 1.095 0.108 0.130 0.251
East 1.205 0.147 0.280 0.330

South-East 1.605 0.287 0.690 0.545
South 1.115 0.115 0.170 0.272

South-West 0.785 0.000 −0.350 0.000
West 1.015 0.080 0.040 0.204

North-East 1.405 0.217 0.490 0.440

Convergence
index

0.1–99 2.515 1.000 1.650 1.000
−0.9–0 1.285 0.317 0.360 0.469
−1.9–−1 0.915 0.111 −0.110 0.276
−2.9–−2 0.715 0.000 −0.780 0.000
−99–−3 0.985 0.150 −0.040 0.305

HSG A 1.325 0.697 0.360 0.669
B 1.595 1.000 0.890 1.000
C 0.705 0.000 −0.710 0.000
D 1.105 0.449 0.090 0.500
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5.3. Models Performance Assessment

The configuration, in terms of the hardware and software environments, that was
required for the computational modelling, is presented in Table 2.

Table 2. Hardware and software environmental configuration used for modelling.

Configuration Parameter

CPU Intel(R) Core(TM) i7–7500@2.70 GHz
RAM 16.0 GB DDR4
GPU NVIDIA GeForce MX330

Hard disk SSD 512 GB M.2 PCIe
Operating system Windows 10 Pro

It is mandatory that before the final mapping of flash-flood potential, the model’s
performance must be evaluated in order to verify its reliability in the methodological
process. Thus, in terms of the training dataset, the DLNN-WOE ensemble achieved
the highest accuracy (0.985), followed by DLNN-FR (0.982), ADT-FR (0.923) and ADT-
WOE (0.92). In terms of the validating sample, the highest accuracy was achieved by
DLNN-WOE (0.92), followed by DLNN-FR (0.903), ADT-WOE (0.896) and ADT-FR (0.878)
(Table 3).

Table 3. Statistical metrics used to evaluate model’s performance.

Models TP TN FP FN Sensitivity Specificity Accuracy k-Index

Training

DLNN-FR 330 332 7 5 0.985 0.979 0.982 0.964
DLNN-WOE 334 330 3 7 0.979 0.991 0.985 0.970

ADT-FR 312 310 25 27 0.920 0.925 0.923 0.846
ADT-WOE 309 311 28 26 0.922 0.917 0.920 0.840

Validating

DLNN-FR 132 128 12 16 0.892 0.914 0.903 0.806
DLNN-WOE 137 128 7 16 0.895 0.948 0.920 0.840

ADT-FR 129 124 15 20 0.866 0.892 0.878 0.757
ADT-WOE 132 126 12 18 0.880 0.913 0.896 0.792

5.4. Results of Machine Learning Ensembles
5.4.1. DLNN-FR and DLNN-WOE Results

The DLNN based ensembles were trained by establishing the maximum number of
epochs to 100 (Figure 7).
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Figure 7 highlights the variability of loss and model accuracy according to the epochs
number and also for both training and validating samples. Particularly, in the case of
the DLNN-FR model, the best performances were achieved with the following model
parameters: a number of two hidden layers; a maximum number of 100 hidden neurons in
each hidden layer; a dropout rate of 0.3; a batch size value of 5 and a validation split of 0.3.
The same number of hidden layers and neurons was used also in the case of DLNN-WOE,
while the other parameters have the following value: a dropout rate of 0.4; a batch size of 4
and a validation rate of 0.2. The architecture of the DLNN-based ensembles are represented
in Figure 8.
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Figure 8. Deep Learning Neural Network architecture.

The next step in the flash-flood susceptibility computation process is the derivation of
the flash-flood predictor’s importance. In terms of DLNN-FR, the highest importance was
assigned to slope factor (0.2). On the second-place rank, land use (0.143), followed by profile
curvature (0.12), TWI (0.109), hydrological soil group (0.097), lithology (0.094), TPI (0.08),
SPI (0.067), convergence index (0.061) and aspect (0.029) (Figure 9). The application of
DLNN-WOE revealed that the most important factor was slope (0.235), and is followed
by land use (0.149), SPI (0.089), hydrological soil group (0.086), TPI (0.086), TWI (0.082),
lithology (0.074), convergence index (0.072), profile curvature (0.064) and aspect (0.063).
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The weights of flash-flood predictors were used in ArcGIS map algebra in order to
derive the flash-flood potential index values. All the Flash-Flood Potential Index (FFPI)
results, with values between 0 and 1, were reclassified in five classes using Natural Breaks
method. In terms FFPIDLNN-FR, the very low flash-flood potential values cover around 7.5%
of the study area and range between 0 and 0.42 (Figure 10a). The low flash-flood potential
appears on around 15.6% of Bâsca Chiojdului river catchment and has values ranging from
0.43 and 0.55. It should be remarked that these values are mainly spread on the southern
half of the area. The medium flash-flood potential has a span of 30.28% of the entire
territory (Figure 11) and is characterized by FFPIDLNN-FR between 0.56 and 0.66. These
values are uniformly distributed across the study zone. The high and very high flash-flood
potential appears on areas with FFPIDLNN-FR higher than 0.67 and covers approximately
46.57% of the research area. This potential degree is mainly present in the northern half of
Bâsca Chiojdului river basin.
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5.4.2. ADT-FR and ADT-WOE Results 
A trial procedure was applied in order to determine the best parameter associated 

