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Abstract: Long non-coding RNA (lncRNA) research in plants has recently gained momentum taking
cues from studies in animals systems. The availability of next-generation sequencing has enabled
genome-wide identification of lncRNA in several plant species. Some lncRNAs are inhibitors
of microRNA expression and have a function known as target mimicry with the sequestered
transcript known as an endogenous target mimic (eTM). The lncRNAs identified to date show
diverse mechanisms of gene regulation, most of which remain poorly understood. In this review,
we discuss the role of identified putative lncRNAs that may act as eTMs for nutrient-responsive
microRNAs (miRNAs) in plants. If functionally validated, these putative lncRNAs would enhance
current understanding of the role of lncRNAs in nutrient homeostasis in plants.

Keywords: long non-coding RNAs; endogenous target mimicry; microRNA; nitrogen and phosphorus
deprivation

1. Introduction

Non-coding RNAs (ncRNAs) are functional RNAs with very low or no potential for encoding
protein but are involved in controlling developmental processes or stress responses [1,2]. Non-coding
RNAs are a heterogeneous group of RNA molecules that can be classified in different ways according
to their location, length and biological functions [3,4]. The first ncRNAs were discovered in the early
1980s when small nuclear RNAs (snRNAs) were established as building blocks of the spliceosome [5].

The application of high throughput RNA-sequencing (hereafter RNAseq) has facilitated the
identification of thousands of novel ncRNAs in a diverse range of organisms including human,
animals and plants [3,6,7]. In addition to protecting genomes from the introgression of foreign nucleic
acids, ncRNAs have been shown to be involved in regulating gene expression at the transcription,
RNA processing, and translation levels [8]. The ncRNA-mediated regulation of gene expression at
transcriptional, post-transcriptional and epigenetic levels occurs via long non-coding RNAs (lncRNAs),
named based on their length relative to microRNAs (miRNAs; around 22 bp in length) [9]. Long
non-coding RNAs are large RNAs of length 200 nucleotides or greater and do not code proteins.
The diversity of ncRNAs offers an important insight into their dominance in gene regulation. There
has been significant work on lncRNAs in the animal kingdom [6,10–23] but studies on plant lncRNA
are still in their infancy. There are several intriguing similarities between lncRNAs and messenger
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RNAs (mRNAs). Similar to mRNAs, most lncRNAs are transcribed by RNA polymerase II, although
they can also be transcribed by RNA polymerase III, IV or V [24,25]. A few lncRNAs have features
including a 5´ cap and 3´ polyadenylated tail but lack the ability to encode proteins.

In contrast to small RNAs, lncRNA sequences show weak sequence conservation which is
proposed as the result of a high rate of primary evolution as the latter may be the frequent target of
positive selection [26]. The molecular mechanisms of lncRNAs can be studied by considering lncRNAs
in four archetypes: (i) signal (ii) decoys (iii) guides, and (iv) scaffolds [4]. Long non-coding RNAs
under the archetype ‘signal’ are transcribed by RNA polymerase II as evidenced by polymerase II
occupancy, 5´ caps, histone modification associated with polymerase II transcriptional elongation
and polyadenylation [7]. The incorporation of environmental signals such as temperature, light,
drought, and salt are some of the well-studied examples of the ‘signal’ type mechanism. Recently
reported lncRNA DROUGHT INDUCED lncRNA (DRIR) expression under drought and salt stress
was observed to regulate the modulation of the activity of genes involved in abiotic stress response
in Arabidopsis thaliana [27]. DROUGHT INDUCED lncRNA functions upstream of gene transcription
whilst its constitutive expression does not affect the expression of other stress responsive genes under
normal environmental conditions. Although the molecular mechanism of DRIR is still not clear, there is
speculation that it might influence the activity or regulation of FUT4 gene encoding fucosyltransferase,
or transcription factor NAC3 (NAM/ATAF/CUC family) or redox status, resulting in enhanced
tolerance to drought and salt stress. Another example of an environmental signal mechanism is
lncRNA LONG-DAY SPECIFIC MALE FERTILITY ASSOCIATED RNA (LDMAR), which causes
photoperiod sensitive male sterility in rice, thus regulating fertility by day length [28].

The second ‘decoy’ mechanism demonstrates negative regulation of transcription. Here, the RNA
acts as a molecular sink and miRNA target mimics are good examples of this archetype. Long non-coding
RNAs are thought to act as a decoy and moderate the quantity of protein produced, effectively titrating
away proteins and small regulatory RNAs [4]. In silico analysis of maize (Zea mays) degradome data
showed that there are 86 lncRNAs which act as decoys for 58 miRNA [29]. Their work has confirmed
that miRNA decoy sites are conserved across genomes of five monocot species and the putative miRNA
decoys can inhibit miRNA function in a spatial or temporal manner [30]. This has been proposed as a
contributing factor for maize transcript complexity. A well-studied example of the decoy mechanism
is INDUCED BY PHOSPHATE STARVATION 1 (IPS1) which acts as a decoy of miRNA399 (further
discussed below).

