
Effect of Timing of and Adherence to Social Distancing Measures on
COVID-19 Burden in the United States
A Simulation Modeling Approach
Oguzhan Alagoz, PhD; Ajay K. Sethi, PhD, MHS; Brian W. Patterson, MD, MPH; Matthew Churpek, MD, MPH, PhD;
and Nasia Safdar, MD, PhD

Background: Across the United States, various social distancing
measures were implemented to control the spread of coronavi-
rus disease 2019 (COVID-19). However, the effectiveness of such
measures for specific regions with varying population demo-
graphic characteristics and different levels of adherence to social
distancing is uncertain.

Objective: To determine the effect of social distancing mea-
sures in unique regions.

Design: An agent-based simulation model.

Setting: Agent-based model applied to Dane County, Wiscon-
sin; the Milwaukee metropolitan (metro) area; and New York City
(NYC).

Patients: Synthetic population at different ages.

Intervention: Different times for implementing and easing so-
cial distancing measures at different levels of adherence.

Measurements: The model represented the social network and
interactions among persons in a region, considering population
demographic characteristics, limited testing availability, “im-
ported” infections, asymptomatic disease transmission, and age-
specific adherence to social distancing measures. The primary
outcome was the total number of confirmed COVID-19 cases.

Results: The timing of and adherence to social distancing had a
major effect on COVID-19 occurrence. In NYC, implementing
social distancing measures 1 week earlier would have reduced
the total number of confirmed cases from 203 261 to 41 366 as
of 31 May 2020, whereas a 1-week delay could have increased
the number of confirmed cases to 1 407 600. A delay in imple-
mentation had a differential effect on the number of cases in the
Milwaukee metro area versus Dane County, indicating that the
effect of social distancing measures varies even within the same
state.

Limitation: The effect of weather conditions on transmission dy-
namics was not considered.

Conclusion: The timing of implementing and easing social dis-
tancing measures has major effects on the number of COVID-19
cases.

Primary Funding Source: National Institute of Allergy and In-
fectious Diseases.
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The novel coronavirus disease 2019 (COVID-19) pan-
demic poses unprecedented challenges for com-

munities and policymakers. Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the virus that
causes COVID-19, is spread mainly through infectious
respiratory droplets and, in closed, crowded spaces, by
aerosols, but evolving knowledge of transmission dy-
namics makes it challenging to tailor disease control
measures to specific communities. In the absence of
an effective vaccine, nonpharmaceutical interventions,
such as social distancing and other measures that re-
duce the number of close contacts during which trans-
mission may occur, are the primary means of reducing
the spread of COVID-19. These include closing schools
and businesses, requiring facial coverings, and cancel-
ing large-scale events. When these measures are
implemented and followed, daily counts of new
COVID-19 cases decrease (“flattening the curve”) (1).

The negative economic and societal consequences
of social distancing warrant a “dialing back” of such
policies when it is safe to do so. However, the effect of
easing social distancing on the transmission of SARS-
CoV-2 is unclear. A set of indicators have been pro-
posed by the current administration to guide commu-
nities on when they may consider easing rigorous,

mandated social distancing (2). However, these lagging
indicators, such as hospitals having the capacity to
“treat patients without crisis care,” are not ideal be-
cause once the number of new infections increases to a
level at which the health care system becomes bur-
dened by the resulting hospitalizations, reimplementa-
tion of mandated social distancing is less effective at
mitigation than earlier implementation (2). The ability
to predict the effect of easing of social distancing is
important to provide leading indicators for the right
time to do this for a particular community.

Mathematical modeling of SARS-CoV-2 transmis-
sion dynamics using the best information available
allows scientists to forecast the effect of social dis-
tancing on the COVID-19 pandemic. In particular,
agent-based models—a class of computational mod-
els that can simulate the actions and interactions of
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autonomous agents, such as humans—provide a flex-
ible and simulation-based method to better repre-
sent transmission dynamics in a complex system. Al-
though other models are available, including those
providing predictions for every U.S. state, these mod-
els have several limitations that limit their generaliz-
ability (3–7). For example, they assume a closed pop-
ulation and ignore “imported” infections, they do not
accurately consider imperfect adherence levels to
the dynamic social distancing measures, and most do
not incorporate the effect of limited testing capacity
into the number of confirmed cases (3– 6).

