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A 𝛽-turn is a secondary protein structure type that plays a significant role in protein configuration and function. On average 25%
of amino acids in protein structures are located in 𝛽-turns. It is very important to develope an accurate and efficient method for
𝛽-turns prediction. Most of the current successful 𝛽-turns prediction methods use support vector machines (SVMs) or neural
networks (NNs). The kernel logistic regression (KLR) is a powerful classification technique that has been applied successfully in
many classification problems.However, it is oftennot found in𝛽-turns classification,mainly because it is computationally expensive.
In this paper, we used KLR to obtain sparse 𝛽-turns prediction in short evolution time. Secondary structure information and
position-specific scoring matrices (PSSMs) are utilized as input features. We achieved 𝑄total of 80.7% and MCC of 50% on BT426
dataset.These results show that KLRmethod with the right algorithm can yield performance equivalent to or even better than NNs
and SVMs in 𝛽-turns prediction. In addition, KLR yields probabilistic outcome and has a well-defined extension to multiclass case.

1. Introduction

The number of known protein sequence is increasing rapidly
as a result of genome and other sequencing projects.
Consequently, this increase widens sequence-structure gap
rapidly [1, 2].Thus computational tools for predicting protein
structure and function are highly needed to narrow the
widening gap [3]. There are four distinct levels of protein
structures. These levels are primary structure which refers
to amino acid linear sequence of the polypeptide, secondary
structure, which is defined by the patterns of hydrogen
bonds between backbone amide and carboxyl groups, tertiary
structure, which is the three-dimensional structure of a single
protein molecule, and quaternary structure, which is a larger
assembly of several protein molecules or polypeptide chains.

The basic elements of the secondary structure of proteins
are 𝛼-helices, 𝛽-sheets, coils, and turns. A turn is a structural
motif where the 𝛼-atoms of two residues are separated by few
(usually from 1 to 5) peptide bonds, and the distance between
them is less than 7𝐴∘, while the corresponding residues do
not form a regular secondary structure element such as an 𝛼-
helix or𝛽-sheet. Different turns are classified according to the

separation between the two end residues. The end residues
are separated by four peptide bonds in 𝛼-turns, three peptide
bonds in 𝛽-turns, two peptide bonds in 𝛾-turns, one bond
in 𝛿-turns, and five bonds in 𝜋-turns. 𝛽-turns are the most
common found type of turns that constitute approximately
25% of the residues in protein. They play a significant role
in protein configuration and function, and its formation is a
vital stage during the protein folding. They were found to be
more helpful in the context of molecular recognition and in
modeling interactions between peptide substrates receptors,
because they tend to be more solvent exposed than buried
[4]. In the recent years it has been found that 𝛽-turns are
important in the design of various peptidomimetics for many
diseases [5]. Therefore, development of effective and efficient
prediction methods for 𝛽-turns identification in protein is
useful in fold recognition and drug design [6].
𝛽-turns are further classified into different types accord-

ing to the dihedral angles (𝜑, 𝜓) of the central two residues.
The classification scheme proposed by Hutchinson and
Thornton [7] recognizes nine distinct types of 𝛽-turn: I, I,
II, II, VIa1, VIa2, VIb, VIII, and IV. In this classification, the
most frequently occurring type is type IV, which constitutes
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approximately (35%) of the 𝛽-turns. Types VIa1,VIa2, and
VIb are rare types.

Most of the successful 𝛽-turns prediction methods are
based on either support vector machines (SVMs) or neural
networks (NNs). Zheng and Kurgan [6] applied SVM-based
ensemble to predict 𝛽-turns. They used position-specific
scoring matrices (PSSMs) and secondary structure infor-
mation as features in their prediction model. Kountouris
and Hirst [8] developed a method based on SVM; their
method uses PSSMs, predicted secondary structures, and
predicted dihedral angles as input features to the SVM.
Shepherd et al. [9] used a neural network to predict both the
location and types of 𝛽-turn in protein; they incorporated
secondary structure information on the features used as input
to the NN. Kaur and Raghava [10] used two feedforward
backpropagation networks with a single hidden layer, where
the first sequence-structure network is trained with the
PSSMs. The initial prediction from the first network and
the predicted secondary structure using PSIPRED [11, 12]
are used as input to the second structure-structure network
to refine the prediction obtained from the first network.
Petersen et al. [13] presented a neural network method called
NetTurnP, for predicting 𝛽-turns and 𝛽-turn types. Their
method consists of two artificial neural network layers; they
used PSSMs, secondary structure, and surface accessibility as
input to their model.

