
Genomics Proteomics Bioinformatics 15 (2017) 371–380
HO ST E D  BY

Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
METHOD
A Novel Nonlinear Parameter Estimation Method

of Soft Tissues
* Corresponding author.

E-mail: zhiyongyuan@whu.edu.cn (Yuan Z).
a ORCID: 0000-0003-1617-012X.
b ORCID: 0000-0001-9608-6037.
c ORCID: 0000-0002-6445-9465.
d ORCID: 0000-0002-1682-3939.
e ORCID: 0000-0002-0329-9592.
f ORCID: 0000-0002-7336-9939.

Peer review under responsibility of Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China.

https://doi.org/10.1016/j.gpb.2017.09.003
1672-0229 � 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of Beijing Institute of Genomics, Chinese Academy of Scie
Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Qianqian Tong 1,a, Zhiyong Yuan 1,*,b, Mianlun Zheng 1,c, Xiangyun Liao 1,2,d,

Weixu Zhu 1,e, Guian Zhang 1,f
1School of Computer, Wuhan University, Wuhan 430072, China
2Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology,

Chinese Academy of Sciences, Shenzhen 518000, China
Received 14 January 2017; revised 26 June 2017; accepted 8 September 2017
Available online 13 December 2017

Handled by Fa Zhang
KEYWORDS

Nonlinear parameter estima-

tion;

Finite element method;

Substitution parameters;

Force correction;

Self-adapting Levenberg–

Marquardt algorithm
Abstract The elastic parameters of soft tissues are important for medical diagnosis and virtual sur-

gery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft

tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their

corresponding deformation values. To provide highly precise data for estimating nonlinear param-

eters, the measured forces were corrected using the constructed weighted combination forecasting

model based on a support vector machine (WCFM_SVM). Secondly, a tetrahedral finite element

parameter estimation model was established to describe the physical characteristics of soft tissues,

using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving compli-

cated nonlinear problems. To improve the robustness of our model and avoid poor local minima,

the initial parameters solved by a linear finite element model were introduced into the parameter

estimation model. Finally, a self-adapting Levenberg–Marquardt (LM) algorithm was presented,

which is capable of adaptively adjusting iterative parameters to solve the established parameter

estimation model. The maximum absolute error of our WCFM_SVM model was less than

0.03 Newton, resulting in more accurate forces in comparison with other correction models tested.

The maximum absolute error between the calculated and measured nodal displacements was less

than 1.5 mm, demonstrating that our nonlinear parameters are precise.
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Introduction

Local changes in the mechanical properties of soft tissues may
indicate the presence of tumor or other diseases [1], which

could be detected by physicians using palpation. However,
greatly depending on physicians’ experience, palpation is a
subjective method for determining tissue properties [2]. Esti-

mation of the elastic parameters of soft tissues plays a signifi-
cant role in objective diagnosis of tumor or other diseases since
elasticity is an important feature of soft tissues. Additionally,
with the continued improvement of graphic calculation perfor-

mance and virtual reality technology, virtual surgery [3–5] has
become a hot topic. A precise model of soft tissues is essential
to achieve immersive virtual surgery. Nevertheless, it remains

challenging to build a precise model of soft tissues because soft
tissues tend to possess rather complicated elastic behavior
[6,7].

To tackle the above issues, accurate estimation of soft tissue
parameters is required. Young’s modulus and Poisson’s ratio
are two important parameters describing the physical proper-

ties of materials. However, it is difficult and time-consuming
to estimate these parameters, especially for nonlinear materials
[8]. Many studies had been reported in modeling complex elas-
ticity properties, and biomechanical models are widely used

due to the high accuracy achieved [9,10]. However, these mod-
els are complicated [11,12], and the accuracy obtained relies on
the accuracy of tissue geometry modeling and measurements of

forces and deformations, as well as the rich excitation of mate-
rial regimes [8]. Another commonly used model is the mass-
spring model. Bao et al. [13] designed a virtual spring for every