The third ‘guide’ mechanism involves the binding of RNA and positioning of the ribo-nucleo
protein complex to a specific target, in either-cis or -trans, in such a way that cannot be easily predicted
based on lncRNA sequences. The Nuclear Speckles RNA-binding protein (NSRs) mediates the
alternative splicing of a group of genes involved in lateral root initiation in A. thaliana. However,
the lncRNA ALTERNATIVE SPLICING COMPETITOR (ASCO)-RNA can bind with NSRs and
alter alternative splicing resulting in weakening of lateral root initiation [31]. A recent example
is ELF18-INDUCED LONG-NONCODING RNA1 (ELENA1) lncRNA which is induced by disease
caused by Pseudomonas syringae and is involved in imparting plant immunity [32]. They provided
evidence by using a combination of overexpressed and mutant/knockdown lines of A. thaliana showing
that ELENA1 and MED19a subunit (a mediator that liaise between transcription factors and RNA
Pol II) function interdependently to induce expression of PATHOGENESIS RELATED (PR1 and PR2),
β-1,3-glucanases and salicylic acid induced genes. ELENA1 acts not only in cis by affecting nearby
locus but also in trans by influencing PR1 and other loci not close to the ELENA1 locus.

The final archetype ‘scaffold’ mechanism serves as a central platform upon which relevant
molecular components are assembled. A putative example of a scaffold mechanism is COLD ASSISTED
INTRONIC NONCODING RNA (COLDAIR) involved in vegetative to reproductive transition in
A. thaliana. COLDAIR recruits the polycomb repressive complex 2 (PRC2), a group of proteins that
can cause histone modification [33]. During vernalization, increased enrichment of PRC2 causes
mitotically stable silencing of the floral repressor gene FLOWERING LOCUS C (FLC) through chromatin
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modification. In this process, PRC2 mediates histone H3Lys27 methylation at FLC locus causing
silencing of FLC [34,35]. These examples demonstrate the functional relevance of lncRNAs in plants.

Plants are sessile in nature and must continually evolve their adaptive mechanism to cope with
environmental change. Under natural growing conditions, plants are subject to numerous biotic and
abiotic stresses including nutrient limitation. Efficient nutrient acquisition is one of the major factors
required for sustainable productivity in low input agriculture. Developing nutrient use efficient crops
is required in order to minimize nutrient loss and resulting in less environmental pollution, and to
reduce the input costs associated with fertilizer application [36,37]. This is particularly pressing for
the macronutrient nitrogen (N) and phosphorus (P) which are primary elements required by plants to
sustain growth and yield. Nitrogen is the most limiting nutrient, required in large quantities by plants
for optimum growth and grain development. Nitrogen and phosphorus are the building blocks of
DNA and proteins and about 16% of plant proteins are comprised of N [38]. A number of the lncRNAs
discovered show either direct or indirect involvement in nutrient stress adaptation and tolerance in
plants [39–41]. Further work is required to elucidate the role of lncRNAs as endogenous target mimics
of miRNAs and their role in low N and P stress tolerance in plants.

2. Role of lncRNAs as Endogenous Target Mimics for MicroRNAs

As a negative regulator of mRNA, miRNA has diverse regulatory roles across kingdoms [42].
Among the ncRNAs, miRNA is the most frequently studied ncRNA [43]. It acts in a sequence specific
manner to interact with targets via base pairing to complementary sites. This interaction leads to the
silencing of specific protein-coding genes at the post-transcriptional level (Figure 1A). This is achieved
through the induction of mRNA cleavage accompanied by protein translation. By this mechanism of
action, miRNA plays a key regulatory role in diverse developmental processes, stress responses and
metabolism [44,45].

In addition to classical protein coding mRNAs, several ncRNAs containing competing
miRNA-binding sites are included as targets for miRNAs. It is assumed in existing literature that
functional endogenous target mimics (eTMs) are mainly composed of lncRNAs [30,46]. Emergence
of lncRNAs as eTMs of miRNAs was first supported by the discovery of IPS1 in A. thaliana [46].
The transcripts of IPS1 and PHO2 (Phosphate 2) mRNA are key genes involved in inorganic P (Pi)
homeostasis, and possess a similar 23 nucleotide (nt) binding site which competes for pairing with
miR399. In contrast to the miRNA-binding sites of PHO2, the IPS1 binding site forms a three-nucleotide
bulge opposite the miR399 cleavage site on miRNA binding. This bulge prevents the cleavage of IPS1
and sequesters miR399; thus, the original PHO2 target is deregulated (Figure 1B). Known as target
mimicry, this mechanism of inhibition of miRNA activity results in sequestered transcripts known as
competing endogenous RNAs (ceRNAs) [47,48].
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In plants, these ceRNAs are known as target mimics (TMs) while in mammals the terms miRNA
decoys or microRNA sponges are synonymously used for TMs [49] miRNA targets and TMs have
highly similar target sites, known as miRNA recognition elements (MREs). The Franco-Zorrilla method
of miRNA/TM interaction is based on MRE conservation and the position of the three-nucleotide
bulge [46,47] but later work demonstrated that poor central complementarity is sufficient for the
inhibition of miRNA [50,51].