There is another method that can perform well as SVMs
andNNs, which is theKernel Logistic Regression (KLR). KLR
is a kernel version of logistic regression (LR). It is often not
found in predicting protein secondary structures and 𝛽-turns
due to its computational demand. However, unlike SVMs
and NNs, KLR yields a posteriori probabilities based on a
maximum likelihood argument that is, besides predicting
class labels, KLR provides interpretation about this labeling.
When it comes to 𝛽-turn types prediction, KLR has an addi-
tional advantage that its extension to multiclass classification
is well described. Karsmakers [14, 15] proposed a fast and
accurate approximate implementation of KLR for Automatic
Speech Recognition (ASR). He described a different practical
technique suited for large datasets, based on fixed-size least
squares support vector machines (FS-LSSVMs), of which
he named fixed-size kernel logistic regression (FS-KLR).
Karsmakers used trust region Newton’s method for large-
scale LR [16] as a basis to solve the approximate problem and
Nystrom method to approximate the features’ matrix. In this
paper, we show that FS-KLR can be used in predicting𝛽-turns
in an efficient and effective way, and it yields results that are
comparable to the state-of-the-art methods.

2. Methods

2.1. Data Sets. The uniform dataset of 426 nonhomologous
proteins (BT426) [17], the dataset of 547 protein sequence
(BT547), and the dataset of 823 protein sequence (BT823)
are used to evaluate the performance of our KLR method.
Several researchers used BT426 as a golden set of sequences
upon which performance values are reported and compared.
This dataset consists of protein chains whose structure has

been determined by X-ray crystallography at a resolution
of < 2.0𝐴∘ or better. Each chain contains at least one 𝛽-
turns region. In total 23,580 amino acids, corresponding to
24.9% of all amino acids, have been assigned to be located
in 𝛽-turns. None of the sequences in the dataset shares more
than 25% sequence identity. BT426 has been used by various
recent 𝛽-turns predictionmethods; therefore, we can use it to
make direct comparisons with these methods. The other two
datasets: BT547 and BT823 are constructed for training and
testing COUDES [18].

2.2. Features Vector. The features that are used in this study
include PSSMs and secondary structure information.

2.2.1. PSSMs. Several studies show that PSSMs contributed
significantly to the accuracy of 𝛽-turns prediction [6, 13].
The PSSMs are in the form of 20 ∗ 𝑀, where𝑀represents
the sequence length. The PSSMs were generated using the
iterative PSI-BLAST program [19] against National Center
for Biotechnology Information (NCBI) nonredundant (nr)
sequence database using the default parameters. The PSSMs
values are scaled to values between 0 and 1. A window
size of seven residues is used for the PSSMs. This is in
accordance with Shepherd et al. [9] who found that the
optimal prediction for 𝛽-turns is achieved using window size
of seven or nine. The total number of the features that are
based on PSSMs is (20 ∗ 7 = 140).

