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Abstract

Background: Cell therapy for degenerative diseases aims at rescuing tissue damage by delivery of precursor cells.
Thus far, this strategy has been mostly unsuccessful due to massive loss of donor cells shortly after transplantation.
Several strategies have been applied to increase transplanted cell survival but only with limited success. The endoplasmic
reticulum (ER) is an organelle involved in protein folding, calcium homeostasis, and lipid biosynthesis. Protein disulfide
isomerase (PDI) is a molecular chaperone induced and activated by ER stress. PDI is induced by hypoxia in neuronal,
cardiac, and endothelial cells, supporting increased cell survival to hypoxic stress and protection from apoptosis in
response to ischemia.

Methods: We achieved ex vivo PDI gene transfer into luciferase-expressing myoblasts and endothelial cells. We
assessed cell engraftment upon intramuscular transplantation into a mouse model of Duchenne muscular dystrophy
(mdx mouse) and into a mouse model of ischemic disease.

Results: We observed that loss of full-length dystrophin expression in mdx mice muscle leads to an increase of PDI
expression, possibly in response to augmented ER protein folding load. Moreover, we determined that overexpression
of PDI confers a survival advantage for muscle cells in vitro and in vivo to human myoblasts injected into murine
dystrophic muscle and to endothelial cells administered upon hindlimb ischemia damage, improving the therapeutic
outcome of the cell therapy treatment.

Conclusions: Collectively, these results suggest that overexpression of PDI may protect transplanted cells from hypoxia
and other possibly occurring ER stresses, and consequently enhance their regenerative properties.

Keywords: Cell and tissue-based therapy, Cell survival, Duchenne muscular dystrophy, Endoplasmic reticulum stress,
Endothelial cells, Ischemia, Molecular chaperones, Myoblasts, Protein disulfide isomerase, Regenerative medicine

Background
Maintenance and regeneration of skeletal muscles
mainly depend on resident stem cells known as satellite
cells. The satellite cell pool that takes part in myofiber
repair is progressively exhausted with age [1] and in
muscle degenerative disorders characterized by repetitive
cycles of muscle degeneration and regeneration, such as
Duchenne muscular dystrophy (DMD) [2]. Cell therapy
approaches for degenerative muscle diseases aim at

rescuing muscle damage by delivery of cells able to dif-
ferentiate into skeletal muscle [3, 4]. Satellite cells repre-
sent the primary choice for cell-based therapy due to
their commitment to the myogenic lineage [5, 6]. How-
ever, satellite cells from muscle biopsies are recovered in
low numbers, grow poorly in vitro, and rapidly undergo
senescence [7] as a consequence of replicative aging
associated with telomere shortening [8]. The reduced
capacity to proliferate during the step of in vitro amplifi-
cation hampers the clinical translation of possible satel-
lite cell-based therapies for DMD [3, 9]. In addition,
cellular polarity is lost in dystrophin-deficient satellite
cells, leading to asymmetric cell division, improper dif-
ferentiation, and consequently to an overall reduction in
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the number of myogenic progenitor cells [6]. To date,
myoblast transplantation treatment has been generally
ineffective given that the functional support of engrafted
cells is limited due to massive donor cell death shortly
after transplantation [10–12]. Several studies have shown
that freshly isolated, uncultured satellite cells, as well as
satellite cells still enclosed in their myofiber niche, re-
generate muscle much more efficiently than cells ex-
posed to culture conditions, so that very low numbers of
such cell are necessary for regenerative purposes com-
pared to cultured cells [13, 14]. However, genetic correc-
tion of mutated cells, as would be required in the case of
a homologous transplant, requires ex vivo culture and
expansion. Therefore, further studies aimed at defining
more valid strategies to prevent myoblast death in the
early stage after transplantation are required [15]. Direct
muscle injection exposes transplanted cells to prolonged
periods of hypoxia, particularly exacerbated in dys-
trophic muscles which are characterized by high levels
of reactive oxygen species (ROS) [16].
Loss of function mutations in the gene encoding for