We present an agent-based model that represents
the social network and interactions among persons in a
region, considering local population demographic
characteristics, population density, the daily number of
contacts in the absence of social distancing measures,
and adherence to social distancing measures. Our
model, the COVID-19 Agent-based simulation Model
(COVAM), allows transmission from asymptomatic pa-
tients, accounts for imported cases during the early
days of the pandemic, and considers the possibility that
some patients with mild to moderate symptoms never
receive confirmatory testing for COVID-19. This study
shows how COVAM can inform decision making on
how social distancing measures may be adjusted to
control the spread of SARS-CoV-2 and prevent a return
to exponential growth in COVID-19 cases in 3 unique
urban communities.

METHODS
Persons in COVAM have unique attributes, such as

age, and interact with each other in ways that transmit
SARS-CoV-2. We use a time step of 1 simulated day to
update the status of these persons and to represent
interactions. We assume all persons in the model
are susceptible to COVID-19 at the beginning of the
simulation—that is, no vaccine is available, and there is
no preexisting immunity. Details of the modeling ap-
proach and parameter estimation are provided in sec-

tion A of the Supplement (available at Annals.org) and
are briefly summarized here.

All persons in COVAM are categorized into 1 of 8
possible states representing their COVID-19 status
(Figure 1). We consider transmission by exposed pa-
tients during the last several days of the incubation pe-
riod and allow some to never be tested positive for
COVID-19 even when they have mild symptoms, which
reflects limited testing capacity and variation in sensi-
tivity of the diagnostic tests in the earlier days of the
pandemic in the United States (8–12).

The simulation starts with 1 (or more) exposed per-
son. At the beginning of each day, the contagious per-
son randomly interacts with other persons in the com-
munity. For each interaction, there is a possibility that
the contagious person exposes the susceptible persons
to SARS-CoV-2.

Input Parameters
To maximize model generalizability, we derived

input parameter estimates from relevant results in
peer-reviewed literature and used data from Dane
County, Wisconsin, to calibrate several parameters
(Appendix Table, available at Annals.org [13–20]).
There are 2 sets of parameters governing the trans-
missibility of SARS-CoV-2 in COVAM. The first is the
number of close contacts per day without any inter-
vention, which represents the social network effect
and is independent of the respiratory agent that is
transmitted. This parameter depends on population
density and age group and is estimated using the
literature and calibration, as explained below. The
second parameter is the probability that contagious,
exposed patients transmit SARS-CoV-2 to a suscepti-
ble person when a close contact occurs. The theoret-
ical basic reproductive number (R0) corresponding to
these parameter estimates was 3.34 for Dane County
without any social distancing measures, which was
within the range of R0 values reported in the litera-
ture (1.5 to 6.5) (26, 27).

Figure 1. Progression of COVID-19 in persons in COVAM.
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Adherence to Social Distancing Measures
The effectiveness of social distancing measures de-

pends on how closely a population follows them and
the type of measures that are implemented at different
times. For example, in New York, mass gathering re-
strictions started on 12 March 2020, initial business clo-
sures were recommended on 16 March, educational
facilities were closed on 18 March, and nonessential
services closed and a statewide stay-at-home order was
issued on 22 March (5). In COVAM, adherence to social
distancing is represented by adjusting the number of
contacts per person using cellphone mobility data pub-
lished by several sources (31–34). For instance, the es-
timated average number of daily close contacts per
person in New York City (NYC) is 20; therefore, a 70%
adherence level reduces the number of such contacts
to 6 per person per day, leading to slower transmission.
The number of close contacts and adherence to social
distancing change by age group because social dis-
tancing literature and COVID-19–specific studies show
that younger persons are more likely to have more con-
tacts and lower adherence to social distancing mea-
sures than older persons (23, 24, 35–37). It is important
to note that adherence to social distancing measures in
COVAM is a proxy for several behaviors that reduce the
transmissibility of SARS-CoV-2, including infrequent
travel, keeping at least 6 feet apart during person-to-
person interactions, frequent handwashing, and wear-
ing masks.

