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Simple Summary: Parasitic helminths represent one of the most pervasive challenges to 

livestock, and their intensity and distribution will be influenced by climate change. There is 

a need for long-term predictions to identify potential risks and highlight opportunities for 

control. We explore the approaches to modelling future helminth risk to livestock under 

climate change. One of the limitations to model creation is the lack of purpose driven data 

collection. We also conclude that models need to include a broad view of the livestock 

system to generate meaningful predictions. 

Abstract: Climate change is a driving force for livestock parasite risk. This is especially 

true for helminths including the nematodes Haemonchus contortus, Teladorsagia 

circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and 

development of free-living stages is chiefly affected by temperature and moisture. The 

paucity of long term predictions of helminth risk under climate change has driven us to 

explore optimal modelling approaches and identify current bottlenecks to generating 

meaningful predictions. We classify approaches as correlative or mechanistic, exploring 

their strengths and limitations. Climate is one aspect of a complex system and, at the  

farm level, husbandry has a dominant influence on helminth transmission. Continuing 
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environmental change will necessitate the adoption of mitigation and adaptation strategies 

in husbandry. Long term predictive models need to have the architecture to incorporate 

these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic 

processes and physiological thresholds with correlative bioclimatic modelling, 

incorporating changes in livestock husbandry and disease control. Irrespective of approach, 

the principal limitation to parasite predictions is the availability of active surveillance data 

and empirical data on physiological responses to climate variables. By combining 

improved empirical data and refined models with a broad view of the livestock system, 

robust projections of helminth risk can be developed. 

Keywords: climate change; prediction; risk; livestock; parasites; helminths; disease; 

modelling 

 

1. Introduction 

Climate change has been implicated as a driving force for recent parasite range expansions, and 

efforts have been made to model the relationship between pathogen levels and climate. The most 

economically important parasitic helminths of livestock in temperate climes include the nematodes 

Haemonchus contortus, Teladorsagia circumcincta and Nematodirus battus, and the trematode 

Fasciola hepatica. The increase in these helminths in recent years [1–5] has been attributed to climate 

change, since the survival of the free-living stages is chiefly affected by temperature and moisture, and 

larval development rate is highly temperature dependent [6–9]. 

The development of evidence-based risk assessments and targeted surveillance are pivotal when the 

welfare and economic costs of these pathogens are considered. Subclinical infection is characterised by 

weight loss, lower milk yield, loss of condition, abortion, infertility and veterinary costs, and heavy 

infections can cause host mortality. Indirect economic losses from pathogen outbreaks are also 

incurred via export restrictions and surveillance and mitigation costs [10]. Despite the deleterious 

impacts of helminths on the livestock industry and their dependence on climatic conditions, predictions 

of long-term threats to animal health from climate change have so far concentrated on heat stress [11–16] 

and viruses spread by volant vectors, such as blue tongue [17–22]. Although there have been a number 

of studies aiming to link the recent changes in helminthiasis abundance and distribution with 

environmental change [1,3–5,23–25], there is a lack of predictions for future helminth risk to livestock. 

Here we explore the optimal approaches to generating long-term predictions for helminth risk, 

stratifying modelling approaches as either correlative or mechanistic. We also highlight the obstacles 

to generating meaningful predictions and the need for a multidisciplinary approach. 

2. Modelling the Change 

2.1. The Correlative Approach 

Predictive models of species distribution, for both epidemiology and conservation, are often based 

on correlative ecological niche models [26–32]. These models are based on Hutchinson’s ecological 
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niche theory where the current geographic distribution is used to infer the environmental requirements 

of a species [33]. The current, past or future distribution of that species is then predicted based on these 

requirements [34]. Insights into the biology of parasite dynamics should be used to systematically 

build the foundations of these models, and the most proximal environmental predictors should be 

chosen based on known ecological and physiological theory [35]. 