2.2.2. Secondary Structure Information. For the secondary
structure information features, four secondary structure
prediction methods are utilized for all protein chains. These
four prediction methods are PSIPRED [12, 20], JNET [21],
TRANSEC [22], and PROTEUS [22]. The secondary struc-
tureswere predicted as three structure states: helix (H), strand
(E), and coils (C).These three structure states are encoded as 1
0 0 for helix, 0 1 0 for strand, and 0 0 1 for coils.The secondary
structure information features are organized as follows: (1)
a binary value denoting the prediction of a given secondary
structure method from the aforementioned used prediction
methods for the central residue; that is, if PSIPRED predicted
the central amino acid to be helix, JNETpredicted it to be coil,
TRANSEC predicted it to be helix, and PROTEUS predicted
it to be helix, then this binary value will be 1 0 0 0 0 1 1 0 0 1
0 0, so the total number of features using this organization
is 12; (2) the confidence value obtained from the central
residue using the four prediction methods. The confidence
score is divided by 10 to normalize it to a unit interval, and
the total number of features using this organization is 4.
(3) A binary value denoting a specific configuration of the
secondary structure is predicted using the four prediction
methods for the central and the two adjacent residues. Here
we have four patterns 1, 2, 3, and 4. If the predicted secondary
structure using specific method is coils 0 0 1, the secondary
structure for the pattern 1 will be CCC and for pattern 2, 3,
and 4 will be CCX, XCC, and XCX, respectively, whereX = E,
H. The total number of features based on this organization is
(4 patterns ∗ 3 secondary structures ∗ 4 prediction methods
= 48 features). (4)The ratio between the number of residues



BioMed Research International 3

Sequence

PSSMsSecondary structure
information
(76 features) (140 features)

Features selection

Feature vector
(90 features)

FS-KLR model

Prediction

Figure 1: The architecture of the KLR method.

in a given secondary structures and the window size for
the four prediction methods, the number of features based
on this organization will be (3 secondary structure ∗ 4
prediction methods = 12).The total number of features based
on secondary structure information is 76. The motivation to
use this organization comes from [6].

The predicted secondary structure information is added
to the PSSMs features. The total number of the features that
are based on PSSMs and secondary structure information is
216. Similarly as in [6], feature’s selection methods based on
information gain and CHI squared are employed to reduce
the number of features to 90 features. Figure 1 shows the
overall architecture of our KLR method.

2.3. Prediction Method. The fixed-size kernel logistic regres-
sion (FS-KLR) was applied to predict 𝛽-turns. KLR is the
kernel version of LR, which is a well-known statistical model
for classification. Unlike LR, KLR enables the classification
of linearly nonseparable problems by transferring the input
features to a higher-dimensional space, via the kernel trick.
The kernel is a transformation function that must satisfy
Mercer’s necessary and sufficient conditions, which state that
a kernel function must be expressed as an inner product and
must be positive semidefinite. Similar to LR,KLR can be fitted
using the maximum likelihood estimate (MLE).

Iteratively reweighted least square (IRLS) algorithm is one
of the most popular techniques used to find the MLE of the
LR models. IRLS is a nonlinear optimization algorithm that
uses a series of weighted least squares (WLS) sub-problems
to search for the MLE. It is a special case of Fisher’s scoring
method, a quasi-Newton algorithm that replaces the objective
function’s Hessian with the Fisher information. For LR, IRLS
is a special form of Newton’s method in which each iteration
finds the WLS estimates for a given set of weights, which are
used to construct a new set of weights. KLR also can be fitted
effectively using IRLS [15].

Unlike SVMs, KLR does not use risk minimization
principle, but it is based on conditional maximum likelihood
inference, which results in estimates of a posteriori class
probabilities via logit stochastic models:

𝑃 (𝑌 = −1 | 𝑋 = 𝑥; 𝑓) =
exp (𝑓 (𝑥))
1 + exp (𝑓 (𝑥))

,

𝑃 (𝑌 = 1 | 𝑋 = 𝑥; 𝑓) =
1

1 + exp (𝑓 (𝑥))
,

(1)

where 𝑓(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏, 𝑤 is the vector of the KLR
parameters, and 𝑏 is the intercept. The penalized negative log
likelihood (PNLL) is normally used to infer the parameters
of the KLR model. In the primal weight space, the objective
function for the PNLL is as follows:

min
𝑤,𝑏

1

2
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𝜆
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𝑁

∑
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where 𝜆 is the regularization parameter. The solution 𝑤 can
be expressed in terms of 𝛼 and computed using IRLS iteration
as

𝑤 =
𝑁

∑
𝑖=1

𝛼
𝑖
𝜑 (𝑥
𝑖
) . (3)

In the dual representation, the function values𝑓(𝑥) in the
KLR logit models can be computed as follows:

𝑓 (𝑥) =
𝑁

∑
𝑖=1

𝛼
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏, (4)

where 𝐾(𝑥, 𝑥
𝑖
) = 𝜑(𝑥)𝑇𝜑(𝑥

𝑖
).