Calibration and Validation
We used a simple calibration procedure using ear-

lier surveillance data from Dane County to fine-tune
several input parameters that involve uncertainty (Ap-
pendix Table). We used the reported COVID-19 data
from Dane County until 15 May 2020 to test whether
our initial parameter estimates replicated the number
of cases accurately. After this date, we modified the
structure of the model to incorporate the age-specific
number of close contacts and age-specific adherence
inputs. We did not change any of the parameters after
31 July 2020 and compared the model's projections
with the actual number of cases after this date.

Application to Dane County
The input parameters used for the computational

experiments for Dane County are presented in Table 1.
Briefly, we incorporated the population demographic
characteristics in terms of age groups, the number of
persons imported into Dane County, and adherence to
social distancing measures. The model has the ability to
add different numbers of imported cases daily; how-
ever, we kept the number of initial imported cases the
same to prevent overfitting. We considered that adher-
ence to social distancing measures in Dane County de-
creased on 14 May 2020 because the Wisconsin Su-
preme Court struck down the governor's stay-at-home
order on this date (39).

Application to Milwaukee Metropolitan Area
We adapted COVAM to Milwaukee to cross-

validate our model and test its predictive accuracy. The

population density of the Milwaukee metropolitan
(metro) region is approximately 3 times that of Dane
County (1341 vs. 438 per square mile) (38). Therefore,
the Milwaukee metro area also provided a useful com-
parator region for COVAM to test whether the effect of
timing and adherence to social distancing measures on
COVID-19 differed between regions within the same
state. Our objective was to modify as few parameters as
possible to prevent overfitting. We used the same sim-
ulation settings as those in Dane County, except for 4
changes (Table 1): the epidemic was initiated with 3
exposed patients instead of 1; 6 imported cases were
added to account for the larger population; demo-
graphic characteristics were adjusted using Milwaukee
population data; and the adherence input was adjusted
proportionately to cellphone mobility data, which indi-
cated lower adherence in Milwaukee (31–33).

Application to NYC
New York City was among the first epicenters of

the COVID-19 pandemic in the United States. Thus, the
relative maturity of the epidemic in NYC made it a
good test case to evaluate COVAM's predictive accu-
racy for later stages of the pandemic. As before, to
maximize generalizability and avoid overfitting, we
used the same simulation settings as those in Dane
County, except for 4 changes (Table 1): 160 imported
cases were added between 5 March and 22 March
2020 and 32 imported cases were added after 22
March to account for the greater number of visitors and
daily commuters to NYC; demographic characteristics
were adjusted using NYC population data; adherence
to social distancing measures was adjusted because
cellphone data showed higher adherence in NYC than
in Dane County (31–33, 40); and the number of con-
tacts per person per day was set to 20 because of sub-
stantially higher population density (27 755 vs. 438 per
square mile) and reports from the social network anal-
ysis literature that population density increases the
number of close contacts (41, 42).