the 427-kDa cytoskeletal protein dystrophin cause DMD.
Dystrophin has a structural role in muscle, connecting
the cytoskeleton to the basal lamina. When functional
dystrophin is absent, skeletal muscle signaling is dis-
rupted, leading to progressive damage and membrane
leakage, to fiber degeneration and necrosis [17]. The
mdx mouse harbors a point mutation in the dystrophin
gene and is considered a surrogate model for DMD [18].
Interestingly, the full-length and shorter isoforms of dys-
trophin are highly transcribed in the satellite cells from
wild-type and mdx mice, respectively [19]. Unfolded
fragments of dystrophin produced from the mdx prema-
ture termination codon accumulate in the endoplasmic
reticulum (ER)/Golgi compartments triggering ER stress,
resulting in activation of the unfolded protein response
(UPR) [20]. To counteract the accumulation of unfolded
proteins, UPR activation leads to upregulation of ER
resident chaperones, reduction of protein translation,
and increase in the degradation of unfolded proteins
[21]. However, if the stress is severe and/or prolonged,
the ER also initiates apoptotic signaling and promotes
production of ROS [22]. Thus, ER stress response has
relevant implications in deciding cell survival or death
[23]. Remarkably, the rate of accumulation of unfolded
proteins is likely to be much higher in satellite cells than
in cells with a higher turnover rate, making satellite cells
more exposed to proteotoxicity linked to altered protein
homeostasis [24].
Protein disulfide isomerase (PDI) and its related family

members are among the ER chaperones upregulated
upon UPR activation [25]. PDI has two enzymatic activ-
ities: as an oxidoreductase, it can catalyze the formation,
reduction, and isomerization of disulfide bonds; and as a

polypeptide binding protein, it works as a molecular
chaperone supporting the folding of nascent polypeptides,
consequently increasing the yield of correctly folded pro-
tein molecules [26, 27]. Disulfide bond formation and
proper protein folding occur in the ER. In addition, PDI
has a copper binding activity which plays a key role in
regulating intracellular disposition of this redox-active
metal; PDI may also control the function of certain extra-
cellular matrix proteins by regulating their redox state
[28]. PDI prevents neurotoxicity associated with ER stress
and protein misfolding in neurodegenerative disorders
such as Parkinson’s or Alzheimer’s disease [29]. Upregula-
tion of PDI in response to hypoxia has been demonstrated
in neuronal, cardiac, and endothelial cells. Overexpression
of PDI in these cells results in an increase of cell viability
in response to hypoxia and protection from apoptosis in
response to ischemia [30]. However, the possible involve-
ment of ER stress-associated proteins, and in particular of
molecular chaperones such as PDI, in the skeletal muscle
system and in its degenerative pathologies has been only
partially investigated [31].
In this report we evaluated PDI expression in skeletal

muscle of mdx mice in comparison with their wild-type
counterpart. Moreover, we tested the hypothesis that
viral-mediated overexpression of PDI might be instru-
mental in promoting survival and engraftment of pri-
mary myoblasts transplanted into mdx mice, possibly
increasing the therapeutic efficacy of the procedure. Fur-
thermore, we evaluated a similar strategy to promote a
cell therapy intervention aimed at promoting angiogen-
esis in a mouse model of hindlimb ischemia.

Methods
Experimental animal procedures
Procedures involving living animals were approved by
local ethics committees and were performed according
to the Guidelines of the Italian National Institutes of
Health (Art. 31 D.lgs 26/2014, 4 March 2014). Animals
used in the study were 3-month-old dystrophic C57BL/
10ScSn Dmdmdx and age-matched wild-type control
mice provided by Charles River (Calco, Lecco, Italy).
Postoperatively, animals were administered by intraperi-
toneal injection of the clinically approved immunosup-
pressive drug tacrolimus (FK-506; Sigma-Aldrich St.
Louis, MO, USA) 2 mg/kg per day [32]. Acute hindlimb
ischemia was induced by removal of the femoral artery,
as described previously [33]. Measure of the blood flow
in the ischemic hindlimb compared to the contralateral
control was performed by laser Doppler perfusion im-
aging (Lisca Inc., North Brunswick, NJ, USA).

Cell culture
Human primary myoblasts were obtained from Thermo-
Fisher Scientific (Waltham, MA, USA) and cultured
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according to the manufacturer’s instructions. Human
endothelial cells were isolated from adipose tissue col-
lected during cosmetic surgery procedures, as described
previously [34]. Each subject gave her/his written in-
formed consent to use harvested adipose tissue samples
for research purposes. The study protocol was approved
by the Institutional Review Board (n° 1794/15, 13/02/
2015) and was performed in accordance with the princi-
ples of Good Clinical Practice expressed in the Declar-
ation of Helsinki. The C2C12 immortalized muscle cell
line derived from CH3 wild-type mice were cultured in
accordance with the American Type Culture Collection
specifications in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, Grand Island, NY, USA) supplemented
with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) peni-
cillin–streptomycin solution (50 U/ml penicillin and
50 μg/ml streptomycin), at 37 °C in a humidified atmos-
phere of 95% air and 5% CO2. Before administration cells
were counted, resuspended in 25 μl of phosphate-buffered
saline (PBS), and delivered into the tibialis anterior muscle
of the experimental animals.