Target mimicry has provided an alternative method for functional studies on miRNAs.
As miRNAs have been shown to be regulated up to two-thirds of a eukaryotic transcriptome [52],
the relevance of TMs has increased [42,47,53,54]. Target mimicry effects can also be induced by
engineered artificial miRNA TMs [30,49]. Further, Short-Tandem Target Mimicry (STTM) technology
has been used to engineer artificial target mimics (aTMs) [49]. An example of aTMs designed
to establish the functionality of eTMs for miR160c (ath-eTM160-1) and miR166 (ath-eTM166-1) in
A. thaliana was described by Wu et al. [30] with the resultant transgenic plants overexpressing eTMs
displaying distinctly altered phenotypes such as dwarf plant size, serrated leaves and accelerated
flowering time as compared to the wild type. These results suggest that eTMs plays a key role in
regulating plant developmental processes.

There are various computational methods currently available to help predict TMs in plants.
Specifically, TAPIR [55] provides target prediction of plant miRNAs including target mimics for
eleven plant genomes. Available databases of plant TMs include the Plant Endogenous Target Mimics
database (PeTMbase [56]), miRSponge [57] and the Plant Competing Endogenous RNA database
(PceRBase [58]). The main features and links of these databases are listed in Table 1.

Table 1. Summary of databases/webservers used in plant target mimicry research till date.

Name Features Links Reference

TAPIR

Only tool for the TM prediction in plants;
applies Franco-Zorrilla rule for target mimicry;
contains data for 10 plant species; RNA hybrid
and miRBase are the data sources

http://bioinformatics.psb.ugent.
be/webtools/tapir/ [55]

miRSponge
1.6% data is from plant and others are of
non-plant; experimentally validated; literature
mining is the data source

http://www.bio-bigdata.net/
miRSponge/ [57]

PeTMbase
Contains 2728 TMs for 11 species; uses Wu et al.
(2013) target mimicry rule; GreeNC, PNRD,
miRBase, NCBI SRA are the data sources

http://petmbase.org [56]

PceRBase

First database for plant TMs; 167608 TMs from
26 plant species; Phytozomev10, TAIR10, MSU
RGGP & miRBase and literature are the data
sources

http://bis.zju.edu.cn/pcernadb/ [58]

TAPIR: Target prediction of plant miRNAs; miRSponge: microRNA sponge; PeTMbase: Plant endogenous target
mimics database; PceRBase: Plant competing endogenous RNA database.

3. Long non-coding RNAs Expressed under Nitrogen and Phosphorus Deprivation

Understanding plant response to changes in nutrient status or concentration has advanced
significantly [36,37,59–66]. Developed computational approaches can provide integrated views of
networks and enhanced understanding of how plants respond to an added nutrient [67]. Additional
novel experimental and computational tools in nutrient homeostasis are required to improve nutrient
use efficiency in crop plant [68]. To improve N use efficiency (NUE), multiple quantitative trait loci
(QTLs) have been identified in the model species A. thaliana as well as in crops such as maize, rice,
barley and wheat [69,70]. Differential gene expression studies in response to N have also attempted to
identify major regulators of expression differences for NUE in wheat [71], sorghum [72], barley [73],
maize [40] and rice [74].

By performing ultra-deep sequencing of total RNA, Lvet al. [40] identified intergenic/intronic
lncRNAs expressed in maize leaves from plants grown under N deficient and N sufficient conditions.

http://bioinformatics.psb.ugent.be/webtools/tapir/
http://bioinformatics.psb.ugent.be/webtools/tapir/
http://www.bio-bigdata.net/miRSponge/
http://www.bio-bigdata.net/miRSponge/
http://petmbase.org
http://bis.zju.edu.cn/pcernadb/
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This is the only report in a crop species showing the role of lncRNAs in regulation of the response to
N nutrition. Among the 7245 putative lncRNAs identified, approximately 9% (637) were responsive
to N, of which 67% (426) were down-regulated under sufficient N, whilst the remaining 211 were
upregulated. For functional prediction of differentially expressed lncRNA, co-expression module
analysis was performed and functional enrichment suggested their association with processes such as
oxidation-reduction, generation of precursor metabolites and energy production [39]. Chen et al. [39]
reported an adaptation mechanism to low N stress in the model woody species Populus tomentosa. They
performed genome-wide identification of functional lncRNAs on P. tomentosa plantlets grown with low
and sufficient N, and aligned to the genome of Populus trichocarpa. They reported 388 unique lncRNA
candidates of which seven lncRNAs belonged to seven conserved ncRNA family whilst the majority
(381) were novel with no homology in Rfam ncRNA family suggesting that these were specific to P.
tomentosa species. In response to N deficiency, 126 lncRNAs were differentially expressed, of which 8
were repressed and 118 were induced. Antisense transcripts with interaction with sense genes were
found to be involved in plant response to low N stress tolerance. This work is an illustration of the
role of lncRNAs and the mechanism of action under N stress tolerance in woody plants. Further
identification of antisense lncRNA and their associated regulatory mechanism would increase our
understanding of inherent mechanisms to combat low N stress and to determine species specificity.