Policy Analyses
We used COVAM to evaluate the effect of 3 as-

pects of social distancing. First, to evaluate the effect of
adherence, we compared a scenario in which social dis-
tancing was not implemented with scenarios in which it
was implemented at the beginning of the simulation
and adherence was consistently at 25%, 50%, 75%, and
90%. Second, to evaluate the effect of timing of imple-
mentation, we tested scenarios in which social distanc-
ing was implemented 1 week earlier and 1 to 4 weeks
later than the actual date. Finally, to evaluate the effect
of the timing of easing of social distancing, we tested
scenarios in which measures were eased on different
dates (this was done only for NYC, where social distanc-
ing measures were eased on 8 June 2020). We as-
sumed that after the measures were eased, adherence
decreased by 5, 10, and 15 percentage points because
of heightened community awareness. In NYC, a de-
crease of 5 percentage points reduced adherence from
90% to 85% after social distancing measures were
eased.
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We did both a parametric and a structural sensitiv-
ity analysis for NYC. Our parametric sensitivity analysis
tested the effect of uncertainty in 3 input parameters:
probability of testing, transmission rates, and number
of imported cases. Our structural sensitivity analysis
evaluated 3 different scenarios: hospital transmission
was allowed; the number of daily close contacts dif-
fered for persons with and without known infection sta-
tus; and the number of daily contacts varied widely to
represent superspreader events. In all of these sensitiv-
ity analyses, we recalibrated model parameters and re-
evaluated all of the scenarios. We ran 100 replications
for each experiment and report only mean values be-
cause the SEs were very low.

Role of the Funding Source
The National Institute of Allergy and Infectious Dis-

eases funded this research but had no role in the de-
sign or conduct of the study; collection, management,
analysis, or interpretation of the data; or preparation,
review, or approval of the manuscript.

RESULTS
In COVAM, the observed number of COVID-19

cases, and thus SARS-CoV-2 transmission dynamics,
was accurately replicated in the short term over time
in Dane County, Milwaukee, and NYC (Supplement
Figure 1, available at Annals.org). Our first set of ex-

Table 1. Input Parameters Used to Apply COVAM to Dane County, Milwaukee Metro Area, and New York City

Parameter Description Value for Dane
County

Value for
Milwaukee Metro
Area*

Value for New York
City

Source

Population Number of persons living in
the region

542 364 1 576 236 8 398 748 U.S. census data (38)

Simulation start
date

Date when the simulation
starts

4 March 2020 4 March 2020 4 March 2020 Not applicable

Number of initial
exposures

Number of persons exposed
to COVID-19 at the
beginning of the
simulation

1 3 16 Calibration

Number of
imported
cases and
dates

Number of persons exposed
to COVID-19 from outside
the region per day and
dates of importation of
cases

3 per day between
5 March and 25
March 2020

1 per day afterward

6 per day between
5 March and 3
April 2020

3 per day afterward

160 per day between
5 March and 22
March 2020

32 per day afterward

Calibration

Number of close
contacts per
person per
day without
any social
distancing
intervention

Number of people that a
person has a close contact
with that provides a
transmission opportunity.
This parameter assumes
that schools are closed.

10 10 20 Calibration and
literature (22, 23)

School effect Percentage increase in the
number of daily close
contacts when schools are
open

40% 40% 40% Literature (22)

Adherence to
social
distancing

Percentage of persons
following the social
distancing guidelines,
which is equivalent to a
percentage drop in
average number of
contacts per person

4–11 March: 0%
12–25 March:

increased linearly
from 0% to 90%

26 March–30 April:
80%

1–13 May: 70%
14 May–29 June:

60%
30 June–end of

simulation: 70%

4–11 March: 0%
12–22 March:

increased linearly
from 0% to 60%

23 March–7 April:
60%

8–12 April: 80%
13 April–13 May:

70%
14–25 May: 60%
26 May–29 June:

70%
30 June–end of

simulation: 65%

4–11 March: 0%
12–20 March:

increased linearly
from 0% to 80%

21 March–12 April:
80%

13 April–7 June: 90%
8 June–end of

simulation: 90%

Cellphone data and
calibration (31–33)

Probability of
testing

Probability that a patient
with mild to moderate
symptoms will test positive
for COVID-19

75% until 15 April
80% between 15

April and 10 May
90% afterward

75% until 15 April
80% between 15

April and 10 May
90% afterward

75% until 15 April
80% between 15

April and 10 May
90% afterward

Literature and
calibration (29, 30)

Demographic
characteristics

Percentage of persons in
age groups

Age 0–19 y: 20.8%
Age 20–44 y: 46.5%
Age 45–54 y: 10.3%
Age 55–64 y: 10.2%
Age 65–74 y: 7.4%
Age 75–84 y: 3.3%
Age ≥85 y: 1.5%