particle to obtain more realistic simulation results, and Takács
et al. [14] utilized curve fitting methods to estimate mechanical
parameters, achieving a good estimation of reaction force
within the range of 0–4 mm, if the deformation shape function

is appropriately approximated. Although it is easily fulfilled
with no need for continuous parameterization and also satisfies
real-time requirements, the mass-spring model exhibits poor

fidelity. It is of note that minimally invasive parameter estima-
tion tests had been reported on animals and humans based on
data-driven approaches [15]. Given the changing material

properties over time [16], images are used in recent studies to
estimate the material properties of soft bodies. For instance,
Mojsejenko et al. [17] estimated passive mechanical properties

in a myocardial infarction from magnetic resonance imaging
(MRI). In addition, Yang et al. [18] introduced the ‘‘Material
Cloning” framework and directly acquired elastic parameters
from images. Although estimating parameters from images

has the advantage of non-invasiveness, it is difficult to assess
its accuracy due to the lack of real data.

Currently, the finite-element method (FEM) is the most

universally used numerical computation method in the engi-
neering analysis field. To solve a problem, FEM subdivides a
large problem into smaller, simpler parts called finite elements.

These finite elements are described as a series of simple equa-
tions, which are then assembled into a larger system to model
the entire problem. (https://en.wikipedia.org/wiki/Finite_ele-
ment_method) FEM has been proven to be a powerful method

to accurately simulate the physical and mechanical properties
of elastic objects [19]. For example, Fu et al. [2] proposed a
novel material reconstruction method based on FEM for the

elasticity imaging of human lower legs. In addition, the study
of Varga et al. [20] demonstrated that quasistatic, homoge-
nized finite element analysis could be used to predict the
mechanical properties of the proximal femora in the dynamic

sideways fall situation.
Compared with other modeling methods, FEM possesses

higher accuracy. However, soft tissues were considered as lin-

ear materials in the earlier studies. For example, Chikayoshi
et al. [21] treated soft tissues as linear, elastic, incompressible
material by assuming a constant shear modulus at the bound-

ary of the region of interest. Mcgrath et al. [22] used an itera-
tive method to update Young’s modulus of soft tissues based
on numerically calculated stress distributions, assuming the
material is linearly elastic. Bickel et al. [8] acquired a set of

example deformations of real objects (a pillow, a foam block,
and human face) and modeled these materials by non-linear
interpolation of their stress–strain relationships in strain-

space. Although this modeling technique [8] was referred to
be non-linear, their experiments focused on the visual evalua-
tion of the surface deformations and lacked the quantitative

evaluation.
To perform parameter estimation, optimization algorithms

are usually used to calculate the material parameters [2,23,24].

During the optimization procedure, the initial values of the
parameters to be solved may affect the astringency and outputs
of the optimization algorithm. Consequently, three challenges
for the parameter estimation should be addressed. These

include: (1) how to obtain accurate stress and strain values
of soft tissues; (2) how to build a model for solving the nonlin-
ear parameters of soft tissues; and (3) how to design an opti-

mization algorithm and set suitable initial values to gain
highly precise optimization algorithm results. To address these
challenges, we propose a novel parameter estimation method

combining FEM and an improved Levenberg–Marquardt
(LM) algorithm based on the data obtained using an in-
house data acquisition platform.

Method

In this section, we describe our nonlinear parameter estimation

method of soft tissues. Figure 1 depicts the overview of our
method. Firstly, we acquire forces and their corresponding
deformation data of the experimental material using our data

acquisition platform. The measured forces were corrected
using the presented weighted combination forecasting model
based on a support vector machine (WCFM_SVM) model so

as to assure high precision. Secondly, a nonlinear parameter
estimation model was established based on FEM. Substitution
parameters were introduced into the model to avoid solving
complicated nonlinear problems. Thirdly, the nonlinear

parameters are solved using the presented self-adapting Leven-
berg–Marquardt (LM) algorithm. Initial parameters solved by
a linear finite element model were introduced into the process

of nonlinear parameter estimation.