The IRLS method is suitable for small size problems, but
for large-scale problems this method becomes computation-
ally expensive. Based on fixed-size least squares support vec-
tormachines (FS-LSSVMs) Karsmakers [14, 15] implemented
a fixed-size variant of the standard KLR formulation (FS-
KLR) which does easily scale to very large datasets. In his
method, he adopted Nystrom approximation method.

In Nystrom approximation, the kernel matrix will be
decomposed into eigenvalues/eigenvectors matrices in the
form:

𝐾
𝑛×𝑛
= 𝑈
𝑛
Λ
𝑛
𝑈
𝑛

𝑇, (5)

where Λ
𝑛
= diag(𝜆

𝑖
) and 𝜆

1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
≥ 0

are the eigenvalues of the matrix K, 𝑈
𝑛
is the matrix of

the eigenvectors that correspond to the eigenvalues, and 𝑛
is the number of the data points. We can select the first 𝑝
eigenvectors and eigenvalues from the matrices 𝑈 and Λ,
respectively, where 𝑝 ≪ 𝑛, to approximate the kernel matrix.
This approximation is motivated by its widely usage, for
example, principal component analysis. Using this approxi-
mation reduces the computational cost drastically. However,
computing the eigendecomposition is also computationally
expensive. To reduce the computational cost of computing
the eigendecomposition we selected a small sample of size
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𝑚 from the features’ matrix to construct the following eigen-
problem:

𝐾
𝑚×𝑚

= 𝑈
𝑚
Λ
𝑚
𝑈
𝑚

𝑇. (6)

We can extend the eigenvalues/eigenvectors of the 𝐾
𝑚×𝑚

to all the points using the following Nystrom approximation:

�̃�(𝑛)
𝑖

=
𝑛

𝑚
𝜆(𝑚)
𝑖

,

�̃�(𝑛)
𝑖

= √
𝑚

𝑛

1

𝜆(𝑚)
𝑖

𝐾
𝑛,𝑚
𝑢(𝑚)
𝑖

,

(7)

where 𝜆(𝑚)
𝑖

and 𝑢(𝑚)
𝑖

are the ith eigenvalue/eigenvector of
the 𝑚 × 𝑚 eigenproblem and 𝐾

𝑛,𝑚
is the appropriate 𝑛 × 𝑚

submatrix of𝐾.
The selected sample of size 𝑚 from the features’ matrix

can be called prototype vectors (PVs). These PVs can be
selected using k-center clustering.The use of k-center cluster-
ing is justified in [23], which observed that the Nystrom low-
rank approximation depends crucially on the quantization
error induced by encoding the sample set with landmark
points. This suggests that one can simply use the clusters
obtained with a k-center (such as k-means) algorithm, which
finds a local minimum of the quantization error. The PVs
selection methods using k-center clustering suffer from the
fact that they will select outliers as prototypes. In cases where
the number of PVs is relatively small, the fraction of pro-
totypes chosen to represent the nonoutlier and outlier data
is unbalanced, and, therefore, the classification performance
will not be optimal.When the number of PVs is increased, the
performance will also increase to that of KLR. Hence taking
into account outliers removal can result in a sparser model.
The sparse kernel logistic regression problem is solved in the
primal space using Newton’s trust region algorithm, which is
given in [16]. This algorithm yielded the best performance
compared to the state-of-the-art alternatives. Convergence
speed and cost per iteration will be balanced in that low-
cost approximate because Newton’s steps will be taken in the
beginning of the algorithm and full Newton directions at the
end for fast convergence. In this paper, the following radial
basis function (RBF) is used as a kernel function:

𝐾(𝑥
𝑖
, 𝑥
𝑖

) = 𝑒−𝛾|𝑥𝑖−𝑥


𝑖
|

2

, (8)

where 𝛾 is the kernel parameter.

2.4. Model Selection. Model selection is the process of deter-
mining the optimal regularization parameter𝜆 and the kernel
parameter 𝛾. It is a very important step in fitting kernel
models to maximize generalization performance. The cross-
validation-based method is used to determine the optimal
parameters for 𝛽-turns prediction.