A number of programmes are available to determine a species’ climate envelope by matching 

current distribution with climatic parameters, such as CLIMEX [36], HABITAT [37], DOMAIN [38] 

and SPECIES [39]. In addition to these generic models, species-specific correlative models have also 

been developed, however these models have primarily been applied to species of conservation 

importance and invasive alien species. To date, correlative predictive models of helminthiasis have 

focussed on F. hepatica (liver fluke) due to the close relationship between weather and fasciolosis 

outbreaks [2] and the worldwide importance of fasciolosis as a zoonosis. The UK’s National Animal 

Disease Information Service (NADIS) and the Department of Agriculture and Food in Ireland 

currently predict F. hepatica incidence using the Ollerenshaw index, which is a correlative model 

focusing on temperature and moisture availability [40,41]. Through applying a modified Ollerenshaw 

index to UKCP09 climate projections, the first long-term predictions of future F. hepatica risk for 

2020–2070 across the UK have been developed [42]. The resultant risk maps predict unprecedented 

levels of fasciolosis outbreaks, and possible changes in the timing of disease outbreaks due to 

increased risk from overwintering larvae. Despite an overall long term increase in all regions of the 

UK, spatio-temporal variation in risk levels is expected, with infection risk due to reduce in some areas 

and fluctuate greatly in others. This forecast is the first approximation of the potential impacts of 

climate change on helminth risk in the UK, and indicates where active disease surveillance should be 

targeted. 

There are a number of factors that made correlative modelling the preferred approach for 

determining fascioliasis risk. Firstly, the existence of long term prevalence data facilitated the 

development of a statistical model [41]. Secondly, despite their complex life cycle, the distribution of 

liver fluke is driven by simple proximal drivers—temperature and water availability. It is these drivers 

that form the basis of the correlative model. Thirdly, their dispersal by wild hosts and speed of 

colonisation of new regions makes them ubiquitous where livestock are present across their 

fundamental niche. 

Despite the information that correlative models can provide, there are a number of disadvantages to 

applying this approach to climate change predictions. A prominent bottleneck to the development of 

correlative models is the lack of current or past parasite distribution data. The data used to train these 

models is usually opportunistic, passive surveillance data. Climate parameters are used according to 

which measurements and predictions are available, rather than those that are most pertinent to disease 

transmission. In order to build reliable models, purpose-driven active surveillance data is needed. As 

climate affects long term, large scale trends, these data must be collected over appropriate scales to 

observe these trends, rather than the patchy distribution visible at finer scales, which is likely to be a 

consequence of non-climatic factors. It is equally important to apply predictive models at the right 

scale. It is often tempting to apply models on as fine a scale as the climate projections allow, as this 

will lead to detailed maps with an illusion of greater accuracy. However this temptation should be 
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resisted and models based on climatic parameters alone should only be applied at an appropriately 

coarse scale. 

The lack of distribution data also impedes the validation of these predictive models, as ideally they 

should be validated with data fully independent from that used to build the model [26,28,43]. A further 

issue with validation is that it often indicates the models ability to predict current distribution; models 

that are effective at predicting current distribution may not be so reliable when predicting future 

outbreaks [34]. Hence there is a need to validate these models with data outside the spatial and 

temporal range of the training dataset. To make use of existing datasets for both model creation and 

validation there are ongoing developments in statistical methodology to account for biases in  

reported data. Existing datasets can be utilised for modelling distributions if imperfect detection is 

considered, with irregular sampling intensity and false absences accounted for using hierarchical 

Bayesian models [29,30,44,45]. Uncertainty in predictor variables can also be addressed through 

Bayesian analysis [46].  