Data acquisition and force correction using a WCFM_SVM

model

In order to accurately depict the real properties of soft tissues,
we exerted external forces vertically on the soft tissue surface
and acquired its deformations correspondingly. The data

acquisition platform consists of an optimal movement tracking

https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_element_method
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Figure 1 Schematic illustration of the proposed nonlinear param-

eter estimation method

We firstly acquired forces and their corresponding deformation

data of the experimental material using our data acquisition

platform. The measured forces were corrected using the presented

WCFM_SVM model. A nonlinear parameter estimation model

was then established based on FEM, which introduced substitu-

tion parameters to avoid solving complicated nonlinear problems.

The nonlinear parameters were solved using the presented self-

adapting LM algorithm. WCFM, weighted combination forecast-

ing model; SVM, support vector machine; FEM, finite element

model; LM, the Levenberg–Marquardt.
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device (precision position tracker with 2 cameras; PPT2) and a
pressure acquisition device [25]. PPT2 can track marked tar-

gets in a 10 m � 10 m area with 1 mm precision in real time,
which is used to obtain the deformation data of the soft tissue
surface. The pressure acquisition device is used to obtain forces

exerted on the experimental material. Given substitute materi-
Figure 2 Surface data of the experimental material acquired using PP

External force at six different intensities (increased from A to F) was e

and data were collected in a 23 � 13 matrix (23 columns and 13 rows

column). Each of the 13 rows on the surface of the experimental materi

with 2 cameras; F, force; N, Newton.
als are usually adopted as the test material in the studies on
soft tissues [8,26], a memory pillow is used as experimental
material in this study, which is made of slow rebound material

(polyether polyurethane) and shows dimensional stability and
fold resistance. The device consists of a SDI-2F miniature pres-
sure sensor and an Advanced RISC Machines (ARM)-based

application board. The experimental material, with a size of
50 (L) � 30 (W) � 10 (H) cm3, was sampled evenly and 299
data points (13 rows and 23 columns) were acquired and

PPT2 was used to measure the 3D coordinate information.
Figure 2 shows the surface deformation obtained for the exper-
imental material with its bottom fixed and the external forces
are exerted on the 150th sampling point (the 7th row and

12th column). Markers in different lines on the material sur-
face are color coded in each deformation. We can see that
deformations of the experimental material increased gradually

as the external forces increased, and the intensities of the six
external forces are shown in Figure 2.

For the pressure acquisition device, the input of its force

sensor is a force and the output is the corresponding voltage
value. In theory, the output has a linear relation with the input.
However, the acquired forces do not show a linear variability

because the precision of the sensor is affected by the external
environment, such as temperature and electromagnetic inter-
ference (EMI). Therefore, we present a forecasting model to
correct the acquired forces. A set of samples were acquired,

and each sample consisted of six data points that include the
actual force and five corresponding voltages measured by the
force sensor. The actual forces, which range from 0 to 3000

g, are obtained by an electronic scale with 2 g precision. A
WCFM_SVM model was built from the collected samples,
using the predicted value of single forecasting models as its

input and the actual forces as the output. For each single fore-
casting model, the voltage measured by the force sensor is used
as the input and the actual force as the corresponding output.

Assume that the WCFM_SVMmodel is constructed with m
single forecasting models and n samples, the predictive value of
T2

xerted on the material. The size of the material is 50 � 30�10 cm3

). The force was exerted at the 150th point (the 7th row and 12th

al is coded using a different color. PPT2, precision position tracker



374 Genomics Proteomics Bioinformatics 15 (2017) 371–380
the jth sample obtained from the ith single forecasting model is
Xijði ¼ 1; 2; � � � ;m; j ¼ 1; 2; � � � ; nÞ, and the corresponding

actual value of the jth sample is Yjðj ¼ 1; 2; � � � ; nÞ. The weight
of each single forecasting model in CFM is xiði ¼ 1; 2; � � � ;mÞ,
where xi varies for different single forecasting model in the
WCFM_SVM model. Here, xi is calculated according to the