with the highest accuracy of ADT-FR and ADT-WOE for both training and validating 
samples. Thus, in terms of ADT-FR, the highest accuracies (0.923 for training and 0.878 for 
validating) were achieved after 23 iterations, while in terms of ADT-WOE the best accu-
racies (0.92 for training and 0.896 for validating) were determined after a number of 28 
iterations (Table 4). Once the best parameters were determined, the optimally pruned de-
cision trees were constructed (Figure 12a,b) and the flash-flood predictors importance 
were calculated. 

Table 4. The optimal parameters of the ADT based ensembles. 

Models No. of Iterations Seed Training Accuracy Validating Accuracy 
ADT-FR 23 6 0.923 0.878 

ADT-WOE 28 8 0.920 0.896 

Therefore, in terms of ADT-FR, the highest importance was assigned to slope factor 
(0.191). On the second-place rank land use (0.134), followed by hydrological soil group 
(0.131), lithology (0.125), profile curvature (0.108), convergence index (0.102), TWI (0.091), 
SPI (0.07), TPI (0.034) and aspect (0.013) (Figure 9). The application of ADT-WOE revealed 
that the most important factor was slope (0.198), and is followed by land use (0.156), hy-
drological soil group (0.123), lithology (0.117), profile curvature (0.096), TWI (0.086), con-
vergence index (0.075), SPI (0.066), aspect (0.051) and TWI (0.032). 
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In terms of FFPIDLNN-WOE, the very low flash-flood potential is characteristic for a
percentage of 7% from the entire study perimeter, while the low values of the same indicator
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cover an area of 13.41% of the total territory. Ranging from 0.59 to 0.68 (Figure 10b), the
medium flash-flood potential spans accross approximately 28.76% of the Bâsca Chiojdului
river catchment. High and very high flash-flood susceptibility has values of FFPIDLNN-WOE
higher than 0.69 and is spread over more than 50% of the research zone. It should be noted
that the areas delineated through DLNN-WOE have a lower degree of fragmentation than
the areas delineated by DLNN-FR.

5.4.2. ADT-FR and ADT-WOE Results

A trial procedure was applied in order to determine the best parameter associated with
the highest accuracy of ADT-FR and ADT-WOE for both training and validating samples.
Thus, in terms of ADT-FR, the highest accuracies (0.923 for training and 0.878 for validating)
were achieved after 23 iterations, while in terms of ADT-WOE the best accuracies (0.92 for
training and 0.896 for validating) were determined after a number of 28 iterations (Table 4).
Once the best parameters were determined, the optimally pruned decision trees were
constructed (Figure 12a,b) and the flash-flood predictors importance were calculated.

Table 4. The optimal parameters of the ADT based ensembles.

Models No. of
Iterations Seed Training

Accuracy
Validating
Accuracy

ADT-FR 23 6 0.923 0.878

ADT-WOE 28 8 0.920 0.896
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Therefore, in terms of ADT-FR, the highest importance was assigned to slope factor
(0.191). On the second-place rank land use (0.134), followed by hydrological soil group
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(0.131), lithology (0.125), profile curvature (0.108), convergence index (0.102), TWI (0.091),
SPI (0.07), TPI (0.034) and aspect (0.013) (Figure 9). The application of ADT-WOE revealed
that the most important factor was slope (0.198), and is followed by land use (0.156),
hydrological soil group (0.123), lithology (0.117), profile curvature (0.096), TWI (0.086),
convergence index (0.075), SPI (0.066), aspect (0.051) and TWI (0.032).

As in the case of the previous two ensembles, the FFPIADT-FR and FFPIADT-WOE were
calculated. In terms FFPIADT-FR, the very low flash-flood potential spans around 3.26%
of the study area and has values between 0 and 0.39 (Figure 10c). The low flash-flood
potential is distributed on around 11.74% of the Bâsca Chiojdului river catchment and
has values ranging from 0.4 to 0.58. The medium flash-flood potential spans 25.63% of
the entire territory and has values between 0.59 and 0.7 (Figure 10c). The high and very
high flash-flood potentials appear on areas with FFPIADT-FR higher than 0.71 and cover
approximately 59.38% of the research area. In terms of FFPIADT-WOE, the very high flash-
flood potential covers 6.64% of the entire study perimeter, while the low values are spread
over 13.87% of the total territory. With values from 0.59 to 0.69 (Figure 10d), the medium
flash-flood potential occurs over 30.34% of the Bâsca Chiojdului river catchment. The high
and very high flash-flood potential indices have values higher than 0.7 and account for
almost 50% of the study zone.