2.5. Training and Testing. In order to evaluate a prediction
method it is necessary to have different datasets for training
and testing. The jackknife test is the most objective and rig-
orous cross-validation method compared with independent

dataset test and subdataset test [24]. In a full jackknife test of
𝑁 proteins, one protein is removed from the set; the training
is done on the remaining 𝑁 − 1 proteins, and the test is
done on the removed protein. This process is repeated 𝑁
times by removing one protein in turn. Since this training
technique is very time consuming most of the recent 𝛽-
turns prediction methods use sevenfold cross-validation to
assess their performances. We also used sevenfold cross-
validation to assess the accuracy of FS-KLR. In sevenfold
cross-validation, the datasets will be divided into seven
subsets, each containing equal number of proteins. Each set
is an unbalanced set that retains the naturally occurring
proportion of 𝛽-turns. Six of the seven subsets were merged
together to form a training set that was used to train the FS-
KLR methods, and the seventh was used for validation. This
process was repeated seven times in order to have a different
set for validation each time. The final prediction results are
taken as the average of the results from the seven testing sets.

2.6. Performance Measures. The quality of prediction is eval-
uated using five measures: MCC, 𝑄total , 𝑄predicted, 𝑄observed,
and Specificity. These measures are consistent with the test
procedures and measures applied to evaluate competing
methods. Let (true positives) TP be the number of cor-
rectly classified 𝛽-turns residues, (true negatives) TN be the
number of correctly classified non-𝛽-turns residues, (false
positives) FP be the number of non-𝛽-turns incorrectly
classified as 𝛽-turns residues, and (false negatives) FN be
the number of 𝛽-turns incorrectly classified as non-𝛽-turns
residues. TheMatthews correlation coefficient (MCC) can be
calculated as [25]

MCC= (TP ∗ TN−FP ∗ FN)
√(TP+FN)∗(TN+FP)∗(TP+FP)∗(TN+FN)

. (9)

The result of MCC is in the range of −1 and 1, where a
value of 1 indicates a perfect positive correlation, a value of
−1 indicates a perfect negative correlation, and a value of 0
indicates no correlation.
𝑄total (prediction accuracy), which is defined as the

percentage of correctly classified residues, is calculated as
follows:

𝑄total =
TP + TN

TP + TN + FP + FN
× 100. (10)

Probability of correct prediction or 𝑄predicted is the per-
centage of correctly predicted 𝛽-turns among the predicted
𝛽-turns. It is also called predicted positive value (PPV), and
it is given as follows:

𝑄predicted =
TP

TP + FP
× 100. (11)

Sensitivity or coverage (also known as 𝑄observed) is
the percentage of correctly predicted 𝛽-turns among the
observed 𝛽-turns, or it is the fraction of the total positive
samples that are correctly predicted, and it is given as follows:

𝑄observed =
TP

TP + FN
× 100. (12)
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Table 1: 𝑄total and MCC for different values of selected vectors𝑚.

Number of selected vectors 𝑙 𝑄total MCC
70 79.96 0.46
80 80.32 0.47
90 80.25 0.47
100 80.38 0.47
110 80.41 0.47
120 80.54 0.48
130 80.51 0.48

Specificity is the fraction of total negative samples that are
correctly predicted

Specificity = TN
TN + FP

× 100. (13)

3. Results

The selected number of Pvs (m) where 𝑚 ≪ 𝑛 from
the feature matrix affects the accuracy and the MCC of
the prediction. A relatively small or big 𝑚 will yield low
performance. To select the optimal number of vectors a
cross-validation is used starting with relatively small 𝑚 and
adding more vectors to 𝑚 until a point where adding more
vectors does not improve the classification performance
reached. Table 1 shows the prediction accuracy and MCC
using different values of𝑚. In Figure 2, we see that the highest
MCC is achieved for 𝑚 equal 120, while Figure 3 shows that
the highest accuracy is achieved using 𝑚 equal to 115 or 120.
The dataset used for the two figures is BT426.