In plants, P has essential roles in structural (nucleic acids, phospholipids), metabolic
(energy transfer) and regulatory functions (signal transduction) [75]. Phosphorus nutrition
influences crop yield by imposing significant effects on above- (leaf area, dry matter accumulation,
leaf P content, photosynthesis) and below-ground (root morphological traits, root exudation,
symbiosis) processes [37,61,76]. In soils with low P availability, plants adapt by altering their
root system architecture [65,77–81], organic acid exudation pattern [82–85], and can bypass certain
metabolic processes [86–89]. Numerous studies have assessed miRNA directed Pi homeostasis
in plants identifying miR399, a post-transcriptional regulator, as a major component of P
starvation tolerance [59,60,90–92]. It serves as a long-distance signal for regulation of plant Pi

homeostasis [59,60]. Regulation of PHO2 by miR399 and a ribo-regulator, At4, have been shown
to be induced by IPS1 in A. thaliana [93]. The members of IPS1 family have been shown to be
ribo-regulators rather than targets of miR399 [59]. The Pi starvation responsive miR399 guides the
cleavage of PHO2 RNA, which encodes an E2-ubiquitin conjugase protein that negatively influences
shoot Pi content and Pi remobilization through an unknown mechanism [94]. In Medicago truncatula
grown under to P stress, three lncRNAs, PHOSPHATE DEFICIENCY INDUCED lncRNA (PDILs),
were identified and functionally characterized [95]. Of the three, PDIL1 functions in suppression of
degradation of MtPHO2 while the other two, PDIL2 and PDIL3, are involved at the transcriptional
level to regulate Pi transport. In addition to PHO2 mRNA, other ncRNAs containing a region of
complementarity with miR399 including TOMATO PHOSPHATE STARVATION-INDUCED 1 (TPSI1)
gene were identified in tomato (Solanum esculentum) [96], Mt4 in M. truncatula [97,98]. Di et al. [99]
reported that many lncRNAs have the potential to regulate mRNA levels in A. thaliana. Their extensive
study of miR399 targets revealed the mutual interaction of miRNA, lncRNA and mRNAs. For example,
under Pi and iron homeostasis, At5G01591.1 and AtFer1 (ferritin) transcripts were induced in response
to Pi starvation, and their promoter contains Phosphate starvation response 1-Binding Sequence (P1BS)
motif, indicating that both are also regulated by PHR1 during Pi starvation [100].

Another study in the diatom Phaeodactylum tricornutum identified 1510 putative long intergenic
ncRNAs (lincRNA) which were responsive to P deficiency. Among these, the same set of 202 lncRNAs
was upregulated and downregulated under P stress and P resupply to the growth medium [101].
Two lncRNAs, pti-MIR5472 and pti-MIR5471, were identified as precursors of annotated miRNAs.
These lncRNAs were also significantly upregulated in response to P stress in P. tricornutum which
implies that only these two lncRNAs were common between N and P deficiency stresses. This is also
an indication of specificity of lncRNA expression towards a particular stress.



Genes 2018, 9, 459 6 of 17

4. Putative Endogenous Target Mimics under Low Nitrogen and Phosphate Stress

We used plant miRBase (http://www.mirbase.org [102]) and retrieved sequences of differentially
expressed miRNAs in response to N and P stress [103,104]. These miRNAs were then used to identify
their putative target lncRNAs as eTM using PeTMbase (http://www.petmbase.org). PeTMbase is
an online resource for endogenous miRNA target mimics for plants which searches the eTMs by
corresponding miRNA name or plant species [56]. The identified lncRNAs which may act as eTMs
involved in low N and P stress in model (A. thaliana) and crop species are summarized in Table 2
along with the corresponding miRNAs. While searching for eTMs, some classes of miRNAs (miR168a,
miR171c, miR315b, c, f, miR778, miR2111) had no available data, although the other classes for the
same miRNAs possessed corresponding eTMs. In this case, and based on the literature surveyed, it is
proposed that these particular miRNAs could have another mechanism of action such as translational
inhibition [105]. Moreover, lncRNAs have also been shown to have other mechanisms of epigenetic
regulations such as chromatin remodeling [35,106], genomic imprinting [4] other than target mimicry.
In Table 2, we observed that for a particular miRNA, there were one to seven eTM IDs because there
were different regions of complementarity on an eTM sequence on the basis of corresponding lncRNAs.

To predict the regulatory network module of ‘eTM-miRNA-mRNA’, we selected two miRNAs
from Table 2, with one representing stress response to N in soybean and another to P in Arabidopsis
(Figure 2). Computational analysis shows that the miR169 (nitrogen regulated) and miR827
(phosphorus regulated) are predicted to be sponged by three and two eTMs, respectively. In soybean,
out of 13 potential targets of gma-miR169g (Figure 2A), 11 are involved in encoding different
subunits of transcription factor nuclear factor-YA (NF-YA) regulating various developmental processes
(GO:0006355) as well as N uptake in plants. The target Glyma.19G172700.1 is involved in regulation
of GTPase activity (GO:0043547) while Glyma.02G109500.4 is a hypothetical protein of unknown
function. This regulation of miR169 by three eTMs (GRNC_gma_lcl|Gmax_Glyma.19G136600.8,
GRNC_gma_lcl|Gmax_Glyma.19G136600.3 and GRNC_gma_lcl|Gmax_Glyma.19G136600.2) in
soybean could help the plant indirectly regulate N limiting signalling. Previous work by
Zhao et al. [107] has shown that miR169 is down regulated under N starvation and one of its targets,
AtNFYA is induced both in roots and shoots under limiting N. Overexpression of ath-miR169a led to
decreased AtNFYA expression leading to lower expression of AtNRT1.1 and AtNRT2.1 in both root
and shoot and a hypersensitive response to N starvation in the ath miR169aoverexpressing plants
compared to wildtype plants [107].