Endoplasmic reticulum stress induction and cell
proliferation analysis
Tunicamycin, a mixture of antiviral nucleoside antibi-
otics; thapsigargin, an inhibitor of the ubiquitous sarco-
plasmic reticulum/endoplasmic reticulum Ca++ ATPase;
and MG132, a specific proteasome inhibitor that blocks
ER-associated protein degradation, are commonly used
as pharmaceutical ER stress inducers [35]. C2C12 cells
(2 × 105 cells) were plated on 60-mm dishes and cultured
in medium supplemented with either 5.0 μg/μl tunica-
mycin, 0.5 μM thapsigargin, or 10.0 μM MG132 (all
from Sigma-Aldrich) for 6 h at 37 °C. Cell proliferation
after treatment was measured using the WST-1 cell pro-
liferation assay kit (Takara, Clontech, Mountain View,
CA, USA), according to the manufacturer’s instructions.
The optical density at 450 nm was assessed using a mi-
croplate reader (BioRad Laboratories Inc., Hercules, CA,
USA). All experiments were performed at least twice in
duplicate, and the relative cell viability (%) was expressed
as a percentage relative to the untreated control cells.
The plant flavonoid quercetin has protective effects on

ER stress in intestinal epithelial cells [36]. On this basis,
C2C12 cells were treated with quercetin (75 μM) (Sig-
ma-Aldrich) for 24 h and then challenged either with
tunicamycin (0.3 μM) or thapsigargin (1.5 μg/ml) for an
additional 16 h before collection for western blot ana-
lysis and cell proliferation assay.

Viral vector production and viral-mediated gene transfer
Recombinant E1–E3-deleted adenoviral vectors expressing
GFP used as control or PDI and GFP (PDI-GFP) were
produced as described previously [30]. Third-generation,

self-inactivating, recombinant vesicular stomatitis virus-
pseudotyped lentiviral vectors (LV) expressing firefly lucif-
erase were obtained as reported previously [37]. Viral-me-
diated gene transfer in human primary myoblasts and
endothelial cells was performed as described previously
[32, 37]. Transduction of C2C12 cells was achieved
with transfection with Lipofectamine LTX (Thermo-
Fisher Scientific).

Immunoblotting analysis
For western blot analysis, cells (1.5 × 105 cells/60-mm
dish) were collected and protein lysates were loaded on
polyacrylamide gel. Following SDS-PAGE, immunoblot
analysis was performed according to established proto-
cols using the following primary antibodies: anti-poly(-
ADP-ribose) polymerase (PARP), anti-binding
immunoglobulin protein (GRP78/BiP), endoplasmic
reticulum oxidoreductin-1α (ERO1α), anti-PDI (Cell Sig-
naling Technology, Danvers, MA, USA), and anti-p21
(Santa Cruz Biotechnology, Dallas, TX, USA). Glyceralde-
hyde phosphate dehydrogenase (GAPDH) has been
used as the protein loading normalization. Densitom-
etry analysis was performed using ImageJ software
(National Institutes of Health, Bethesda, MD, USA).

Optical bioluminescent imaging
For in vivo bioluminescent imaging (BLI) analysis, mice
were anesthetized and D-luciferin dissolved in PBS
(150 mg/kg body weight) was administered by intraperi-
toneal injection. Analysis was performed using the IVIS
Lumina II instrument equipped with Living Image soft-
ware for data quantification (PerkinElmer, Waltham,
MA, USA), according to an established procedure [38].

Immunohistochemistry
At necropsy, hindlimb muscles were dissected, fixed
in formalin for 48 h, and embedded in paraffin, as
described previously [39]. Immunohistochemistry on
deparaffinized sections was performed using the fol-
lowing antibodies: rabbit polyclonal antibody anti-GFP
(Ab290, 10 μg/ml; Abcam, Cambridge, UK), rabbit
polyclonal anti-carboxy-terminal portion of dystrophin
(Ab15277, 2 μg/ml; Abcam), rabbit polyclonal anti-
body anti-PDI H-160 (1:200 dilution; Santa Cruz Bio-
technology), and rabbit polyclonal antibody against
firefly luciferase (1:500 dilution; Sigma Aldrich). For
immunofluorescence studies, sections were processed
with fluorochrome-conjugated anti-rabbit antibody (1:40
dilution; Dako/Agilent Technologies, Santa Clara, CA,
USA), stained with Hoechst to identify nuclei, and
mounted in Vectashield (Vector Laboratories, Burlingame,
CA, USA). Images were acquired with a fluorescence
microscope equipped with image analyzer KS300 software
(Carl Zeiss, Oberkochen, Germany).
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Statistical analysis
Results are expressed as mean ± standard error of the
mean. Data analysis and comparisons between groups
were done with INSTAT software (GraphPad, San Diego,
CA, USA). The significance of differences was assessed
with a two-tailed Student t test for unpaired data; statis-
tical significance was set at p < 0.05.

