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ABSTRACT

ComiR is a web tool for combinatorial microRNA
(miRNA) target prediction. Given an messenger
RNA (mRNA) in human, mouse, fly or worm
genomes, ComiR computes the potential of being
targeted by a set of miRNAs, each of which can
have zero, one or more targets on its 30untranslated
region. In determining the regulatory potential of
an mRNA from a set of miRNAs, ComiR uses
user-provided miRNA expression levels in a combin-
ation of appropriate thermodynamic modeling
and machine learning techniques to make more
accurate predictions. For each gene, ComiR
returns the probability of being a functional target
of a set of miRNAs, which depends on the relative
miRNA expression levels. The tool provides a user-
friendly interface to input a miRNA expression table
containing many sample information and filter out
the most relevant miRNAs. ComiR results can be
downloaded or visualized on a table, which can
then be used to select the most relevant targets
and to compare the results obtained with different
miRNA expression input. ComiR is freely available
for academic use at http://www.benoslab.pitt.edu/
comir/.

INTRODUCTION

MicroRNAs (miRNA) are a class of short (18–25 nucleo-
tide) non-coding RNAs that regulate gene expression post-
transcriptionally. Their regulatory activity depends heavily
on the recognition of binding sites located mainly on the 30-
untranslated regions (30UTRs) of target messenger RNA
(mRNA) (1). Existing computational tools predict the
miRNA targets by considering site-specific factors of
target sites [see (2–4) for some examples]. These tools,
tested against the available experimentally validated

miRNA-target pairs each, were able to predict only a
portion of them, while their target overlap remains poor
(5,6). However, the efficiency of miRNA-mediated regula-
tion can be affected by multiple system-wide factors (7,8),
such as miRNA expression, combinatorial binding of
multiple miRNA targets or the expression of competitive
endogenous RNA. ComiR addresses two of them, namely
how miRNA expression affects binding and how combina-
torial miRNA binding affects mRNA regulation. We note
that some recent algorithms also consider these factors
when they decide on targets: PicTar (9) is a computa-
tional method for identifying common targets of
miRNAs, but it does not consider the miRNA expression
in determining the relative binding; GenMir++ (10),
TargetMiner (11) and TaLasso (12) evaluate the relevance
of miRNA:mRNA interactions by analyzing expression
profiles and prior targeting information, but they require
paired mRNA and miRNA expression profiles over many
samples. Furthermore, none of them incorporates miRNA
expression in the binding model.
Recent experimental approaches, like those based on

immunoprecipitation (IP) of miRISC proteins (RNA-
induced silencing complex) (13,14), generate validated
miRNA:mRNA target data in a high-throughput fashion.
These data are useful to unravel the systemic aspects of
miRNA targeting. Indeed, miRNA expression profiles are
now known in several tissues and cell lines (15) and as a
result it becomes more important to know the targets of a
set of miRNA genes instead of individual miRNAs. Of
course, one might infer the targets of a set from the
targets of its members, but as we have recently shown, a
naı̈ve inference model does not produce good results (16).
To this end, we developed ComiR (http://www.

benoslab.pitt.edu/comir/), an algorithm that predicts the
regulatory potential of a set of miRNA genes toward
a given mRNA. ComiR initially integrates miRNA ex-
pression in a scoring scheme for each single target on
this mRNA, and then it additively combines the
weighted scores of the single targets. ComiR uses four
popular scoring schemes [the ones used by miRanda (4),
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PITA (2), TargetScan (3) and mirSVR (17)] and at the
final stage it combines all four integrative scorings into
one using a support vector machine (SVM) trained on
Drosophila AGO1 IP data (18). The end result is the
SVM probability, which represents the likelihood that
this mRNA is regulated by the set of miRNA genes.
Our results (16) have shown that ComiR presents a
significant improvement over standard miRNA prediction
algorithms adapted for combinatorial miRNA targeting.