After a short analysis of various values of threshold, we
set its value to 0.45 to obtain the results in Table 1. The 𝑄total
has improved slightly when the threshold value is set to 0.50,
while theMCC dropped to less than 0.46. Similarly, theMCC
has increased when the threshold value is set to 0.40, but
at the cost of 𝑄total , which has dropped to less than 79%.
The number of selected vectors 𝑚 in this research is set to
120 for BT426 dataset. Using this value for 𝑚 we obtained a
𝑄total of 80.54%, MCC of 0.48, 𝑄predicted of 59%, 𝑄observed of
62%, and Specificity of 86%.TheMCC is a robust and reliable
performance measure that accounts for both overpredictions
and underpredictions. A high MCC value indicates a high
prediction performance.

To increase the performance of our KLR model further
we used state changing rules. In these rules we put in our
consideration that 𝛽-turns occur in a group of at least four
adjacent residues. After analyzing the results obtained by the
KLR prediction, the state changing rules, which will make the
prediction to be more 𝛽-turn like, are derived as follows.

(1) Change isolated nonturn predictions to turn (i.e.,
tnt→ ttt).

(2) Change isolated turn prediction to non-turn predic-
tion (i.e., ntn→ nnn).

(3) Change the residues that are neighboring two isolated
turn predictions to turn (i.e., nttn→ tttt).
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Figure 2: The MCC in function of the number of the selected PVs.

0 20 40 60 80 100 120 140
77

77.5
78

78.5
79

79.5
80

80.5
81

The number of selected PVs

𝑄
to

ta
l

Figure 3: The 𝑄total in function of the number of the selected PVs.

(4) If there is isolated triplet of turns predictions, then
change the adjacent nonturn prediction with the
highest KLR probability output to turn (i.e., ntttn→
ttttn or ntttt).

The above rules should be executed in orders. After
applying these rules, we obtained a better performance, where
the MCC has increased from 0.48 to 0.50.

Table 2 shows the comparison between our KLR method
and other best existing 𝛽-turns prediction methods. Our
KLR method achieves prediction accuracy 𝑄total = 80.7%,
𝑄predicted = 58.98%, 𝑄observed = 65.25%, sensitivity = 85.34%,
and MCC = 0.50. We note that the 𝑄total of our method
is 0.2% lower than the 𝑄total of BTNpred and E-SSpred,
but because 𝛽-turns account for approximately 25% of the
globular protein residues, 𝑄total is a poor measure by itself,
as it is possible to achieve 𝑄total of 75% by predicting all
residues to be non-𝛽-turns. Instead, our method shows high
MCC 0.50 compared to BTNpred 0.47 and E-SSpred 0.44.
The NetturnP and our method have the highest MCC 0.50
among the other 𝛽-turns prediction methods. Other than
BTNpred and E-SSpred our KLR shows the highest 𝑄total .
When combining 𝑄total and MCC our method has the
highest performance among the other prediction methods.
Considering the baseline accuracy which equals 75%, our
method provides 5.7/25 = 0.23% error rate reduction, while
BTNpred and E-SSpred provide 5.9/25 = 0.24% error rate
reduction, and the second best method (SVM) provides
4.8/25 = 0.19% error rate reduction. The 𝑄observed of our
method is higher by 9.65% than the 𝑄observed of BTNpred,



6 BioMed Research International

Table 2: Comparison of KLR with other recent 𝛽-turns prediction
methods on BT426 dataset.

Method 𝑄total 𝑄pred 𝑄obs Specificity MCC
KLR 80.7 58.98 65.25 85.34 0.50
BTNpred [6] 80.9 62.7 55.6 N/A 0.47
NetTurnP [13] 78.2 54.4 75.6 79.1 0.50
BetaTPred2 [10] 75.5 49.8 72.3 N/A 0.43
BTPRED [9] 74.9 55.3 48.0 N/A 0.35
DEBT [8] 79.2 54.8 70.1 N/A 0.48
SVM [26] 79.8 55.6 68.9 N/A 0.47
BTSVM [27] 78.7 56.0 62.0 N/A 0.45
E-SSpred [28] 80.9 63.6 49.2 N/A 0.44
1–4 & 2-3 correlation
model [29] 59.1 32.4 61.9 N/A 0.17

Table 3: Comparison of KLR with other recent 𝛽-turns prediction
methods on BT547 and BT823 datasets.