Given sufficient data for creation and validation of correlative models, fundamental disadvantages 

remain. As correlative models are generated using distribution data they are based on the realized 

niche [47] which includes competitive exclusion and biotic interactions (e.g., the presence of hosts and 

other pathogens), rather than the whole fundamental niche. As distribution data are usually only 

available for a limited area or time window, correlative models are generally fitted using data 

reflecting a snapshot of the current climate-pathogen relationship. An assumption is therefore made 

that a species has reached equilibrium with its environment [35]. This ignores any non-climatic 

dispersal constraints that may be restricting the current range, or declining sink populations where 

presence is recorded but climate is not actually suitable for long-term population survival. This failure 

to account for non-equilibrium ranges is an inherent weakness in correlative models [48,49]. This 

weakness could be especially pertinent for emerging parasites which are unlikely to be in equilibrium 

with their current environment, so could be absent from climatically suitable areas due to low 

propagule pressure. Conversely, these models will not identify areas which are not within bounds 

necessary for pathogen survival, but where deleterious levels of parasitism could be reached given 

sufficient propagule pressure. This issue posed by the non-equilibrium nature of emerging pathogens 

could be addressed through training models for emerging parasites using distribution data from their 

long established native range [35]. 

Above all aforementioned limitations, the dangers in extrapolating statistical models are especially 

pertinent to climate projections. The assumption that a species is in equilibrium with its current 

environment and the reliance on relationships between climate variables that may not exist in novel 

climate change scenarios leads to equivocal results when models are extrapolated spatially and 

temporally [29,44,50,51]. We are likely to experience previously unseen climate combinations and 

climate parameters exceeding their current observed ranges; parasites could be well adapted to these 

novel situations, however correlative models would assume these conditions to be unsuitable [34]. 

Additionally, correlative models cannot identify points where the system behaviour undergoes a 

qualitative change (tipping points). It is this inability to extrapolate that further emphasises the need for 

an alternative modelling approach.  

As a further testament to correlative models’ often unreliable outputs, models created using 

different statistical approaches have been shown to produce conflicting distribution estimates, even 
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when trained with the same distribution and climate data [52,53]. Such differences between 

distribution estimates can be exacerbated when extrapolating to novel climatic conditions [32]. To 

address the divergence in model outputs, a framework for selecting the most robust statistical 

modelling technique has been developed [32]. This approach would be useful for selecting optimal 

models for predicting changes in helminth distribution. The differences between distributions predicted 

by different models could also be informative; discovering why predictions differ could improve 

understanding of the main drivers, and quantification of the differences could inform decision making 

and risk analysis [29]. 

Despite their limitations, correlative models can still provide a first indication of how climate will 

influence helminth distribution, and identify where limited resources and targeted surveillance should 

be focused. They provide a useful tool when too few elements of the transmission process have been 

quantified for the creation and parameterisation of mechanistic models. The limitations of correlative 

models are being addressed through continued development of statistical methodologies, led by work 

in both conservation and invasive species control; there is scope for these emerging approaches to be 

applied to predicting livestock parasite risk. Reliability of correlative models will ultimately be 

governed by the quality of data used for model training and validation, the statistical methods 

employed, the ecological and physiological knowledge on which inclusion of proximal variables is 

based, and discrepancies between the realized and fundamental niche. 

2.2. The Mechanistic Approach 

The second approach to understanding and predicting parasite risk is the process-based mechanistic 

approach. Mechanistic models are based on detailed knowledge of the physiology of the species [34] 

and attempt to replicate the underlying mechanisms that drive the species’ response to environmental 

variables [54]. Given sufficient understanding of the parasites physiology, these models can be 

employed to predict changes in prevalence [55]. Previous mechanistic models have explored the 

dynamics of helminth infection in livestock [56–65]. However these models have not been used to 

assess the impacts of climate change on helminth transmission.  