sum of the relative error of each single forecasting model.
Assume that the sum of the relative error of the ith single fore-
casting model is Ei for n samples, the weight xi is:

xi ¼ 1=EiPm
k¼11=Ek

: ð1Þ

The weights of m single forecasting models can be calcu-

lated according to Equation (1). Next, the predicted forces of
each single forecasting model and the corresponding weight
were used as the input of WCFM_SVM, and the correspond-

ing actual forces measured by the electronic scale as the out-
put. After normalizing the aforementioned training data and
updating weights of WCFM_SVM model, a force correction

model was obtained. Ultimately, the trained WCFM_SVM
model was used to rectify the collected data so as to obtain
more precise forces.

Modeling of nonlinear parameter estimation using FEM

The parameter estimation model was inspired by the idea of
partial linearity of nonlinear materials [8]. Firstly, the acquired

surface data were discretized and then the relationship between
stress and strain was built by utilizing Young’s modulus and
Poisson’s ratio, respectively, to describe the nonlinearity of

soft tissues. Substitution parameters were then applied to cal-
culate the unit stiffness matrix in order to avoid solving com-
plicated nonlinear problems.

Discretization and stress–strain relationship

The scattered data of soft tissue deformation obtained using
the data acquisition platform were numbered and divided into

hexahedral finite units, each of which was further divided into
five tetrahedral finite units. Parameters Young’s modulus and
Poisson’s ratio varied for different hexahedral units, whereas

the tetrahedrons in one hexahedron share the same parame-
ters. Accordingly, the stress–strain relationship can be mod-
eled using linear FEM for each tetrahedral unit.

The relationship between stress r and strain e is defined as
r = De, where D is a 6 � 6 stress–strain relationship matrix,
whereas r and e are denoted as 6 � 1 matrices. D can be
described using Young’s modulus E and Poisson’s ratio v:

D ¼ E

ð1þ vÞð1� 2vÞ ðGþ vHÞ; ð2Þ

where Young’s modulus E defines material elasticity and Pois-

son’s ratio v is unitless and describes material compressibility,
with G and H as two constant matrices [27]. Given that elastic
matrix D is positive, definite, and the elastic material is isotro-

pous, the Poisson’s ratio v should satisfy 0 < v < 0:5.

Nonlinear parameter estimation model

For the isotropic linear tetrahedral FEM, the element stiffness

matrix Ke describes the relationship between nodal forces and
displacements, which is defined as:
Ke ¼
Z
Ve

ðBeÞTDBe ¼ VeðBeÞTDBe; ð3Þ

where Ve is the volume of the tetrahedral element, and Be is the

geometric function matrix. According to Equation (2), Ke has
a nonlinear relationship with E and v. In this study, substitu-
tion parameters were utilized to describe Ke. Firstly, we denote

substitution parameters a ¼ E=ð1þ vÞð1� 2vÞ for Equation
(2), and thus D ¼ aðGþ vHÞ ¼ aGþ avH. Equation (3) can
be rewritten as:

Ke ¼ aeVeðBeÞTGBe þ veVeðBeÞTHBe: ð4Þ

In Equation (4), Ke shows a weaker nonlinear relationship
with ae and ve. After ae and ve are calculated, Ee can be

obtained according to a ¼ E=ð1þ vÞð1� 2vÞ.
The complete stiffness matrix Kða; vÞ can be obtained by

assembling all the element stiffness matrices. a and v are the

nonlinear parameters of soft tissues. When external force F

is exerted on the finite element nodal point m of soft tissues
perpendicularly, the force can be calculated after acquiring

the displacements U of the soft tissue surface using the static
FEM equation Kða; vÞU ¼ F. Forces are exerted on soft tissues
perpendicularly, and the calculated external forces fi should be

close to the measured forces ef i for each finite element node,
allowing for estimation of a and v by solving a minimization
problem:

ðba;bvÞ ¼ argmin
ða;vÞ

Xn

i¼1
kfiða; vÞ �efik2

( )
; ð5Þ

where fiða; vÞ ¼ Kiða; vÞui, ef i, and ui are the measured external
forces and the corresponding displacements, respectively.