Method Dataset 𝑄total 𝑄pred 𝑄obs MCC
KLR

BT547

80.46 59.04 65.36 0.50
BTNpred 80.5 61.6 54.2 0.45
COUDES [18] 74.6 48.7 70.4 0.42
SVM [26] 76.6 47.6 70.2 0.43
KLR

BT823

80.66 58.42 64.64 0.49
BTNpred 80.6 60.8 54.6 0.45
COUDES 74.2 47.5 69.6 0.41
SVM [26] 76.8 53.0 72.3 0.45

by 3.25% than the 𝑄observed of the BTSVM, and by 16.05%
than the 𝑄observed of E-SSpred. Higher 𝑄observed values mean
that a large percentage of the observed 𝛽-urns are correctly
predicted. At the same time, the 𝑄predicted of our method
shows that 58% of the actual 𝛽-turns are correctly predicted.
We note that the 𝑄predicted of our method is 3.72% lower
than the 𝑄predicted of BTNpred and 4.62% lower than the
𝑄predicted of the E-SSpred.The increase in the𝑄observed values
is a tradeoff for the decrease in the 𝑄predicted values. In spite
of this tradeoff, our method shows high overall accuracy.

Besides BT426 dataset that is used for training and
testing our method, we used two additional datasets, that
is, BT547 and BT823 datasets, to validate the performance
of our method. Results obtained based on sevenfold cross-
validation on these datasets are given in Table 3. The results
show that for the BT547 dataset our method obtains 𝑄total =
80.46%, 𝑄predicted = 59.04%, 𝑄observed = 65.36%, and MCC
= 0.50. The MCC of our method is the best among other
competing methods that are evaluated on BT547 dataset.
For the BT823 dataset our method obtains 𝑄total = 80.66%,
𝑄predicted = 58.42%, 𝑄observed = 64.64%, and MCC = 0.49.
Also our method has the highest MCC on BT547 and BT823
datasets. The results also show that our method shows stable
performances on all the three datasets used.

All the computations for KLR were carried out using
Matlab version 2010b on a computer with 3GB RAM and
1.86GHzGenuine Intel dual core processor.We compared the
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Figure 4: Average execution time of the KLR model in function of
the number of the training instances.

Table 4: Comparison of the elapsed time in seconds between KLR,
BTNpred, and E-SSpred.

Dataset KLR BTNpred E-SSpred
BT426 753.55 11077.185 13036.415
BT547 940.55 13261.755 15726.2
BT823 683.44 18183.256 24140.072

average elapsed time of ourmethodwith the BTNpred and E-
SSpred. The results of the comparison are shown in Table 4.
In this comparison, we used onefold out of the sevenfolds
in all the datasets as a test set and the remaining folds as
training set. Since both BTNpred and E-SSpred used SVM,
we used LIBSVM [30] on their features. Note that both E-
SSpred and BTNpred used PSSMs and secondary structure
information as features. In addition to PSSMs and secondary
structure information, E-SSpred added amino acid (AA)
composition generated with classical local coding scheme.
We also compared the average execution time of the KLR
method with LIBSVM on our feature vector using BT426
dataset. Figure 4 shows the average execution time of the
KLR method and LIBSVM in function of the number of the
training instances.

Compared to E-SSpred andBTNpred as shown inTable 4,
our method is faster by more than a factor of 14. Although
the training data in BT823 is more than the training data
in BT547, its computation time using KLR is less than the
computation time of BT547, that is because the number of
selected vectors 𝑚 for BT823 is 90, which is by far less than
the number of selected vectors for BT547, which is 140. This
indicates that, for a very large dataset, a very small number of
selected vectors𝑚 can be sufficient to approximate its Kernel
matrix, which reflects the capability of the FS-KLR model to
handle large-scale datasets.