Results
Protein disulfide isomerase levels are increased in mdx
versus wild-type skeletal muscle
The mdx mouse is the most common animal model used
in DMD research. In the mdx mouse, the dystrophin gene
contains a premature stop codon in exon 23; the lack of
full-length dystrophin protein is linked with higher protein
turnover [40], with a compensatory higher expression of
utrophin [41], filamin 2, cytoplasmic γ-actin [42], and
α7β1 integrin [43]. Accumulation of truncated, misfolded
dystrophin in the ER and enhanced expression of several
other proteins, some of which, such as the β1 integrin
subunit, are naturally rich in disulfide bonds, may result in
upregulation of ER chaperones like PDI. In skeletal
muscle, resident ER chaperones, in addition to occupying
ER perinuclear regions, are distributed within all of the
sarcoplasmic reticulum [44]. To assess the level of expres-
sion and the localization of PDI in muscle sections of
wild-type and mdx mice, we performed immunohisto-
chemistry using a specific anti-PDI antibody. We revealed
that PDI expression is stronger in mdx regenerating
muscle (Fig. 1), suggesting a possible induction of ER
stress caused by accumulation of the misfolded truncated
form of dystrophin [20]. This result is consistent with pre-
vious reports indicating increased levels of some ER stress
markers, including GRP78, PERK, eIF2a, IRE1, sXBP1
[45], and CHOP [46] in skeletal muscle from dystrophic
versus wild-type mice. Therefore, upregulation of PDI ex-
pression in mdx muscle may represent a cellular response
to the pathological condition aiming at preserving protein
homeostasis [45].

Endoplasmic reticulum stress induction in vitro reduces
muscular cell viability
We investigated the effects of ER stress exposure into
the murine mouse myoblast C2C12 cell line, a widely
used model to investigate in vitro myoblast proliferation
and differentiation. We performed a cell proliferation
assay on C2C12 cells upon ER stress induced by tunica-
mycin, thapsigargin, and MG132. We observed that the
treatments affected short-term proliferation and survival
of C2C12 cells (Fig. 2a), thus indicating that ER stress
determined a reduction of muscular cell proliferation
and viability. In addition, in response to ER stress in-
duced by tunicamycin treatment we observed by immu-
noblot analysis a marked activation of the binding
immunoglobulin protein (GRP78/BiP), a marker of ER
stress, and the cleavage of poly(ADP-ribose) polymerase
(PARP), a hallmark of apoptosis (Fig. 2b). Thus, under
ER stress conditions, muscular cells activate GRP78/BiP
overexpression aiming at rescuing cells from the effects
of accumulation of misfolded proteins. Acute and unre-
solved ER stress may lead to apoptotic cell death. Allevi-
ation of ER stress by may therefore help in reestablishing
ER homoeostasis, reducing apoptosis.

Protein disulfide isomerase overexpression has
prosurvival effects upon endoplasmic reticulum stress
induction in vitro
To analyze the potential protective role of PDI in cells
under ER stress, we evaluated the effect of PDI overex-
pression in C2C12 cells. To this aim, cells were transfected
with a PDI-GFP-expressing vector and transduction was
confirmed using anti-turboGFP specific antibody immu-
noblot (Fig. 3a). As previously determined (Fig. 2b), ER
stress induction in C2C12 muscle cells caused a marked
activation of the markers of ER stress GRP78/BiP and
endoplasmic reticulum oxidoreductin-1α (ERO1α) and in-
creased levels of the apoptotic marker PARP. Consistently,
PDI-overexpressing cells were significantly more resistant
to ER stress and apoptosis, clearly showing a reduction in