In Arabidopsis, 19 potential targets of ath-miR827 (Figure 2B) were identified, the most important
being AT1G63010 involved in maintaining Pi homeostasis (GO:0055062). This gene belongs to the major
facilitator superfamily (MFS) and encodes for SPX (SYG1/Pho81/XPR1) domain which is a negative
regulator of Pi signalling. SPX proteins repress PHR1/PHR2, thereby regulating Pi starvation induced
genes under P stress as reported in rice [108] and Arabidopsis [109]. The sequestration of miR827
by eTMs (PNRD_ath_NONATHT001723 and GRNC_ath_lcl|Athaliana_AT3G02832.1) thus could
regulate P starvation signaling similar to that seen by ath-miR169 and N. In rice, it has been shown
that osa-miR827 is expressed under Pi starvation and targets two genes, SPX-MSF1 and SPX-MFS2,
which are under the control of OsPHR1 [110]. While direct evidence of the regulatory mechanism by
miR827 SPX and PHR1/PHR2 has not been shown this would suggest that the targets of eTMs are
transcription factors which regulate uptake transporters and not the transporters themselves.

Other interesting predicted targets of miR827 were AT4G23030 and AT1G61890 which belong to
the multidrug and toxic compound extrusion (MATE) transporter family (GO:0005215). Reports have
provided evidence that MATE located at the plasma membrane is involved in organic acid transport
efflux under P starvation [89,111]. However, this example predicts a direct regulatory network of
eTM-miR827-MATE without involvement of any transcription factor. Other targets of atm-miR827
identified were AT4G37590 which has a role in flower development (GO:0009908) whileAT5G63760 and
AT2G24050 are present in the cytoplasm (GO:0005737). AT1G31760 is involved in mitochondrial DNA
repair (GO:0043504) while AT4G25770 is involved in chloroplast development (GO:0009507). Target

http://www.mirbase.org
http://www.petmbase.org


Genes 2018, 9, 459 7 of 17

AT3G54030 encodes a protein kinase and functions in ATP binding (GO:0005524). Thus, the miRNAs
differentially expressed under low N and P stress have several target genes, but may be sequestered by
the lncRNAs (predicted to be eTMs) and regulate metabolic processes and developmental processes.
However, functional validation of these lncRNAs for acting as potential eTMs needs to be functionally
validated further in order to add to our current understanding of the role of lncRNAs in nutrient
homeostasis in plants.
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Figure 2. Computationally predicted ‘eTM-miRNA-mRNA’ regulatory network module drawn by
selecting a few endogenous target mimics (eTMs) from Table 2 representing low nitrogen (miR169g)
and phosphorus (miR827) stress in soybean and Arabidopsis. The central yellow circle is the miRNA
while red shows potential targets of the miRNA, and blue circles depict lncRNAs that may act as eTMs.
In this gene network, the green arrow shows an interaction between a putative eTM and miRNA while
the grey line shows the potential for regulation between miRNAs and their target mRNAs.
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Table 2. Long non-coding RNAs identified as putative eTM involved in nitrogen and phosphorus deprivation in various plant species [55]. The differentially expressed
miRNA sequences specific to nitrogen and phosphorus were retrieved from ‘miRBase’ and employed to find the putative eTMs using ‘PeTMbase’. Arrows ↑— up
regulated, ↓— down regulated.

miRNA ID eTM ID lncRNA ID Low N Low P References

ath-miR156a-5p ath_eTM_miR156a-5p-2 GRNC_ath_lcl|Athaliana_AT1G52347.1 gene =
AT1G52347 A. thaliana (P↑) [112]

ath_eTM_miR156a-5p-1 PNRD_ath_NONATHT000580

ath-miR156b-5p ath_eTM_miR156b-5p-2 GRNC_ath_lcl|Athaliana_AT1G52347.1 gene =
AT1G52347 A. thaliana (N↑) [113]

ath_eTM_miR156b-5p-1 PNRD_ath_NONATHT000580

ath-miR156c-5p ath_eTM_miR156c-5p-2 GRNC_ath_lcl|Athaliana_AT1G52347.1 gene =
AT1G52347 A. thaliana (N↑) [113]

ath_eTM_miR156c-5p-1 PNRD_ath_NONATHT000580

ath-miR156d-5p ath_eTM_miR156d-5p-2 GRNC_ath_lcl|Athaliana_AT1G52347.1 gene =
AT1G52347 A. thaliana (N↑) [113]

ath_eTM_miR156d-5p-1 PNRD_ath_NONATHT000580

ath-miR156e ath_eTM_miR156e-2 GRNC_ath_lcl|Athaliana_AT1G52347.1 gene =
AT1G52347 A. thaliana (N↑) [113]