One element of mechanistic modelling that makes it well adapted in a changing climate is that it  

is less prone to extrapolation problems than correlative models. The mechanistic approach does not 

rely on relationships between climate variables that may cease to exist under future climate  

change [34,47,66,67], making them less prone to breaking down when tested outside current 

observation limits. Consequently, the mechanistic approach is considered superior in extrapolating 

beyond current conditions and forecasting the impacts of climate change [68]. When predicting a 

parasite’s response to novel conditions it is vital that models account for the possibility of non-linear 

responses to predictor variables [43]. Through developing a mechanistic model looking at the effects 

of increasing temperatures on Schistosomiasis prevalence and abundance, Mangal et al. (2008) found 

that Schistosoma mansoni showed a non-linear response to temperature change [68]. Extrapolated 

predictions for novel climates may prove to be unreliable if the response curves are not fully 

determined, hence empirical data on survival and development under conditions beyond a parasite’s 

current climatic ranges are required. 
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The mechanistic approach also avoids some of the inherent problems that correlative models have 

when applied to emerging and invasive parasites since mechanistic models do not assume the species 

is in equilibrium with the environment [48] and are capable of predicting tipping points. By 

incorporating key mechanisms into the model structure more complex questions can also be addressed, 

such as determining the impact of climate on specific stages of the lifecycle. 

The severity of helminth infections is often dependent on intensity, rather than prevalence. The 

economic and welfare implications of outbreaks would be difficult to evaluate using a correlative 

approach, as data availability typically constrains these models to only look at prevalence. If data on 

adult worm burden are available they are often based on indirect measures such as faecal egg count. It 

is more feasible to include models of adult worm burden within a mechanistic framework. Although 

mechanistic models can predict changing intensity, the relationship between helminth burden and host 

production losses is non-linear; a doubling of infection intensity does not lead to a doubling of 

production loss [69]. A deeper understanding of the relationship between parasite burdens and 

potential production losses is still required. 

The survival of larvae on pasture is largely driven by climate [62], but helminth population 

dynamics are governed by density dependent process and it is vital that these processes are 

incorporated (e.g., host acquired immunity), as more larvae on pasture do not necessarily translate to 

higher parasite burden in the livestock [64]. Previous parasite models have concentrated on infection 

dynamics in a single host, returning the average host infection level and assuming each host interacts 

with its own private population of parasites [57,59,62,64]. In reality, aggregation of parasites in host 

populations is a ubiquitous phenomenon [70]. It has been proposed that heterogeneities in host 

infection levels arise due to numerous factors including variations in host resistance and susceptibility 

due to behavioural or physiological differences and spatial heterogeneity in infection risk [71–74]. 

Average host models ignore this overdispersion of helminths; a potentially critical feature in a system 

heavily driven by density-dependent processes.  

By modelling the average host, it is assumed that the same level of regulatory constraint is 

experienced by all parasites in the population. In an overdispersed population, aggregation results in an 

increase in the effective density experienced by individual parasites, increasing the influence of 

regulatory processes [74–76]. These regulatory processes drive a parasite population towards 

equilibrium [63], and hence aggregated populations reach equilibrium more quickly and at a lower 

level. As a consequence, models that do not take the overdispersed parasite distribution into account 

are likely to overestimate burden [75,76]. Variation in host worm burden within a herd has been 

generated artificially in infection models through assuming a fixed distribution of worms across hosts, 

and the system having a pre-defined degree of overdispersion [56,75]. There is scope to develop 

models where an overdispersed distribution is an emergent property, and which subsume both the 

mechanisms that generate aggregation and the impacts of the resultant aggregation on infection 

dynamics. Future changes in grazing season, stocking density, host behaviour and host resistance may 

affect the aggregation of parasites at the suprapopulation level (defined as all parasites of a given 

species, at all stages of development, within an ecosystem [77]). Models that incorporate the changing 

distribution of the suprapopulation would also allow identification of scenarios where individuals 

within a herd are at risk from heavy infections, thus addressing economic and welfare concerns. 
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Unlike correlative models, mechanistic model development is not restricted by the paucity of 

accurate distribution data. Instead, the primary restriction to their development is the extensive 

physiological data needed for parameterisation [35]. Recent empirical work on how livestock parasites 

respond to changing climatic variables should facilitate their development and parameterisation. For 

example, the correlation between the timing, distribution and quantity of rainfall and H. contortus 

development have been investigated [6] and threshold rates of precipitation and evaporation required 

for survival of H. contortus larvae to the infective stage have been determined [78]. The impact of 

temperature on the emergence of the infective stages of trematodes from the intermediate snail hosts 

have also been reviewed [79,80]. These studies demonstrate that there are quantitative data on the 

effects of climatic variables on physiological processes, which can be used to parameterise mechanistic 

models. 