Given the potential local minima resulting from the mini-
mization problem, initial parameters of soft tissues were intro-
duced to improve the Equation (5) as follows:

ðba;bvÞ¼argmin
ða;vÞ

Xn

i¼1
kfiða;vÞ�efik2þcXk

j¼1
kaj�ba0k2þkvj�bv0k2� �( )

;

ð6Þ
where ba0 and bv0 are the initial parameters of soft tissues, and c
is used to adjust the influence of parameters toward optimal
results.

Parameter estimation algorithm

Self-adapting Levenberg–Marquardt algorithm

The LM algorithm is usually used to solve the optimization

problem minSðxÞ; where SðxÞ ¼ YðxÞT YðxÞ ¼Pm
i¼1Y

2
i ðxÞ.

The algorithm is a trust-region method, and the values of the
target function are required to descend in each iteration step.

The search direction of the current iteration point for the tra-
ditional LM algorithm [1] is:

dkðkkÞ ¼ �ðJTkJk þ kkIÞ�1JTkYk; ð7Þ
where Jk is the Jacobian matrix. To prevent JTkJk from becom-

ing too big when it approaches singularity during the iteration
process kk was introduced as a positive parameter. The choice
of parameter kk is essential to the LM algorithm. In this study,

kk is defined as:
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kk ¼ gk h
min kYkk22; kJTkYkk22

� �
kYkk þ ð1� hÞ

min kYkk22; kJTkYkk22
� �
kJTkYkk

0@ 1A;

ð8Þ
where h 2 ½0; 1�, gk is the self-adaptive factor of parameter kk,
and the relationship of gk between neighboring iteration steps

is:

gkþ1 ¼ minfc;gkqðskÞÞ; ð9Þ
where c is a positive constant, which is determined by the

actual optimization problems. qðsÞ is a nonnegative continu-
ous function of s .

qðsÞ ¼ maxf0:5; 1� ð2s� 1Þ2g: ð10Þ
The introduction of qðsÞ was used to adaptively adjust kk. s

is a criterion that testifies the validity of the iteration step and

is used to decide acceptance or rejection. The definition of s is
denoted as:

sk ¼ kYkk22 � kYðxk þ dkÞk22
kYkk22 � kYk þ JkdkÞk22

; ð11Þ

where sk defines the ratio of the actual decrement to the fore-
casting decrement during the iteration process. When sk is big-
ger than the given threshold, the iteration step dk is accepted

and the self-adapting factor gk is adjusted. Otherwise, the step
is rejected. That is:

xkþ1 ¼
xk þ dk; sk > p0

xk; others

�
: ð12Þ

The self-adapting LM algorithm is described in Algorithm 1

Algorithm 1 Self-adapting LM algorithm

1: provide the initial parameters x1 2 Rn; initialize constant

e; h 2 ½0; 1�, c> 0, 0 < p0 < 1, g1 > c

2: while kJTkYkk2 P e, do
3: calculate iterative step dk according to Equations (7) and (8)

4: calculate trade-offs indicator sk according to Equation (11)

5: if sk > p0 then

6: xkþ1  xk þ dk
7: else

8: xkþ1  xk

9: end if

10: calculate adaptive factor gkþ1 according to Equations (9) and

(10)

11: end while
Solving of initial parameters

The initial parameter x1 is of great importance to the self-
adapting LM algorithm proposed in this study. In addition,
the initial parameters were introduced into our nonlinear

parameter estimation model.
Although Young’s modulus and Poisson’s ratio in different

parts of soft tissues are different, the value of the parameters
should fluctuate around a certain numerical value, which can

be considered as the average parameter. Nonlinear soft tissue
can be regarded as a linear material [21,22]. Therefore, a linear
model can be built to calculate the equivalent parameters for

linear soft tissue, which are used as the initial parameters in
the nonlinear parameter estimation model and the initial val-
ues in the self-adapting LM algorithm.
Denote that /ðvÞ ¼ 1=ð1þ vÞð1� 2vÞ and uðvÞ ¼ v=ð1þ vÞ
ð1� 2vÞ, and thus D ¼ Eð/ðvÞGþ uðvÞHÞ according to
Equation (2). Element stiffness matrix Ke can be rewritten as:

KeðE; vÞ ¼ VeEðBeÞTð/ðvÞGþ uðvÞHÞBe: ð13Þ
The initial parameters bE0 and bv0 can be obtained by solving

the following minimization problem (please see File S1 for
detail):

ð bE0; bv0Þ ¼ argmin
ðE;vÞ

Xn

i¼1
kENiðvÞ �efik2

( )
: ð14Þ

The initial substitute parameter ba0 can be calculated
according to a ¼ E=ð1þ vÞð1� 2vÞ, and then the initial substi-

tution parameters ðba0; bv0Þ can be used for the initial parameter
estimation model and the initial value x1.

Results and discussion

Currently, there are no public data available for evaluating the

performance of parameter estimation methods for soft tissues.
In this study, a memory pillow was used as the experimental
material.

We quantitatively evaluated the performance of the param-
eter estimation method by comparing the measured nodal dis-
placements and the nodal displacements calculated using the

parameters obtained. To do so, we first exerted the external
force of six different intensities on the material (Figure 2, A–
F), followed by the acquisition of their values and the corre-
sponding deformation data using an in-house data acquisition

platform. Next, WCFM_SVM force correction model was
adopted to correct the measured forces that were used to verify
the effectiveness of our nonlinear parameter estimation model.

Comparison of force correction using WCFM_SVM model and

other forecasting models

To validate the accuracy of the WCFM_SVM force correction
model, 76 sets of samples, including forces acquired using our
pressure acquisition device and their actual forces acquired

using an electronic scale, were collected and divided into a
training set (70 sets of samples) and a test set (6 sets of sam-
ples). The performance of the WCFM_SVM model was com-
pared with that of seven other forecasting models. These

include a polynomial fitting method, three single forecasting
models back propagation (BP) neural network, SVM, and
least squares support vector machine (LSSVM)), a CFM based

on SVM (CFM_SVM), a CFM based on LSSVM
(CFM_LSSVM), and a WCFM based on LSSVM
(WCFM_LSSVM). The weights of the single forecasting mod-

els for CFM_SVM and CFM_LSSVM were the same. The cor-
rected forces obtained using the eight correction models were
compared with the actual forces acquired using an electronic

scale.
The absolute errors between the corrected forces and the

actual forces for samples A–F are shown in Figure 3. Absolute
errors tended to increase when external forces were applied

with higher intensities. Compared to other models, absolute
errors for the proposed WCFM_SVM model remained rela-
tively low. The max absolute error of the proposed

WCFM_SVM model is less than 0.03 Newton (N), which is
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Figure 3 Absolute error using different force correction models

External forces at six different intensities (increased from A to F)

were exerted on the material. The absolute errors between the

actual forces acquired using the electrical scale and the correct

forced obtained using different correction models were plotted.

Absolute errors of our proposed WCFM_SVM model are smaller

across different sample groups even if relatively large forces are

applied, showing the strong robustness of our proposed

WCFM_SVM model. BP, back propagation; SVM, support

vector machine; LSSVM, least squares SVM; CFM, combination

forecasting model; WCFM, weighted CFM.
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smaller than those obtained using other models. These data
indicate that compared to other correction models, the pro-

posed WCFM_SVM model presented the smaller absolute
error and showed stronger robustness.
Table 1 Mean errors of forces generated using different force correcti

Model Mean absolute error (Newton)

Polymodal fitting 0.1286

BP 0.0323

SVM 0.0326

LSSVM 0.0312

CFM_SVM 0.0215

CSM_LSSVM 0.0325

WCFM_LSSVM 0.0312

WCFM_SVM 0.0195

Note: The model proposed in this study is put in bold. BP, back propagati

combination forecasting model; WCFM, weighted CFM.