ath_eTM_miR156e-1 PNRD_ath_NONATHT000580
gma-miR156e gma_eTM_miR156e-3 GRNC_gma_lcl|Gmax_Glyma.18G293400.2 Soybean (P↑) [114]

gma_eTM_miR156e-2 GRNC_gma_lcl|Gmax_Glyma.18G293400.1
gma_eTM_miR156e-1 GRNC_gma_lcl|Gmax_Glyma.05G242200.1

ath-miR156f-5p ath_eTM_miR156f-5p-2 GRNC_ath_lcl|Athaliana_AT1G52347.1 gene =
AT1G52347 A. thaliana (N↑) [113]

ath_eTM_miR156f-5p-1 PNRD_ath_NONATHT000580

ath-miR156g ath_eTM_miR156g-2 GRNC_ath_lcl|Athaliana_AT1G52347.1 gene =
AT1G52347 A. thaliana (N↑) [113]

ath_eTM_miR156g-1 PNRD_ath_NONATHT000580

ath-miR156h ath_eTM_miR156h-3 GRNC_ath_lcl|Athaliana_AT3G18217.1 gene =
AT3G18217 A. thaliana (N↑) [113]

ath_eTM_miR156h-2 GRNC_ath_lcl|Athaliana_AT1G52347.1 gene =
AT1G52347

ath_eTM_miR156h-1 PNRD_ath_NONATHT000580
gma-miR159a-3p gma_eTM_miR159a-3p-1 gma_TCONS_00088249 Soybean (P↑) [114]

tae-miR159b tae_eTM_miR159b-2 GRNC_tae_lcl|Taestivum_Traes_2DS_9A9CAF0B0.1 Wheat(P↑) [115]
tae_eTM_miR159b-1 GRNC_tae_lcl|Taestivum_Traes_1AL_8C8E43898.1

zma-miR160a-3p zma_eTM_miR160a-3p-1 GRNC_zma_lcl|Zmays_AC211588.3_FGT002 Maize (N↑) [116]
zma-miR160a-5p zma_eTM_miR160a-5p-5 GRNC_zma_lcl|Zmays_GRMZM5G849473_T01 Maize (N↑) [116]

zma_eTM_miR160a-5p-4 GRNC_zma_lcl|Zmays_GRMZM2G531719_T01
zma_eTM_miR160a-5p-3 GRNC_zma_lcl|Zmays_GRMZM2G149698_T05
zma_eTM_miR160a-5p-2 GRNC_zma_lcl|Zmays_GRMZM2G011007_T01
zma_eTM_miR160a-5p-1 PNRD_zma_GRMZM5G849473_T01

zma-miR160b-5p zma_eTM_miR160b-5p-5 GRNC_zma_lcl|Zmays_GRMZM5G849473_T01 Maize (N↑) [116]
zma_eTM_miR160b-5p-4 GRNC_zma_lcl|Zmays_GRMZM2G531719_T01
zma_eTM_miR160b-5p-3 GRNC_zma_lcl|Zmays_GRMZM2G149698_T05
zma_eTM_miR160b-5p-2 GRNC_zma_lcl|Zmays_GRMZM2G011007_T01
zma_eTM_miR160b-5p-1 PNRD_zma_GRMZM5G849473_T01
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Table 2. Cont.

miRNA ID eTM ID lncRNA ID Low N Low P References

zma-miR160c-5p zma_eTM_miR160c-5p-5 GRNC_zma_lcl|Zmays_GRMZM5G849473_T01 Maize (N↑) [116]
zma_eTM_miR160c-5p-4 GRNC_zma_lcl|Zmays_GRMZM2G531719_T01
zma_eTM_miR160c-5p-3 GRNC_zma_lcl|Zmays_GRMZM2G149698_T05
zma_eTM_miR160c-5p-2 GRNC_zma_lcl|Zmays_GRMZM2G011007_T01
zma_eTM_miR160c-5p-1 PNRD_zma_GRMZM5G849473_T01

zma-miR160d-3p zma_eTM_miR160d-3p-3 GRNC_zma_lcl|Zmays_GRMZM2G064666_T02 Maize (N↑) [113]
zma_eTM_miR160d-3p-2 GRNC_zma_lcl|Zmays_GRMZM2G054392_T01
zma_eTM_miR160d-3p-1 GRNC_zma_lcl|Zmays_GRMZM2G052412_T01

zma-miR160d-5p zma_eTM_miR160d-5p-5 GRNC_zma_lcl|Zmays_GRMZM5G849473_T01 Maize (N↑) [116]
zma_eTM_miR160d-5p-4 GRNC_zma_lcl|Zmays_GRMZM2G531719_T01
zma_eTM_miR160d-5p-3 GRNC_zma_lcl|Zmays_GRMZM2G149698_T05
zma_eTM_miR160d-5p-2 GRNC_zma_lcl|Zmays_GRMZM2G011007_T01
zma_eTM_miR160d-5p-1 PNRD_zma_GRMZM5G849473_T01