Fig. 1 PDI expression in tibialis anterior muscle in wild-type and mdx mice. Immunohistochemical staining using anti-PDI specific antibodies on
representative sections of tibialis anterior muscles isolated from wild-type (a) and mdx (b) mice. Scale bar 50 μm
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Fig. 2 ER stress induction affects C2C12 cell proliferation and survival. C2C12 immortalized mouse myoblast cell line (1.5 × 103 cells/60-mm dish)
treated with either tunicamycin (Tuni) (5 μg/ml), thapsigargin (Thap) (0.3 μM), MG132 (10 μM), or vehicle solution only (DMSO) as control for 6 h.
a Cell proliferation measured using WST-1 cell proliferation assay kit. Results reported as mean ± standard deviation of three independent experiments
performed in duplicate. *p < 0.005. b C2C12 cells treated with tunicamycin for 16 h and immunoblot analysis performed using specific antibodies
against GRP78/BiP and PARP (full-length and cleaved form) to assess ER stress and apoptotic cell death induction, respectively. GAPDH used as protein
loading normalization. DMSO dimethylsulfoxide, ER endoplasmic reticulum, GAPDH glyceraldehyde phosphate dehydrogenase, GRP78/BiP anti-binding
immunoglobulin protein, PARP anti-poly(ADP-ribose) polymerase

Fig. 3 Protective effect of PDI overexpression and quercetin treatment on ER stress activation, apoptotic cell death, and cell survival. a C2C12
cells (1 × 103 cells/96-well plates) underwent PDI gene transfer 24 h before treatment either with tunicamycin (5 μg/ml) or MG132 (10 μM) for
6 h. Protein lysates (30 μg/lane) analyzed by immunoblot analysis using specific antibodies against PARP (full-length and cleaved form) to assess
apoptotic cell death induction. GRP78/BiP and ERO1α assessed as ER stress markers and p21 as cellular senescence marker; antibodies against
Turbo GFP used to verify GFP/PDI overexpression. GAPDH used as protein loading normalization. Densitometry performed using ImageJ software
and relative band intensities of tunicamycin, and MG132-treated cells normalized to GAPDH and finally quantified with respect to untreated
control, arbitrarily set to 1.0. b Mock transfected and PDI-overexpressing C2C12 cells preconditioned with quercetin (75 μM) for 24 h and then
challenged with ER stress-inducer tunicamycin (Tuni). Immunoblot and densitometric analysis performed as already described, while (c) cell
viability evaluated using WST-1 cell proliferation assay kit. Results reported as mean ± standard deviation of three independent experiments
performed in duplicate. *p < 0.005. DMSO dimethylsulfoxide, ERO1α endoplasmic reticulum oxidoreductin-1α, GAPDH glyceraldehyde phosphate
dehydrogenase, GFP green fluorescent protein, GRP78/BiP anti-binding immunoglobulin protein, PARP anti-poly(ADP-ribose) polymerase, PDI
protein disulfide isomerase
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the activation of GRP78/BiP, ERO1α, and cleaved PARP
with respect to untreated and mock transduced cells
(Fig. 3a). Endoplasmic reticulum stress and UPR induction
may also participate in the progress of cellular senescence
[47]. Thus, we evaluated the senescence marker p21 [48]
in response to ER stress induction (Fig. 3a). Expression of
p21 was under the detection limit both in control and
PDI-overexpressing cells, regardless of ER stress induction
by tunicamycin treatment. Conversely, inhibition of the
proteasome by MG132 treatment induced p21 expression,
in accordance with the induction of a senescence-like
phenotype observed in primary human fibroblasts [49].
Interestingly, MG132-induced upregulation of p21 in PDI-
overexpressing cells was reduced compared to untrans-
duced cells, suggesting a possible beneficial effect of PDI
expression in reducing the induction of senescence.
Pharmacological preconditioning might represent an

additional strategy to confer ER stress resistance to
muscle cells. We therefore also analyzed the effect of
preconditioning C2C12 cells with quercetin, which has
been characterized as an inhibitor of ER stress [36]. We
observed by immunoblot analysis that quercetin pre-
treatment induced a reduction in both GRP78/BiP and
cleaved PARP in tunicamycin-treated C2C12 cells, thus
reestablishing ER homoeostasis (Fig. 3b). Further sup-
porting our previously reported data, we could observe,
in PDI-overexpressing cells, a reduced induction of both
GRP78/BiP and cleaved PARP upon ER stress induction,
with respect to untransduced cells (Fig. 3b).
Moreover, by cell proliferation assay we confirmed that

PDI-overexpressing cells were significantly more resistant
to ER-induced cell death with respect to untransduced
controls (Fig. 3c). In addition, we determined that quer-
cetin pretreatment partially protected C2C12 cells from
tunicamycin-induced cell death, thus confirming that acti-
vation of apoptotic cell death can be mitigated by pharma-
cological modulation of ER stress. Interestingly, PDI
overexpression conferred improved cell survival against
ER stress also in combination with quercetin treatment
(Fig. 3c). Taken together, these data indicate that the
modulation of PDI has an antiapoptotic role in muscular
cells promoting ER stress resistance.