Table 2 Initial parameters solved using a linear FEM

Deformation set Young’s modulus (Pascal) Poi

A 7.4065 � 103 0.0

B 7.9424 � 103 0.0

C 6.2843 � 103 0.0

D 7.2075 � 103 0.0

E 7.3448 � 103 0.0

F 8.4128 � 103 0.0

Note: The deformation sets are named according to the panel indexes in F
The mean absolute error (eMAE), square error (eMSE), and
absolute percent error (eMAPE) between the actual and cor-
rected forces are shown in Table 1. Mean absolute error is cal-

culated as eMAE ¼ 1=n
Pn

i¼1jxi � bxij, whereas mean square

error is calculated as eMSE ¼ 1=n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � bxiÞ2
q

, and mean

absolute percent error is calculated as

eMAPE ¼ 1=n
Pn

i¼1jðbxi � xiÞ=xij � 100%. In this study, xi

denotes actual forces, bxi denotes corrected forces, and n indi-

cates the number of samples (n ¼ 6). Compared with the other
forecasting models, our WCFM_SVM correction model shows
a better performance thus can provide accurate forces for the

parameter estimation model.

Parameter estimation using linear FEM

Many earlier studies have considered soft tissues as linear
materials [21,22]. Accordingly, we first considered the experi-
mental material as a linear object to calculate initial parame-

ters bE0 and bv0 for the experimental material across six
different deformations. As shown in Table 2, the initial param-

eters bE0 and bv0 varied for different deformations, indicating
that the experimental material tested is nonlinear.

The initial parameters shown in Table 2 were input into the

linear FEM to calculate nodal displacements. The calculated
and measured nodal displacements were compared. As shown
in Figure 4, there were large absolute errors between the calcu-

lated nodal displacements and the measured displacements,
especially for larger deformations. Therefore, if a nonlinear
material is regarded as a linear object, the estimated elastic

properties using linear model are likely to possess considerable
error.

Parameter estimation using the proposed nonlinear model

We next applied the proposed parameter estimation method to
describe the nonlinearity of the experimental material, and
on models

Mean square error (Newton) Mean absolute percent error (%)

2.6559 1.3387

0.2276 0.2837

0.1515 0.2745

0.2399 0.1975

0.1120 0.1399

0.1640 0.2240

0.0146 0.2291

0.0830 0.1333

on; SVM, support vector machine; LSSVM, least squares SVM; CFM,

sson’s ratio Corrected forces by WCFM_SVM (Newton)

7 18.5814

6 19.9533

6 21.4443

6 24.0542

7 27.0678

6 30.1766

igure 1. FEM, finite element model.



Figure 4 Absolute errors between the measured nodal displacements and the calculated nodal displacements using the linear FEM

External forces at six different intensities (increased from A to F) was exerted on the material. Deformation was sampled evenly in a 23 �
13 matrix for the surface with the size of 50 � 30 cm2. The force was exerted at the 150th point (the 7th row and 12th column). The red

dots denote the values of the absolute error between the nodal displacements measured using PPT2 and nodal displacements calculated

using linear FEM.
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build the relationship between the parameters to be solved, i.e.,
the deformations and the external forces. The model proposed
was based on the partial linearization of nonlinear material.

Although five tetrahedral elements appear to be linear in one
hexahedral element, the overall nonlinear relationship between
Figure 5 Distribution of Young’s modulus and Poisson’s ratio

Young’s modulus E (A) and Poisson’s ratio v (B) for the material we

hexahedral elements shared similar colors, showing that parameters of

regions. Pa, Pascal.
stress and strain enables the calculation of the nonlinear
parameters of the experimental material. Young’s modulus E
and Poisson’s ratio v of the experimental material were

obtained using the self-adapting LM algorithm. As shown in
Figure 5, Young’s modulus and Poisson’s ratio of neighboring
re calculated using the self-adapting LM algorithm. Neighboring

neighboring hexahedral elements are similar to each other in local



Figure 6 The absolute error between the measured nodal displacements and the nodal displacements calculated using the proposed nonlinear

method

External forces at six different intensities (increased from A to F) was exerted on the material. Deformation data at each external force

were divided into a sample set (249 data points) and a test set (50 data points). Parameters solved from the sample set were used to

calculate the nodal displacements of the test set. The red dots denote the values of the absolute error between the calculated nodal

displacements and measured nodal displacements.