The ROC curve, which is a plot of the sensitivity against
the false-positive rate for the evaluation of the KLR, is shown
in Figure 5. From the ROC curve, we calculated the area
under the curve (AUC), which is a threshold-independent
measure. An AUC value above 0.7 is an indication of a
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Figure 5: ROC curve for the evaluation of the KLR model on the
BT426 dataset.

useful prediction, and a good prediction method achieves a
value above 0.85 [31]. NetTurnP, DEBT, E-SSpred, and SVM
achieved AUC of 0.864, 0.84, 0.84, and 0.87, respectively; our
method achieves AUC of 0.861.

4. Discussion

Prediction of 𝛽-turns has attracted researchers interest
because it plays the following important roles.
𝛽-turns have been proposed to be important in folding

because they are capable of initiating productive structure
formation without a large loss in chain entropy since the
interactions involved in turn formation are largely local [32].
They can play two different roles in the folding reaction of
a protein. They can be either folding-active elements and
function as initiation sites or folding-passive elements that
form only after other regions develop. These different roles
are likely to arise from the relative importance of the various
interactions in forming the native states of different proteins
[33].

Turns can influence the stability of a protein’s native state
both by their intrinsic preference to sample favorable space
and by their side-chain packing interactions and local envi-
ronment [34]. Since 𝛽-turns usually occur on the exposed
surface of a protein, they are well suited to participate in
ligand binding, molecular recognition, protein-protein, or
protein-nucleic acid interactions, thus modulating protein
functions and intermolecular interactions. Additionally, they
are frequent sites of posttranslational modifications such as

phosphorylation and glycosylation, which are used to tune
interactions [4].
𝛽-turns are also involved in the biological activity of

peptides as the bioactive structures that interact with other
molecules such as receptors, enzymes, or antibodies. Recent
years have seen interest in mimicking 𝛽-turns for the syn-
thesis of medicines.Thus, 𝛽-turn is an important component
of protein structure whose prediction can provide enormous
information to the researchers working in the field of drug
design. So the prediction of 𝛽-turns would not only aid in
overall tertiary structure prediction but also assists in fold
recognition studies.

Throughout the previous research on 𝛽-turns prediction,
predictors based on machine-learning method emphasize
selecting proper features to improve prediction performance.
Secondary structures and PSSMs are widely used in the
predictions and have been proven to be the most helpful
features. Using these features the proposed KLR method
achieves comparable results to the SVMsmethods. To design
a method that can be applied in 𝛽-turn prediction, there
are four main concerns. These concerns are (1) the size of
the dataset, (2) the need for dealing with input examples of
variable length, (3) the need to have probabilistic outcomes,
and (4) the need to perform multiclass classification. When
the dataset is very large such as the 𝛽-turns data, people
neglect the last two concerns and concentrate on selecting
a classifier that deals with large datasets effectively. Since
SVMs methods are designed in a way that can handle large-
scale datasets, they become the choice for most of the 𝛽-
turns classification methods. However, SVMs do not address
the last two concerns directly. KLR is not used in large-
scale datasets such as 𝛽-turns data classification although it
provides elegant solution to the last two concerns, simply
because it is inapplicable in such datasets. The last two
concerns are very important for 𝛽-turns classification, since
there is a need for multiclass classification for the 𝛽-turns
type. FS-KLR extends the applicability of KLR for large-scale
datasets. This way it can address all of the aforementioned
concerns.

5. Conclusion

In this paper, we presented sparse KLR method for 𝛽-turns
prediction. Our method is based on FS-KLR in which trust
region Newton’s method for large-scale LR is used as a basis
to solve the approximate problem, while Nystrom method
is used to approximate the features’ matrix. Our method
uses secondary structure information and PSSMs as input
features. Empirical evaluations using three nonredundant
datasets show that our predictions provide favorable 𝑄total ,
𝑄observed, and MCC when compared with the state-of-the-
art methods that used secondary structure information and
PSSMs as features. Using our method we achieved 𝑄total and
MCC of 80.7% and 0.50, respectively, on BT426 dataset. In
addition, KLR yields probabilistic outputs and its extension to
the multiclass case is well defined, which will be appropriate
for 𝛽-turns types prediction. The computational complexity
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of our method is 𝑂(nm2) and its computation time is by far
less than that of SVMs methods.
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