Protein disulfide isomerase overexpression promotes
engraftment of human myoblasts in mdx mice
PDI is expressed at low basal levels in skeletal, cardiac,
and smooth muscle cells [50]. To achieve a more robust
PDI expression, we transduced human primary myo-
blasts with adenoviral constructs encoding both GFP
and PDI or GFP only, as described previously [30]. At
the same time, cells were also transduced with a lenti-
viral vector expressing the firefly luciferase gene under
the control of a constitutive promoter (Lenti-Luc) [37].
When culture medium was switched from maintenance

to differentiation medium the transduced cells promptly
differentiated into contractile multinucleated skeletal
myotubes, indicating that viral-mediated gene transfer of
GFP or PDI-GFP and luciferase does not alter the differ-
entiative ability of human primary myoblasts.
Human myoblasts (1.0 × 105 cells) were directly injected

into the tibialis anterior muscle of 2-month-old mdx mice,
treated with a daily injection of the immunosuppressant
FK-506, beginning on the day of transplant. Engraftment
of luciferase-expressing cells was monitored from day 1 to
day 7 by in vivo bioluminescent imaging. After 1 week,
the persistence of living cells, as measured by biolumines-
cence, was approximately four times higher (p < 0.05) in
animals receiving PDI-GFP-expressing cells versus mice
receiving control cells expressing GFP only (Fig. 4). At
necropsy, tibialis muscles including regions emitting bio-
luminescence as assessed by ex vivo BLI imaging (Fig. 4)
were collected and processed for further analysis. The
presence of luciferase-expressing cells in muscle sections
from animals administered PDI-expressing, luciferase-
positive myoblasts was confirmed by immunohistochemis-
try analysis using anti-firefly luciferase antibodies (Fig. 5a).
Moreover, immunofluorescence detection of dystrophin
protein in muscle sections of transplanted animals
indicated that PDI-expressing human cells efficiently
engrafted into the muscle, generating dystrophin-ex-
pressing fibers (Fig. 5b). Thus, overexpression of PDI
seems to confer a survival advantage on transplanted pri-
mary myoblasts administered into mdx mice.

Transplantation of protein disulfide isomerase-
overexpressing cells alleviates hindlimb ischemic damage
ER stress has been linked to angiogenesis impairment
[51] and to endothelial cell dysfunction [52, 53]. Interest-
ingly, PDI is specifically upregulated in endothelial cells
to contribute to their ability to tolerate hypoxic stress
[54]. On these bases, we assessed whether PDI overex-
pression can promote therapeutic angiogenesis support-
ing the survival of transplanted endothelial cells in a
mouse model of hindlimb ischemia [55]. Human dermal
white adipose tissue represents a convenient source of
cells expressing the endothelial-specific marker platelet
endothelial cell adhesion molecule (PECAM-1), also
known as cluster of differentiation 31 (CD31), able to
form tubular-like structures on a Matrigel assay in vitro
and to promote angiogenesis in vivo [34, 56]. We engi-
neered primary human adipose tissue-derived CD31+

endothelial cells to express firefly luciferase in order to
perform cell tracking studies by noninvasive BLI. In
addition, cells underwent adenoviral viral-mediated gene
transfer of either GFP or PDI-GFP. Hindlimb ischemia
was induced by removal of the femoral artery [33], and
then 2.5 × 105 cells expressing luciferase and GFP or
PDI-GFP were delivered into the tibialis anterior muscle
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of the experimental animals. Bioluminescent imaging
performed 1 week after the transplant showed increased
emission in animals receiving PDI-expressing cells. The
cell transplantation procedure improved whole limb per-
fusion measured by laser color Doppler analysis per-
formed 1 week after transplant in comparison with mice
not receiving the treatment (Fig. 6b), in accordance with
a previously described proangiogenic ability of adipose
tissue-derived cells in a hindlimb ischemia model [57].
Remarkably, cell transplantation of cells overexpressing
PDI displayed further enhanced vascular regenerative
ability, compared to animals receiving control cells
(Fig. 6b). Moreover, immunohistochemical analysis per-
formed on tissue samples collected at necropsy con-
firmed the presence of PDI-GFP-positive cells in the
vascular endothelial layer at the site of transplant, identi-
fied by specific CD31 expression (Fig. 7). Collectively,
these data support the hypothesis that preconditioning
vascular cells by PDI gene transfer might support sur-
vival of cells administered in ischemic tissue promoting
therapeutic angiogenesis.