In addition to altered temperature and precipitation, changes in UV reaching the extra-mammalian 

stages will also vary with changing climate (due to e.g., varying cloud cover, changes in development 

window and seasonality of infection). Van Dijk et al. (2009) investigated how ultraviolet (UV) light 

affects Trichostrongyloid nematodes, H. contortus, N. battus and T. circumcinta, in their infective L3 

stages [81]. Mortality rates increased by up to 100 times due to exposure to UVA light equivalent to 

the maximum levels expected for a summers day. There were inter-species differences observed:  

N. battus, with its arctic origins, and T. circumcincta were less resistant than the tropic-adapted  

H. contortus [81]. Previous mechanistic models have focused on changing temperature, as this was the 

parameter most studied and available in climate projections. However this study highlights the 

importance of including other environmental variables in predictive models.  

Another oversight in some mechanistic models is that they assume Liebig’s Law of the  

Minimum [34], which presumes that the overall response will be determined by the most limiting 

factor. This is not necessarily true. For example, larvae on pasture could survive otherwise 

deleteriously low levels of rainfall if temperatures were not too high. This emphasises the need to look 

at proximal, rather than distal variables—in this case water availability rather than levels of rainfall. It 

also emphasises the importance of looking at variables in combination. 

In contrast with the correlative approach, mechanistic models are based on measured physiological 

and behavioural parameters, and reflect the fundamental rather than realized niche [35]. This leads to 

over estimation of risk showing the whole potential range if dispersal restrictions or biotic interactions 

are not accounted for [34,48,82,83]. The extent of predictive errors will be partly dependent on the 

proportion of the fundamental niche that the realized niche occupies [35]. This proportion will depend 

on the parasites dispersal and competitive abilities; if the discrepancies between the species’ 

fundamental and realized niche could be identified, it could give an indication of how accurate 

predictive models could be for particular species.  

To attain realistic predictions of species distribution, models should ultimately integrate constraints 

from biotic interactions and dispersal [35]. Projections often assume either complete dispersal, where 

the parasite can reach all areas with permissive climes, or no dispersal where presence is only 

predicted in areas of its current range where climate remains within viable thresholds [35]. It is overly 

simplistic to assume that a species will either fully disperse to fill the fundamental niche, or that they 

will only survive in areas where the projected fundamental niche and current realized niche  

overlap [26], however, this approach does at least provide (often very wide) bounds on the possible 
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distribution. The importance of incorporating species interactions in prediction models has been 

demonstrated [51,84,85], with biotic interactions influencing the predictive power of correlative 

models even at the macro-ecological scale [85]. The incorporation of dispersal also influences 

predictive power [30,31,86], with the disparity between models that do incorporate dispersal and those 

that do not increasing under more extreme climate warming scenarios [31]. The integration between 

model projections, biotic interactions and simulated host/pathogen distribution and dispersal patterns 

would improve the accuracy of predictive models (both correlative and mechanistic). This could be 

achieved through the adoption of hierarchical Bayesian frameworks [86]. However, these should take 

into account that biotic interactions and dispersal abilities could change with time. Due to the high 

selective pressures that novel conditions are likely to impose, climate change is likely to select for 

phenotypes with enhanced dispersal capabilities that can track the shift in their climate envelope. This 

would affect the parameterisation of models that incorporate dispersal. 

Mechanistic models provide a powerful tool in predicting the influence of climate change on 

helminth risk. They are comparatively robust under spatio-temporal extrapolation and can be 

developed to answer complex questions. However, a move towards a mechanistic approach should not 

be seen as a way of alleviating the need for distribution data; to develop and validate models and 

assess their continued reliability under changing conditions, there is a need for ongoing surveillance. 