TOOL DESCRIPTION

General framework

ComiR is a tool designed to predict the targets of a set of
miRNAs by considering the miRNA expression levels as
an integral part of the target decision process. The user
has the option to add his/her own target set of genes (e.g.
30UTRs of mRNAs, LINCs) to the default list of genes
considered for the available species (Homo sapiens, Mus
musculus, Drosophila melanogaster and Caenorhabditis
elegans) Below, without loss of generality, references to
‘target sequences’ or ‘mRNAs’ should include the
30UTRs of the mRNAs together with any other custom
target sequence set the user submits.
For each mRNA, ComiR determines the potential of

being targeted by the miRNA set. The targeting potential
is calculated in two steps. In the first step, four different
methods are used that complement each other to some
extent. One method is an adaptation of miRanda (4), in
which the probability of an mRNA:miRNA binding is
calculated based on the Fermi–Dirac equation (16,19),
which takes into consideration the miRNA expression,
and the individual probabilities are summed over all
targets on this mRNA of all miRNAs in the miRNA
set. The second method is a similar adaptation of PITA
(2), in which the Fermi–Dirac equation also substitutes the
standard energies. As the third method, we use the
TargetScan (3) scoring (without conservation) weighted
by each miRNA expression level. Finally, mirSVR (20)
is also used, but its scores are also combined after they
have been weighted by miRNA expression. In the second
step, we combine the predictions of the above four
methods with a SVM, which is trained on a high-quality
data set derived from AGO1 IP experiments in
D.melanogaster. It has been shown (16) that this model
can be efficiently applied to predict miRNA targets in
other species, after a normalization step.
ComiR’s output is a ranked list of genes based on the

target probability computed through the SVM model.
Because the score computation includes the miRNAs ex-
pression values, the same set of miRNAs might generate
different ranking if different miRNA expression levels are
used. ComiR’s pipeline is shown in Figure 1.

Databases and pre-computed binding scores

The ComiR help page provides links to the FASTA files
with the mRNA and miRNA sequences used to run
ComiR. We restricted our analysis on the mRNA
30UTR sequences that we downloaded from the
ENSEMBL Web site (as in 20 September 2012). When

more than one 30UTR sequence is associated to the
same ENSEMBL gene ID, we use the longest sequence.
miRNAs mature sequences were downloaded from the
miRBase Web site (Release 19). An internal ID conversion
tool is used to convert the old miRNA IDs with the
updated ones. Regardless, we suggest the users to refer
to the latest version of miRBase official ID.

miRNA binding scores have been pre-computed for
every 30UTR gene sequence according to the original
miRanda, PITA, TargetScan and mirSVR scoring systems
and they are stored on our server for a fast access. PITA
and TargetScan ran with their default parameters.
The miRanda’s parameters have been relaxed to include
in the predictions the weaker binding sites (score=0,
energy=0). Finally, we used the mirSVR prediction files
labeled as ‘Good mirSVR score, Conserved miRNA’. The
single target scores we use as basis to calculate the overall
regulatory potential of each miRNA:mRNA pair are the
following. (i) miRanda-type scoring: single target score is
the binding energy of each binding site. (ii) PITA-type
scoring: single target score is the difference between the
free energy gained by the binding of the miRNA to the
target and the free energy lost by unpairing the target-site
nucleotides (��G) of each binding site. (iii) TargetScan-
type scoring: single target score is the number of detected
binding sites (no phylogenetic conservation features are
used). (iv) mirSVR scoring: single target score is mirSVR
score of the predicted target sites.

Input formats

ComiR accepts miRNA expression levels input as comma-
separated field table format. The first row contains the
sample IDs where miRNA expression levels are detected
and the first column contains miRNA IDs. If miRNA
expression levels are expressed in log scale (e.g. from
microarray measurements), ComiR will internally
convert them into the linear scale, provided the user
checks the corresponding checkbox. We also allow users
to submit a list of miRNA IDs without expression levels,
in which case ComiR assumes that all miRNAs are ex-
pressed at the same level. Custom mRNA sequences can
be inserted with FASTA file format.

Data pre-processing

The input miRNA IDs are first converted into the latest
miRBase IDs. The miRNAs that are not found in the
stored data set related to the selected species are
removed from the analysis and the user is notified. If
miRNA expression levels are provided, the miRNA con-
centrations are computed as the fraction of expression
level over the total amount, for each sample. It is
possible to focus the analysis on the top expressed
miRNA, by selecting the percentage of total miRNA
abundance to be covered in the ‘More Options’ panel,
and/or a threshold for the minimum expression level to
be considered. It is also possible to input a list of miRNAs
to be excluded from the filtering, even if their expression
level does not reach the desired threshold.