Age 0–19 y: 28.6%
Age 20–44 y: 36.2%
Age 45–54 y: 13.7%
Age 55–64 y: 8.5%
Age 65–74 y: 6.6%
Age 75–84 y: 4.7%
Age ≥85 y: 1.0%

Age 0–19 y: 23.2%
Age 20–44 y: 38.6%
Age 45–54 y: 13.0%
Age 55–64 y: 11.7%
Age 65–74 y: 7.1%
Age 75–84 y: 3.4%
Age ≥85 y: 1.9%

U.S. census data (38)

COVAM = COVID-19 Agent-based simulation Model; COVID-19 = coronavirus disease 2019.
* Consists of 4 counties: Milwaukee County, Waukesha County, Washington County, and Ozaukee County.
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periments showed that adherence to social distanc-
ing has a substantial effect on the cumulative number
of cases (Supplement Figure 1 and Supplement Ta-
ble 1, available at Annals.org). For example, com-
pared with 50% adherence, no social distancing
other than closing schools increased the total num-
ber of cases from 56 433 to 487 501 in NYC in just 26
days (by 31 March).

Figure 2 presents the change in the number of
cases when social distancing measures were imple-
mented earlier or later than the actual date. We found
that even a 1-week delay in implementation would have
had a major effect on the total number of confirmed
infections over time in each region. For example, im-
plementing the measures 1 week earlier in NYC could
have reduced the number of cases by 80%, from
203 261 to 41 366 by 31 May, whereas a 1-week delay
could have increased the number of confirmed cases
by almost 7-fold, to 1 407 600 (Figure 2; Supplement
Table 2, available at Annals.org). The effect of imple-
menting social distancing measures depends highly on
the region because each has different levels of adher-
ence and transmission (Supplement Table 2). For ex-
ample, implementing the measures 1 week later in
Dane County could have increased the number of
cases by 36% as of 31 July (4239 to 5785), whereas the
same scenario in NYC could have increased the num-
ber of cases by 539% (224 194 to 1 432 960). Com-
pared with Dane County, in the Milwaukee metro area,
a delay in implementation had a differential effect on
the number of cases.

Earlier easing of the social distancing measures
would have had major detrimental effects on the total
number of COVID-19 cases in NYC, especially when
there was a significant decrease in adherence after eas-
ing (Table 2). Easing of the measures on 1 June instead
of the actual date (8 June) and a decrease in adherence
of 5 percentage points would have increased the total
number of confirmed cases from 224 194 to 230 932 as
of 31 July. If adherence had decreased by 15 percent-
age points after social distancing measures were eased
on 8 June, the number of cases could have increased
from 224 194 to 439 728 by 31 July (Table 2), showing
the importance of personal behaviors that prevent
transmission of SARS-CoV-2, such as face mask use af-
ter the measures are eased. The decrease in adherence
after easing has a more pronounced effect on the num-
ber of cases than the date of easing (Table 1).

The sensitivity analyses showed that the overall
trends in base-case runs would still hold (Supplement
Figures 3 to 18 and Supplement Tables 3 to 24, avail-
able at Annals.org).

DISCUSSION
In this study, we used agent-based simulation mod-

eling to estimate the effect of the timing of implemen-
tation and easing of social distancing measures and ad-
herence to them in 3 urban communities. We found
that the timing of implementation of social distancing
and adherence had a large effect on the number of

cases that varied widely by region. The effect in NYC
was large compared with Dane County and the Milwau-
kee metro area. This finding shows the importance of
considering implementation of reopening policies at
the regional level, as the results in Dane County and
the Milwaukee metro area differed considerably de-
spite being in the same state. We also found that main-
taining a high level of adherence after easing of social
distancing measures has a major effect on the number
of cases, implying that cities and regions should
strongly encourage the community to maintain be-
haviors that reduce the transmissibility of SARS-
CoV-2, such as wearing masks. COVAM's accuracy in
predicting the current outbreak and ability to esti-

Figure 2. Comparison of total number of confirmed cases
time for implementation of social distancing at different
dates in Dane County (top), Milwaukee metropolitan area
(middle), and New York City (bottom).
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mate the effect of easing social distancing measures
at the regional level shows its unique value for in-
forming current and future policies. Our findings
show that one-size-fits-all strategies are suboptimal
and that context- and region-specific policies are
needed when considering implementing and easing
social distancing measures.