Discussion
Cell therapy represents an emerging approach for the
treatment of different pathologies including muscular
degenerative diseases and cardiovascular pathologies
[58]. Cell therapy positive effects are attributable to both
cell restoration eliciting functional tissue repair and
paracrine action associated with production of growth
factors, cytokines, and extracellular vesicles that pro-
mote the endogenous mechanisms of tissue regener-
ation. So far, several cell therapy clinical trials have
suffered from limited or transient efficacy, mainly due to
poor survival of transplanted cells soon after in vivo de-
livery [58]. Transplanted cell loss may be initiated by dif-
ferent events including: anoikis, due to the need to
detach anchorage-dependent cells from their substrate
for injection; inflammation-related factors, such as ex-
posure to cytokines, natural killer cells, and free radicals

Fig. 4 Monitoring of luciferase-positive human primary myoblasts
overexpressing PDI transplanted in mdx mice. Luciferase-positive human
myoblasts (1.0 × 105 cells) transduced either with GFP (CTRL) or PDI-GFP
(PDI) were injected into tibialis anterior muscle of 2-month-old,
immunosuppressed, mdx mice. Engraftment of luciferase-expressing
cells monitored from day 1 to day 7 by in vivo bioluminescent imaging
and signals in selected area of interest quantified using Living Image
software (top panels). At sacrifice, hindlimbs were excised and imaging
performed ex vivo (bottom panels). Color bars indicate relative
bioluminescent signal intensities from lowest (blue) to highest (red).
Values expressed in photons per second per square centimeter per
steradian (photons/s/cm2/sr). We determined no difference at earliest
time point, while signals detected both by in vivo and ex vivo imaging
1 week after implantation were significantly higher in animals receiving
PDI-GFP-expressing cells versus mice receiving control cells. Figure
shows a representative animal per group (n= 5). CTRL control, PDI
protein disulfide isomerase

Fig. 5 Engraftment of luciferase-positive, PDI-expressing human cells into mdx muscle generating dystrophin-expressing fibers. Immunohistochemistry
analysis of (a) firefly luciferase (green) and (b) human dystrophin (red) expression in representative serial sections of tibialis anterior muscle obtained
from mdx mouse after intramuscular administration of human myoblasts expressing luciferase and PDI. Nuclei visualized by Hoechst staining (blue).
Scale bar 50 μm
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at the site of transplant; and oxygen and nutrient shortage,
due to the absence of a vasculature network within the
injected cell clumps [59]. Perturbations of cellular redox
regulation and nutrient deprivation can cause accumula-
tion of unfolded proteins generating ER stress [60].
Skeletal and cardiac muscle fibers are characterized by

the presence of the sarcoplasmic reticulum, a specialized
network of ER that regulates protein homeostasis and cal-
cium concentration [61]. In response to environmental
and genetic factors causing ER stress, muscle cells activate
the UPR pathways that play pivotal roles in muscle stem
cell homeostasis and in muscle regeneration [62]. Low ER
stress, eliciting an adaptive UPR response, promotes re-
sistance to a subsequent pathological insult: a process
named ER hormesis [63]. UPR response is essential in
regulating satellite cell function during skeletal muscle

regeneration [64]; remarkably, ER stress-surviving cells
differentiate more efficiently into myotubes [65]. On the
other hand, chronic ER and UPR response contribute to
the pathogenesis of inflammatory myopathies and genetic
diseases characterized by progressive muscle degeneration
and weakness [61]. Indeed, some ER stress markers, in-
cluding GRP78, PERK, eIF2a, IRE1, and sXBP1, are upreg-
ulated into skeletal muscle from dystrophic mice [45]. In
addition, elevated ER stress is exacerbated during aging,
due to the progressive reduction of the expression of ER
chaperones in different tissues, including the skeletal
muscle [66]. Accordingly, chemical chaperone therapy has
been tested in dystrophin-deficient mdx mice in order to
reduce the effects of chronic ER stress [46]. We deter-
mined that PDI expression is increased in the tibialis an-
terior muscle of mdx mice, compared to wild-type control
(Fig. 1), possibly acting to alleviate ER stress and restore
ER homeostasis. We postulated that elevated ER stress in
recipient dystrophin-deficient muscle might impair en-
graftment of transplanted cells in cell-based therapeutic
intervention to promote muscular regeneration. There-
fore, raising ER stress resistance in transplanted cells
might be instrumental in improving cell engraftment
in cell therapy procedures. We established that over-
expression of PDI promotes survival of transplanted
cells to ER stress they face upon transplantation in
dystrophin-deficient muscle, enhancing their regenera-
tive potential.
Critical limb ischemia is characterized by markedly re-