The list of miRNAs can be treated in two different
ways, i.e. as a set of miRNAs or as single miRNAs.
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One of the two options can be selected in the ‘More
Options’ panel. If the user wants the miRNAs in the list
to be considered as a set, ComiR will compute one
score for each gene. For multiple samples, ComiR will
calculate one score per gene per sample. If the user
wants each miRNA in the list to be considered inde-
pendently, ComiR will compute one set of scores per
miRNA, by using a concentration equal to 1 for each
of them even if the miRNA input contains expression
levels.

If custom target sequences are provided, ComiR will
run the publicly available scripts of miRanda, PITA and
TargetScan tools, to obtain the initial binding energy and
target prediction scores and these values will be trans-
formed and combined as we describe above.

Score combination and method integration

As we mentioned above, ComiR uses four complementary
methods to assess the binding potential of a miRNA to a

Figure 1. Overview of the integrated analysis in ComiR.
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single target in each 30UTR. One is based on simple
binding energies, which we take from the miRanda
scoring file. The second is based on binding energies
after the mRNA secondary structure has been factored
in. For this we use the PITA scoring file. The third is
the number of string matches of the miRNA seed
sequence, which we take from the TargetScan primary
predictions. And the fourth method is the prediction
score of mirSVR. ComiR transforms these primary
scores of individual targets using the miRNA expression
and sums the transformed scores to account for multiple
miRNA targets. The summing is a simple weighted sum in
the case of TargetScan and mirSVR types of scores,
whereas in the case of miRanda and PITA types we use
the Fermi–Dirac equation. The details are provided in
(16). Briefly, the Fermi–Dirac model is the following:

SFD
k ¼

XN

i

Xnik

j

1

1+eðEijk��iÞ=RT
;

where �i ¼ RT logð½miRNAi�Þ, N is the number of
miRNAs in the input set, nik is the number of binding
sites predicted for the miRNAi:mRNAk pair and for
each of them Eijk is the binding energy computed for the
binding site j. For the seed matching scores and the
mirSVR scores we use a simpler scoring scheme
(weighted sum):

SWSUM
k ¼

XN

i

½miRNAi�Sik:

At the end of this step, each gene is associated with four
scores, one for each primary method. These four scores
are then used as input to the SVM model, which has been
calculated on a D.melanogaster AGO1 IP data set (16). To
use the SVM to efficiently predict targets in other species,
the algorithm includes a normalization step. Specifically,
the input to the SVM is the ranking of the genes with
respect to the computed combined scores. This expedient
avoids the biases due to different prediction scores distri-
butions in different species and to the variety of miRNAs
the user may use as input. Finally, the SVM computed
probability is chosen as the ComiR score referring to the
probability of an mRNA to be regulated by the set of
miRNAs with the specific expression levels.

Submission and wait time

Depending on the size of the input files and the chosen
species, the analysis could take anywhere from seconds to
up to an hour. As an example, for D.melanogaster predic-
tions with 25 miRNAs, the computing time is roughly
25 s, while the same number of miRNAs in H.sapiens
predictions is processed in roughly 5min. The inclusion
of custom mRNA sequences will increase the execution
time on the server linearly with the number and the
length of the inserted sequences. For instance, processing
one custom sequence of 3000 bases and 25 miRNAs
requires about 45 extra seconds.
After submission, a summary page describing the input

and the results of the data pre-processing is shown. If the

input setting needs to be adjusted then a ‘Go to Input
settings’ button leads back to the input page. Otherwise
the ‘Go to Results’ button brings to an execution log page.
This page will contain the results once the job finishes and
the link to it can be saved so it can be visited later.

ComiR output

The user can decide to download the complete results in a
table format or to browse and filter the results table in the
web page. The downloadable results zip file contains the
Ensembl ID and the Official Gene ID columns followed
by the computed ComiR scores columns, one per each
miRNA set present in the miRNA input file. If custom
mRNA sequences have been inserted, the file will also
contain a row for each inserted sequence.