Table 3 Difference in the nodal displacement calculated using the linear FEM and the proposed nonlinear model

Deformation set
Linear FEM (mm) The proposed nonlinear model (mm)

Maximum error Average error Maximum error Average error

A 11.75 1.22 1.18 0.52

B 9.94 0.98 1.19 0.62

C 9.26 1.45 1.20 0.47

D 12.4 2.11 1.45 0.79

E 14.2 2.30 1.50 0.76

F 15.3 2.80 1.44 0.74
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hexahedral elements are rather close to each other in local

regions, thereby appearing to be linear in local areas. However,
the material presents nonlinearity from the perspective of the
entirety. These observations demonstrate the partial lineariza-

tion of nonlinear material, providing the theoretical basis for
the proposed parameter estimation method of soft tissues.

Bickel et al. [8] proposed a modeling technique for simulat-
ing non-linear heterogeneous soft tissues. However, this study

lacks quantitative evaluation. In order to further quantita-
tively verify the effectiveness of our nonlinear parameter esti-
mation model, each group of 299 scattered deformation data

was divided into a sample set (249 data points) and a test set
(50 data points). The sample set was utilized to solve the
parameters of the experimental material, which were used to

calculate the nodal displacements of the test set. The absolute
errors in nodal displacements were obtained by comparing the
calculated nodal displacements with the measured nodal dis-

placements of the test set.
As shown in Figure 6, the absolute errors in nodal displace-

ment were low. However, when regarding the nonlinear mate-

rial as a linear object [21,22] for parameter solving, the nodal
displacement errors were very large (Figures 4 and 6). There-
fore, the proposed nonlinear method performs better than lin-
ear FEM with small errors.

Table 3 shows the maximum error dmax and the average
error dmean of nodal displacements calculated using the linear
FEM and the proposed nonlinear method respectively. The

maximum error of the proposed nonlinear method was less
than 1.5 mm, far less than that using the linear FEM, which
was around 10 mm. Therefore, the parameters estimated using

our method are more accurate than those estimated using the
linear FEM.
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Conclusion

In this study, a novel nonlinear parameter estimation method
was proposed for soft tissues. We collected deformation data

of a memory pillow to mimic soft tissues using the in-house
data acquisition platform. To provide precise data for the
parameter estimation model, a WCFM_SVM model was con-

structed to correct measured forces. A tetrahedral finite ele-
ment model was constructed based on the concept of partial
linearization of the nonlinear material. The model utilized sub-
stitution parameters of Young’s modulus and Poisson’s ratio

to describe the physical characteristics of soft tissues rather
than directly calculating them, thereby avoiding solving com-
plicated nonlinear problems. In addition, we introduce the ini-

tial parameters of soft tissues into our parameter estimation
model to improve model robustness and obtain more accurate
parameters. The presented self-adapting LM algorithm was

utilized to solve the nonlinear parameter estimation model
while a linear finite element model provided the initial values
for the optimization algorithm.

We further quantitatively analyze the error between the
calculated and measured nodal displacements by comparing
the performance of the proposed method with that of the lin-
ear finite model. Our results indicate that the proposed

parameter estimation method is of high accuracy. PPT2
was applied to locate the position of the circular markers
on the memory pillow during the measurement. However,

the volume of the circular markers may introduce deviations
in nodal displacement. In future studies, we will adopt other
more precise methods to obtain the surface data to build a

parameter estimation model of higher precision. In addition,
as only the parameters that describe the physical characteris-
tics of soft tissues were obtained, a dynamic deformation pro-
cess for soft tissues will be simulated, adapting the

parameters estimated using the proposed parameter estima-
tion method in such future work.
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