zma-miR160e zma_eTM_miR160e-5 GRNC_zma_lcl|Zmays_GRMZM5G849473_T01 Maize (N↑) [116]
zma_eTM_miR160e-4 GRNC_zma_lcl|Zmays_GRMZM2G531719_T01
zma_eTM_miR160e-3 GRNC_zma_lcl|Zmays_GRMZM2G149698_T05
zma_eTM_miR160e-2 GRNC_zma_lcl|Zmays_GRMZM2G011007_T01
zma_eTM_miR160e-1 PNRD_zma_GRMZM5G849473_T01

zma-miR160g-5p zma_eTM_miR160g-5p-5 GRNC_zma_lcl|Zmays_GRMZM5G849473_T01 Maize (N↑) [116]
zma_eTM_miR160g-5p-4 GRNC_zma_lcl|Zmays_GRMZM2G531719_T01
zma_eTM_miR160g-5p-3 GRNC_zma_lcl|Zmays_GRMZM2G149698_T05
zma_eTM_miR160g-5p-2 GRNC_zma_lcl|Zmays_GRMZM2G011007_T01
zma_eTM_miR160g-5p-1 PNRD_zma_GRMZM5G849473_T01

zma-miR164f-5p zma_eTM_miR164f-5p-1 GRNC_zma_lcl|Zmays_GRMZM2G008252_T01 Maize (N↑) [116]
zma-miR164f-3p zma_eTM_miR164f-3p-1 GRNC_zma_lcl|Zmays_GRMZM5G837428_T01 Maize (N↑) [113]
zma-miR166j-3p zma_eTM_miR166j-3p-4 GRNC_zma_lcl|Zmays_GRMZM2G134604_T01 Maize (N↓) [117]

zma_eTM_miR166j-3p-3 zma_eTM_miR166j-3p-3
zma_eTM_miR166j-3p-2 zma_eTM_miR166j-3p-2
zma_eTM_miR166j-3p-1 zma_TCONS_00089106

zma-miR166k-3p zma_eTM_miR166k-3p-4 GRNC_zma_lcl|Zmays_GRMZM2G134604_T01 Maize (N↓) [117]
zma_eTM_miR166k-3p-3 GRNC_zma_lcl|Zmays_GRMZM2G110279_T02
zma_eTM_miR166k-3p-2 GRNC_zma_lcl|Zmays_GRMZM2G110279_T01
zma_eTM_miR166k-3p-1 zma_TCONS_00089106

zma-miR166n-3p zma_eTM_miR166n-3p-4 GRNC_zma_lcl|Zmays_GRMZM2G134604_T01 Maize (N↓) [117]
zma_eTM_miR166n-3p-3 GRNC_zma_lcl|Zmays_GRMZM2G110279_T02
zma_eTM_miR166n-3p-2 GRNC_zma_lcl|Zmays_GRMZM2G110279_T01
zma_eTM_miR166n-3p-1 zma_TCONS_00089106

zma-miR167g-3p zma_eTM_miR167g-3p-1 zma_TCONS_00081049 Maize (N↓) [116]
zma-miR167g-5p zma_eTM_miR167g-5p-2 GRNC_zma_lcl|Zmays_GRMZM2G174168_T02 Maize (N↓) [116]

zma_eTM_miR167g-5p-1 GRNC_zma_lcl|Zmays_GRMZM2G174168_T01
zma-miR167h-3p zma_eTM_miR167h-3p-7 GRNC_zma_lcl|Zmays_GRMZM2G326635_T01 Maize (N↓) [116]

zma_eTM_miR167h-3p-6 GRNC_zma_lcl|Zmays_GRMZM2G175272_T03
zma_eTM_miR167h-3p-5 GRNC_zma_lcl|Zmays_GRMZM2G159741_T04
zma_eTM_miR167h-3p-4 GRNC_zma_lcl|Zmays_GRMZM2G158766_T04
zma_eTM_miR167h-3p-3 GRNC_zma_lcl|Zmays_GRMZM2G125239_T04
zma_eTM_miR167h-3p-2 PNRD_zma_TCONS_00034773
zma_eTM_miR167h-3p-1 zma_TCONS_00012947
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Table 2. Cont.

miRNA ID eTM ID lncRNA ID Low N Low P References

zma-miR167h-5p zma_eTM_miR167h-5p-2 GRNC_zma_lcl|Zmays_GRMZM2G174168_T02 Maize (N↓) [116]
zma_eTM_miR167h-5p-1 GRNC_zma_lcl|Zmays_GRMZM2G174168_T01

gma-miR169f gma_eTM_miR169f-3 GRNC_gma_lcl|Gmax_Glyma.19G136600.8 Soybean (N↑) [118]
gma_eTM_miR169f-2 GRNC_gma_lcl|Gmax_Glyma.19G136600.3
gma_eTM_miR169f-1 GRNC_gma_lcl|Gmax_Glyma.19G136600.2

gma-miR169g gma_eTM_miR169g-3 GRNC_gma_lcl|Gmax_Glyma.19G136600.8 Soybean (N↑) [118]
gma_eTM_miR169g-2 GRNC_gma_lcl|Gmax_Glyma.19G136600.3
gma_eTM_miR169g-1 GRNC_gma_lcl|Gmax_Glyma.19G136600.2