5.5. Results Validation Using ROC Curve

The validation of the FFPI results provided by each ensemble model was carried
out using the ROC curve method. Thus, in the case of the Success Rate, the highest
performance was achieved by FFPIDLNN-WOE with an AUC of 0.96, being followed by
FFPIDLNN-FR (AUC = 0.942), FFPIADT-WOE (AUC = 0.94) and FFPIADT-FR (AUC = 0.919)
(Figure 13a). If we analyze the Prediction Rate outcomes, it can be seen that the same
FFPIDLNN-WOE indicator achieved the highest performance (AUC = 0.921), followed by
FFPIDLNN-FR (0.92), FFPIADT-WOE (0.909) and FFPIADT-FR (AUC = 0.879).
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6. Discussions

With the undeniable advancement of technology, there are more and more possibilities
to monitor the dangerous phenomena that occur on the Earth’s surface. In this regard,
it is worth remembering the rapid advance of observation techniques of the terrestrial
surface by means of remote sensing sensors—with the help of which, the surfaces affected
by natural hazards can be observed.

Thus, the present paper used images taken with the help of these sensors to identify
the areas already affected by the torrential runoff from the Earth’s surface. It should be
mentioned that the most accurate identification of these areas is essential in obtaining
results with high accuracy and which can be further used by the competent authorities in
risk assessment and in adopting the most appropriate measures to reduce future damage
caused by these hazards. Thus, by analyzing the images provided by remote sensing
sensors, on the river basin of the river Bâsca Chiojdului, areas affected by torrential runoff
totaling a total area of 34 km2, representing about 10% of the entire study area, were
identified. Furthermore, in order to capitalize on the delimited surfaces, a sample of about
481 was generated, taking a sample of points affected by torrential phenomena transposed
into relief microforms such as ravines. In order to ensure the correctness of the modelling
results, another sample of 481 points was generated from the areas where the torrential
phenomena did not take place; the entire data set being then divided into training and
validating data. The values of 10 flash-flood predictors were also used as input data. It
should be noted that Remote Sensing sensors also played a crucial role in generating 8 of
the 10 flash-flood predictors. Thus, all morphometric parameters were derived from the
digital terrain model taken from the SRTM database, 30 m which was acquired using radar
techniques. In addition, the land use, taken from the Corine Land Cover 2018 database,
was generated by the supervised classification of the images provided by the Remote
Sensing sensors.

Data on the presence of phenomena and the values of the main predictors of flash-flood
genesis were included in two of the state-of-the-art machine learning models represented
by Deep Learning Neural Networks and Alternating Decision Trees. These two models are
recommended due to the very good results they provided following their application in
previous studies on the estimation of susceptibility to natural hazards [79,80]. For a higher
degree of results objectivity, it was decided to process the training sample by assigning
some coefficients using the bivariate methods statistics, Frequency Ratio and Weights of
Evidence. This method has proven to be very useful in previous studies [46,56] where the
initial data were processed with bivariate statistics algorithms.

The combination of DLNN with WOE proved to be the most efficient because the
accuracy achieved during the training process exceeded 98%, while ROC curve applied
to the final product FFPIDLNN-WOE showed a maximum AUC of 0.96. This value of AUC
exceeds the value obtained by Costache et al. [38], when, by applying the hybrid combina-
tion between Multilayer Perceptron (MLP) and Statistical Index, for the same study area
and for the FFPI calculation, a maximum AUC value of 0.94 was obtained. These results
confirm the findings from the literature according to which DLNN, whose architecture
includes several hidden layers, is able to surpass the MLP performances whose architecture
includes a single hidden layer [57]. Moreover, the MLP performance from the previous
study was exceeded by the DLNN-FR ensemble model, characterized by an AUC of 0.942.
Overall, in the Bâsca Chiojdului basin, the models showed a percentage of the high and
very high flash-flood potential between 46.57% (DLNN-FR) and 59.38% (ADT-FR).

7. Conclusions

In light of the continuous increase in the flash-flood events’ frequency, the present
research work proposed a workflow through which the areas susceptible to flash floods are
identified based on remote sensing and GIS data included in Deep Learning and Alternating
Decision Trees ensembles. Thus, using 418 torrential and 481 non-torrential locations along
with 10 flash-flood predictors, the Flash-Flood Potential Index was determined across the
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Bâsca Chiojdului river basin. Using as input data the FR and WOE coefficients, the FFPI was
computed using the following four ensembles: DLNN-FR, DLNN-WOE, ADT-FR and ADT-
WOE. As was expected, the slope angle and land use resulted in being the most important
flash-flood predictors. The highest results accuracy was achieved by the DLNN-WOE
model which is characterized by an AUC–ROC curve of 0.985. The percentage (59.38%) of
high and very high FFPI classes was revealed by the application of ADT-FR ensemble.

The main novelty of this study is represented by the application for the first time in the
literature of the four ensemble models for determining flash-flood potential index values.

This work is of real importance for the governmental authorities which can use the
results in order to improve the measures taken to mitigate the negative effects of flash-flood
hazards within the study area.
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