Our findings are consistent with those of other
studies that focused on the effect of social distancing
measures on COVID-19 burden. One study found that
a reduction of 75% in nonhousehold contacts would be
needed to handle the peak hospitalization demand in
the Austin, Texas, metro area (43). In contrast, our
model estimated that 70%, 70%, and 85% adherence to
social distancing measures in Dane County, Milwaukee,
and NYC, respectively, would be needed to keep the
pandemic in a steady state. Another study reported
that 57% of infections in the United States as of 3 May
2020 could have been avoided if social distancing mea-
sures had been implemented just 1 week earlier (44).
We found that implementing social distancing mea-
sures 1 week earlier would have reduced the number
of infections by 46%, 52%, and 80% in Dane County,
Milwaukee, and NYC, respectively, as of 15 May 2020.

Some opponents of social distancing policies cite
achievement of herd immunity as a reason for easing cur-
rent measures (45). However, herd immunity is possible
only if infection with SARS-CoV-2 results in lasting immu-
nity, which is unknown at this time. Moreover, the corre-
lates of protective immunity to SARS-CoV-2 have yet to be
identified (45). In the absence of these data, social dis-
tancing is the most effective tool to prevent further spread
of SARS-CoV-2. To date, social distancing measures and
adherence to them have halted exponential growth in
daily case counts of COVID-19. However, SARS-CoV-2
continues to spread, and many U.S. cities and urban com-
munities have yet to return to pre–exponential growth lev-
els of transmission. COVAM showed that premature eas-
ing of social distancing measures and low adherence to
them could result in a rapid return to exponential growth
of COVID-19 cases in communities.

Closing schools and businesses has major adverse
economic and health consequences. Despite acknowl-
edging the growing evidence that children and adoles-
cents play a role in disease transmission, the American

Academy of Pediatrics notes the importance of in-
school learning and the negative effects that school
closures had on children in the spring of 2020 (46).
These include social isolation, worsening of mental and
physical health, and learning deficits without adequate
resources. Business closures caused substantial job
losses in many sectors and led to major issues in the
supply chain of essential items, including medical sup-
plies (47). Precautions to control the COVID-19 pan-
demic have led to worse health outcomes for other dis-
eases as well. For example, a recent commentary by the
director of the National Cancer Institute noted that re-
duced screening and delays in diagnosis due to the
COVID-19 pandemic are expected to lead to almost
10 000 excess deaths from breast and colorectal cancer
in the United States over the next decade (48). It is crit-
ical that local decision makers determine region-
specific policies that weigh the competing risks for
COVID-19 transmission and negative economic, health,
and social effects of business and school closures.

Our study has limitations, most of which are due to
limited data and uncertainty about SARS-CoV-2. We
made simplifying assumptions, such as that asymptom-
atic patients transmit the disease at the same rate as
symptomatic patients and weather does not affect
SARS-CoV-2 transmissibility, whereas several studies
suggest otherwise (49, 50). Furthermore, COVAM uses
adherence to social distancing as a proxy for several
factors contributing to disease transmission, including
fewer close contacts because of limited travel and pre-
cautions that prevent transmission during a close con-
tact, such as wearing masks. Therefore, COVAM may
not accurately estimate the effect of personal precau-
tions on transmission.