The results web page shows a table with the first three
columns describing the genes followed by the computed
ComiR score columns. The genes are identified by the
Ensembl ID, Entrez ID and Official Gene Name.
Ensembl IDs and Entrez IDs are linked to the correspond-
ent external database. The user can sort the table rows by
any header and in ascending or descending order. It is
possible to modify the shown results table by removing
all the genes not predicted as targets by any of the input
miRNA sets, by choosing the ComiR score threshold
above which the genes has to be considered as targets.
Finally, if more than one miRNA set is inserted, it is
possible to visualize an extra column containing the dif-
ference between the ComiR scores obtained with any two
miRNA sets. Moreover, if enough data are available, it is
possible to perform a Wilcoxon analysis comparing the
ranks of the genes in ComiR predictions of two groups
of at least three miRNA sets. In fact, it is possible to select
the composition of the two groups of samples to be
compared and a new column containing the Wilcoxon-
test P-value will be shown. In this case, the score differ-
ence column will contain the difference between the
average ComiR scores in the two groups. The genes with
significant P-values are what we call the ‘differentially pre-
dicted’ genes. The results visualization and the differen-
tially predicted genes analysis can also be performed by
considering the rank of the genes with respect of the
associated ComiR score instead of the ComiR score itself.

CASE STUDY SCENARIOS

The primary goal of ComiR is to rank the targets of a set
of miRNAs with known expression levels in the sample of
interest. In (16) we described some applications of ComiR
in this basic direction, where we predicted the targets of
D.melanogaster, C.elegans and H.sapiens miRNA sets and
showed that ComiR outperforms existing target predic-
tion tools. Moreover, ComiR can be applied to perform
more elaborate analysis, and some examples are described
above.

Single-nucleotide polymorphisms effects on
miRNA binding

Single-nucleotide polymorphisms (SNP) can be located in
miRNA binding regions and consequently they could
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affect gene expression. ComiR can be used to evaluate the
SNP’s effect on miRNA regulation by inserting as input
the wild type and the SNP mRNA sequence and ranking
the evaluated ComiR scores. As an example, in (16) we
evaluated the effect of 15 high-frequency SNPs in ERa
pathway genes on the affinity of the affected genes with
every known human miRNA. We found that rs17737058,
located in the 30UTR of NCOA1 gene, causes the disrup-
tion of the binding with the hsa-miR-488* miRNA. This
effect has been experimentally validated, and we also
found that this SNP is associated with decreased bone
mineral density.

Differentially predicted genes

This analysis is thought to compare the target predictions
obtained with different miRNA sets. It is, for instance,
conceived for data sets containing replicates of miRNA
expression levels data in different samples. The differen-
tially predicted genes analysis can be applied as an alter-
native strategy to predicting the targets of differentially
expressed miRNAs. In fact, with the same list of
miRNAs, ComiR generates different results, depending
on the concentrations associated with the miRNAs. It is
worth noticing that while predicting the targets of the dif-
ferentially expressed miRNAs does not take into account
the presence of all the other miRNAs that might prevail
over them, ComiR can be used to predict the targets of the
top-expressed miRNAs in each sample, and consequently
used to search for which genes are highly predicted in one
group of samples and not in the other (21).

Single miRNA contribution

ComiR algorithm incorporates the information about all
the input miRNAs into a single score. If the user is inter-
ested in determining which miRNAs contributed more to
the formation of one specific gene’s score, we suggest to
run ComiR with the same miRNA set, but with the option
‘single miRNAs’ activated. This analysis will run a
separated ComiR analysis for each miRNA in the set.
The higher is the contribution of a specific miRNA to
the ComiR score associated to the entire miRNA set,
the higher will be the ComiR score associated to the
single miRNA.

CONCLUSIONS

In recent years, with the availability of high-throughput
miRNA expression data, a new perspective for miRNA
target prediction is starting to emerge. Many target pre-
diction tools already exist, but none of them takes into
account system-level factors, like the co-expression of
several miRNAs with sample-specific expression levels.
ComiR has been developed specifically to predict the
targets of sets of miRNAs, and its user-friendly interface
allows researchers to compare the results obtained with
groups of them. A number of issues remain unsolved,
however, such as the competition of miRNAs for the
Ago proteins (22), or the extent of the co-operative
effect of miRNAs. As more relevant data sets become

available we will extend the miRNA binding models to
incorporate these effects.
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