duced blood flow to the extremities and is the most se-
vere and frequent form of peripheral artery disease. Cell
therapy represents a promising therapeutic approach for
vascular tissue regeneration for ischemic diseases [67].
However, clinical trials indicate consistently modest
long-term improvements due, at least in part, to poor
survival of transplanted cells [68, 69]. Oxidative stress
and ROS generation are essential elements of ER stress
[70], induced by physiological stimuli such as hypoxia,
glucose, and amino acid deprivation which are critically
involved in the early phases of engraftment upon cell
transplant [59]. In addition, ER stress has been linked to
angiogenesis impairment [51] and endothelial cell dys-
function [52, 53]. Interestingly, PDI is specifically upreg-
ulated in endothelial cells to contribute to their ability to
tolerate hypoxic stress [54]. Moreover, we have previ-
ously determined that PDI protects the heart against is-
chemic damage [30]. In addition, upregulation of PDI in
response to brain ischemia preserves hippocampal cells
from apoptosis [71]. Additionally, the use of chemical
chaperones mimicking the function of molecular chaper-
ones [72] alleviates ischemia/reperfusion injury [73].
Some cell types, like bone marrow-derived mesenchy-

mal stromal cells, are prone to senescence rather than
apoptosis after extensive stress [74], while in others, such

Fig. 6 Transplantation of human endothelial cells overexpressing
PDI into mouse model of hindlimb ischemia. a In vivo bioluminescence
analysis of representative mice undergoing experimental ischemia that
received transplants of luciferase-expressing human endothelial cells
expressing either GFP (CTRL) or PDI and GFP (PDI). Color bar indicates
relative bioluminescent signal intensities from lowest (blue) to highest
(red). b Laser Doppler scanning of blood flow over hindlimbs 1 week
after critical limb ischemia. Quantification of measurements expressed as
ischemic vs contralateral nonischemic whole limb perfusion ratios in
untreated (Isc) and experimental groups administered with GFP (CTRL)
and PDI-GFP (PDI)-expressing cells (n= 5). Perfusion ratio before
ischemia (Norm) shown as reference. *p < 0.05. GFP green fluorescent
protein, PDI protein disulfide isomerase
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as in endothelial cells, ER stress preferentially contributes
to apoptosis but not to senescence [75]. PDI expression is
decreased in senescent dermal fibroblasts [76] and fetal
lung fibroblasts [77], and is lower in stress-induced pre-
mature senescent fibroblasts compared to replicative sen-
escent fibroblasts [78]. Conversely, PDI expression is
increased in senescent umbilical vein endothelial cells [47,
79, 80]. Moreover, it has been recently described that in
endothelial cells PDI has a thiol reductase activity for the
dynamin-related protein (Drp1) which regulates mito-
chondria fission. Therefore, elevated PDI expression
should support normal mitochondrial dynamics and
endothelial function limiting endothelial cell senescence
in the context of pathological conditions such as diabetes
mellitus [81].
Collectively, this evidence suggests that PDI plays a

protective role in degenerative diseases, in brain ische-
mia, and in hypoxia, characterized by accumulation of
unfolded or misfolded proteins and ER stress. On these
bases, we propose that genetic manipulation of trans-
planted endothelial cells in order to endure ER stress
might be instrumental in increasing cell engraftment,
promoting the functional recovery by supporting
angiogenesis and, consequently, the efficacy of cell
therapy for ischemic disease. Here we provide evidence
in two relevant models of tissue regeneration, namely
muscular degeneration induced by dystrophin defi-
ciency and hindlimb ischemia, that overexpression of
PDI in transplanted cells is beneficial for promoting
cell survival counteracting ER stress, consequently
maximizing the therapeutic benefit of muscular and
vascular tissue cell therapy.

Conclusions
Increasing transplanted cell survival by ex vivo PDI gene
transfer may be a novel approach to circumvent the
poor persistence after implantation, maximizing the
therapeutic benefit of cell therapy for muscular and vas-
cular tissue regeneration.
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