3. Looking Beyond Climate: The Need for a Panoptic View 

Climate is an important driver of helminth distribution, however transmission to livestock at the 

farm level is also controlled by husbandry. Livestock husbandry is ever changing and the adoption of 

mitigation and adaptation strategies will be necessary under continuing environmental change. 

Methods for alleviating heat stress in cattle have been explored including shade provision [14] and 

different feeding and sprinkling regimes [87]. Changes in the time of highest feed production may 

alter, resulting in timing of livestock reproduction being managed differently [88]. Housing outdoors 

instead of indoors in winter will also affect parasite transmission cycles [16]. Additionally, as certain 

breeds are more susceptible to extreme weather conditions, the breed structure of livestock may have 

to change to ensure that production levels are maintained and animal welfare needs met.  

The influence of these adaptation and mitigation strategies on parasite risk has yet to be 

incorporated in pathogen transmission models. There is a propensity for predictive models to 

incorporate ever refined climate prediction, however these will not provide meaningful indications of 

future risk if they are parameterised for outdated management approaches and redundant host 

population structures. Predictive models need to have the architecture to allow adaptation and 

mitigation strategies to be incorporated. For example, as different breeds have varying levels of disease 

susceptibility [10,13,89], the differing levels of resistance for future breed structures need to be 

considered in transmission models. 

The architecture of mechanistic models should also allow more complex issues to be addressed, for 

example, determining which of the panoply of potential control strategies resources should be invested 

into developing. There is currently a strong reliance on anthelmintics for controlling helminths in 

intensively grazed livestock [90], either through targeting the number of adult parasites in the host, or 

the number of infectious larvae on pasture. However development of anthelmintic resistance is an 
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ongoing problem [5,23,91–94] and resistance development could be accelerated in a warming  

climate [90]. As anthelmintics become decreasingly efficient in combating these parasites, strategies to 

lower the dependence on chemicals and manage the spread of resistance need adopting [95–99]. There 

are a variety of alternative control strategies, often linked with organic production. These include 

grazing management strategies to decrease the number of infective larvae that the host is exposed to, 

and breeding for resistance in the host [100–103]. Models should be developed with the architecture to 

consider interacting effects of changes in climate, management and control strategies. 

4. Conclusions and Recommendations 

Although correlative modelling is a useful tool for establishing baseline predictions, a drive towards 

mechanistic process-based models will ultimately be needed if we are to foresee the consequences of 

subtle interactions between various components of a system under climate influence. Although 

laboratory studies have been done to aid the creation of mechanistic models, the findings have not yet 

been utilised. To improve the reliability of extrapolating and applying models to novel climates, 

empirical evidence is also needed on how helminths respond when exposed to conditions beyond their 

current observed ranges, to account for any non-linearity.  

Modelling approaches can be broadly stratified as correlative or mechanistic, but in practice it is 

difficult to draw an absolute distinction between these modelling techniques. Ultimately, an integration 

of both modelling approaches may be required. Future improvements in predictions should arise from 

the continued development of a hybrid approach that combines both mechanistic processes and 

physiological thresholds with correlative bioclimatic modelling. [28,50,51,104]. Irrespective of the 

modelling approach, the quality of predictions is critically dependent on the quality of available  

data [105]. The continued collection of active surveillance data and empirical data on physiological 

responses to climate variables will ultimately drive the development and validation of meaningful 

predictions. 

The recent expansion of helminth ranges has been mirrored by our increased understanding of the 

role of climate in their transmission dynamics. However, climate is just one factor affecting disease 

ecology. The application of mitigation and adaptation strategies, combined with changing control 

options, need to be considered when determining the overall impacts of climate change. By combining 

improved empirical data and refined models with a broader view of the livestock system, projections 

of future disease threats can be improved. This will increase our understanding of these complex 

systems, identifying potential risks and highlighting opportunities for control. 
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