There are also limitations related to the modeling
approach. Our calibration procedure used a simple
trial–error approach, as opposed to a full-scale calibra-
tion in which all plausible combinations of the input
parameter values are tested (51). Owing to the compu-
tational intensity of a more formal and detailed calibra-
tion procedure, our calibration may not have identified
the best parameter combinations. As with any other
modeling technique, agent-based modeling has limita-
tions, including greater computational needs com-
pared with more commonly used compartmental mod-
els because of modeling of probabilistic events, as well

Table 2. Effect of Easing of Social Distancing Measures on the Total Number of Confirmed Cases on Different Dates in New
York City

Date Measures Eased on 1 June Measures Eased on 8 June

5% DAE* 10% DAE* 15% DAE* 5% DAE* 10% DAE* 15% DAE*

30 June 215 612 227 701 250 284 212 380 216 782 223 512
31 July 230 932 321 048 728 275 224 194 269 766 439 728
31 August 248 247 620 935 2 097 610 238 645 452 219 1 994 590

Measures Eased on 15 June Measures Eased on 1 July

30 June 210 685 212 067 213 784 209 627 209 627 209 627
31 July 219 945 243 378 313 699 215 152 219 944 229 027
31 August 232 342 357 264 1 202 310 224 050 263 995 444 037

DAE = drop in adherence after easing of social distancing measures.
* DAE of 5%, 10%, and 15% implies that adherence to social distancing measures after the date of easing is 85%, 80%, and 75%, respectively.
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as more complex development given that agent-based
models typically require stylistic programming to rep-
resent events more realistically.

In conclusion, our model shows that delayed im-
plementation of, lower adherence to, and premature
easing of social distancing generally resulted in in-
creased cases of COVID-19 in urban areas of the
United States. However, the magnitude of effect varied
substantially by region. These findings highlight the im-
portance of region-specific considerations, and ideally
modeling, as inputs to making policy decisions for a
given region.
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Appendix Table. COVAM Input Parameters

Parameter Description Notation Mean Value Reference

Progression and duration
Incubation period Time between exposure and occurrence

of symptoms
μe 5 d CDC and literature (13–16)

Duration of mild symptoms Time between beginning of mild
symptoms and beginning of severe
symptoms or recovery

μm 6 d CDC and literature (3, 13,
17, 18)

Duration of severe symptoms
(hospitalization)

Time between beginning of severe
symptoms and beginning of critical
symptoms or recovery

μs 6 d CDC and literature (3, 13,
17, 18)

Duration of critical symptoms
(ICU stay)

Time between beginning of critical
symptoms and death or recovery

μc 10 d CDC and literature (3, 13,
17–19)

Probability of recovery after
mild symptoms

Probability that an infected patient with
mild symptoms (who also has tested
positive) will recover once the mild
symptomatic phase is over. This
parameter is a function of age.

pt(r�im) Age 0–19 y: 98%
Age 20–44 y: 82%
Age 45–54 y: 75%
Age 55–64 y: 75%
Age 65–74 y: 64%
Age 75–84 y: 55%
Age ≥85 y: 49%

CDC (20)

Probability of recovery after
severe symptoms

Probability that an infected patient with
severe symptoms will recover once
the severe symptomatic phase is over.
This parameter is a function of age.

pt(r�is) Age 0–19 y: >99%
Age 20–44 y: 82%
Age 45–54 y: 68%
Age 55–64 y: 69%
Age 65–74 y: 63%
Age 75–84 y: 53%
Age ≥85 y: 65%

CDC (20)

Probability of recovery after
critical symptoms

Probability that an infected patient with
critical symptoms will recover once
the critical symptomatic phase is over.
This parameter is a function of age.

pt(r�is) Age 0–19 y: >99%
Age 20–44 y: 95%
Age 45–54 y: 92%
Age 55–64 y: 75%
Age 65–74 y: 72%
Age 75–84 y: 64%
Age ≥85 y: 9%

CDC and Wisconsin
Department of Health
Services (20, 21)

Probability that an infected
patient with critical
symptoms needs ventilator
support

Probability that an infected patient with
critical symptoms will need
mechanical ventilator support during
their ICU stay

p(v�is) 46% Literature (14)