ath-miR169a-3p ath_eTM_miR169a-3p-2 GRNC_ath_lcl|Athaliana_AT1G44940.2 A. thaliana(P↓) [113]
ath_eTM_miR169a-3p-1 GRNC_ath_lcl|Athaliana_AT1G44940.1

zma-miR319a-5p zma_eTM_miR319a-5p-4 GRNC_zma_lcl|Zmays_GRMZM2G438722_T03 Maize (N↑) [116]
zma_eTM_miR319a-5p-3 zma_TCONS_00089764
zma_eTM_miR319a-5p-2 zma_TCONS_00089763
zma_eTM_miR319a-5p-1 zma_TCONS_00024738

zma-miR395d-5p zma_eTM_miR395d-5p-1 zma_TCONS_00091080 Maize (N↓) [116]
zma-miR395g-5p zma_eTM_miR395g-5p-1 zma_TCONS_00091080

gma-miR398b gma_eTM_miR398b-1 GRNC_gma_lcl|Gmax_Glyma.12G204100.1 Soybean (P↓) [114]
ath-miR399f ath_eTM_miR399f-5 GRNC_ath_lcl|Athaliana_AT5G03545.1 A. thaliana (N↑↓) A. thaliana (P↑) [113]

ath_eTM_miR399f-4 GRNC_ath_lcl|Athaliana_AT3G09922.1
ath_eTM_miR399f-3 PNRD_ath_At4-2

ath-miR399e ath_eTM_miR399f-2 PNRD_ath_At4
ath_eTM_miR399f-1 PNRD_ath_AtIPS1
ath_eTM_miR399e-1 GRNC_ath_lcl|Athaliana_AT1G53708.1 A. thaliana (N↑↓) A. thaliana (P↑) [113]

ath-miR399d ath_eTM_miR399d-5 GRNC_ath_lcl|Athaliana_AT5G03545.1 A. thaliana (N↑↓) A. thaliana (P↑) [113]
ath_eTM_miR399d-4 GRNC_ath_lcl|Athaliana_AT3G09922.1
ath_eTM_miR399d-3 PNRD_ath_At4-2

ath-miR399b ath_eTM_miR399d-2 PNRD_ath_At4
ath_eTM_miR399d-1 PNRD_ath_AtIPS1
ath_eTM_miR399b-6 GRNC_ath_lcl|Athaliana_AT5G03545.1 A. thaliana (N↑↓) A. thaliana (P↑) [113]
ath_eTM_miR399b-5 GRNC_ath_lcl|Athaliana_AT3G09922.1
ath_eTM_miR399b-4 GRNC_ath_lcl|Athaliana_AT1G53708.1

ath-miR399a ath_eTM_miR399b-3 PNRD_ath_At4-2
ath_eTM_miR399b-2 PNRD_ath_At4
ath_eTM_miR399b-1 PNRD_ath_AtIPS1
ath_eTM_miR399a-6 GRNC_ath_lcl|Athaliana_AT5G03545.1 A. thaliana (N↑↓) A. thaliana (P↑) [113]
ath_eTM_miR399a-5 GRNC_ath_lcl|Athaliana_AT3G09922.1
ath_eTM_miR399a-4 GRNC_ath_lcl|Athaliana_AT1G53708.1
ath_eTM_miR399a-3 PNRD_ath_At4-2
ath_eTM_miR399a-2 PNRD_ath_At4
ath_eTM_miR399a-1 PNRD_ath_AtIPS1

tae-miR408 tae_eTM_miR408-2 GRNC_tae_lcl|Taestivum_Traes_5BL_EED36D3B9.35 Wheat (P↓) [115]
tae_eTM_miR408-1 tae_TCONS_00103503

osa-miR444a-3p.2 osa_eTM_miR444a-3p.2-1 GRNC_osa_lcl|Osativa_LOC_Os12g19080.1 Rice((N↑) [119]

ath-miR827 ath_eTM_miR827-2 GRNC_ath_lcl|Athaliana_AT3G02832.1 gene =
AT3G02832 A. thaliana (P↑) [112]

ath_eTM_miR827-1 PNRD_ath_NONATHT001723
ath-miR828 ath_eTM_miR828-1 PNRD_ath_NONATHT000094 A. thaliana (P↑) [112]
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5. Conclusions and Future Prospects

Understanding the role of lncRNA in plants is still in its infancy in comparison to progress made
in the animal kingdom. Future research is required to systematically identify additional lncRNAs and
their role in communicating abiotic and biotic signals in plants. Due to the low expression level of
lncRNAs and dependency on specific signals, future work should also focus on the identification of cell
type specific lncRNAs [3]. This may be achieved by in-depth transcriptome analysis of single cell or
tissue type for lncRNA identification [120]. There is also an opportunity to create a database devoted
to stress-responsive lncRNAs. Understanding of the interaction of lncRNAs with other molecular
elements in the cell is also an interesting area which needs to be further developed. Although in
silico studies have been conducted in plant lncRNA research, functional characterization is still a
challenging task, but developments such as advanced imaging for large-scale screening of mutant
libraries (e.g., as developed in rice [121]) should accelerate future progress in functional studies of
lncRNAs in plants.
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