Transmission
Number of contacts per

person without any social
distancing intervention

Number of people that a person has a
close contact with that likely produces
a transmission opportunity. This
parameter represents the number of
such contacts and assumes no
intervention is implemented.

nc 10 Calibration and literature
(22, 23)

Relative rate for the number of
daily contacts per age group

The number of daily contacts changes
by age group. This parameter
represents the relative rate of the
number of contacts for each age
group compared with the 20–44 y age
group, which has the highest number
of daily contacts.

rrdc Age 0–19 y: 85%
Age 20–44 y:

100%
Age 45–54 y: 94%
Age 55–64 y: 74%
Age 65–74 y: 46%
Age 75–84 y: 34%
Age ≥85 y: 34%

Literature (23)

Relative rate for
nonadherence to social
distancing per age group

Nonadherence to social distancing
changes by age group. This
parameter represents the relative rate
of nonadherence to social distancing
for each age group compared with
the 20–44 y age group, which has the
highest rate of nonadherence.

rrna Age 0–19 y: 100%
Age 20–44 y:

100%
Age 45–54 y:

100%
Age 55–64 y: 85%
Age 65–74 y: 61%
Age 75–84 y: 61%
Age ≥85 y: 61%

CDC (24)

Number of days an exposed
patient is contagious

Exposed persons could be contagious
before showing symptoms. This
parameter represents the number of
days in the end of the incubation
period and before showing mild
symptoms when exposed patients
transmit the disease.

d 2 Literature (11, 25)

Probability that an exposed
patient will transmit
SARS-CoV-2 to a susceptible
person with a close contact

Probability that an asymptomatic patient in
the last few days of the incubation period
will transmit SARS-CoV-2 to a susceptible
person who is in close contact

p(c�e) 0.0418 Calibration and literature
(26–28)

Continued on following page
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Appendix Table—Continued

Parameter Description Notation Mean Value Reference

Probability that a patient with
mild to moderate
symptoms who has not
been tested positive will
transmit SARS-CoV-2 to a
susceptible person with a
close contact

Probability that a patient with mild to
moderate symptoms who has not
been tested positive for SARS-CoV-2
will transmit it to a susceptible person
who is in close contact

p(c�im−) 0.0418 Calibration and literature
(26–28)

Probability that a patient with
mild to moderate
symptoms who tested
positive for SARS-CoV-2
will transmit it to a
susceptible person with a
close contact

Probability that a patient with mild to
moderate symptoms who tested
positive for SARS-CoV-2 will transmit it
to a susceptible person who is in close
contact

p(c�im+) 0.0418 Calibration and literature
(26–28)

Relative transmissibility of a
patient with severe
symptoms compared with
a patient with mild to
moderate symptoms who
tested positive

This parameter describes the probability
that a patient with severe infection
transmits the disease (p(c�is)) relative
to that for a patient with mild to
moderate symptoms who tested
positive (p(c�im+))

ln�1−p(c�is))

ln(1−p(c�im+))

0% Not applicable

Relative transmissibility of a
patient with critical
symptoms compared with
a patient with mild to
moderate symptoms who
tested positive

This parameter describes the probability
that a patient with critical infection
transmits the disease (p(c�ic)) relative
to that for a patient with mild to
moderate symptoms who tested
positive (p(c�im+))

ln�1−p(c�is))

ln(1−p(c�im+))

0% Not applicable

Diagnostic testing
Baseline probability of

testing with mild to
moderate symptoms

The baseline probability that a patient
with mild to moderate symptoms will
test positive for COVID-19, assuming
limited testing capacity and cases
where patients do not have mild
symptoms that cause them to request
testing; additional testing capacity
increases this probability

p(test�im) 75% Literature and calibration
(29, 30)

CDC = Centers for Disease Control and Prevention; COVID-19 = coronavirus disease 2019; ICU = intensive care unit; SARS-CoV-2 = severe acute
respiratory syndrome coronavirus 2.
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