
RESEARCH ARTICLE

The mouse genome displays highly dynamic

populations of KRAB-zinc finger protein genes

and related genetic units

Annamaria Kauzlaric, Gabriela Ecco, Marco Cassano, Julien Duc, Michael Imbeault,

Didier Trono*

School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

* didier.trono@epfl.ch

Abstract

KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcrip-

tion factors encoded by mammalian genomes, and growing evidence indicates that they ful-

fill functions critical to both embryonic development and maintenance of adult homeostasis.

KZFP genes underwent broad and independent waves of expansion in many higher verte-

brates lineages, yet comprehensive studies of members harbored by a given species are

scarce. Here we present a thorough analysis of KZFP genes and related units in the murine

genome. We first identified about twice as many elements than previously annotated as

either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly

considered as a large group of Satellite repeats. We then could delineate an organization in

clusters distributed throughout the genome, with signs of recombination, translocation, du-

plication and seeding of new sites by retrotransposition of KZFP genes and related genetic

units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related para-

logs had evolved through both drifting and shifting of sequences encoding for zinc finger

arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the

expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are

not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroe-

lements and that, underneath, KZFPs conserve highly individualized patterns of expression.

Introduction

Dynamic changes in gene super-families are potent drivers of evolution and diversity across

species [1, 2]. KRAB-containing zinc finger proteins (KZFPs) constitute the single largest

group of transcription factors (TFs) encoded by higher vertebrates, and emerged in a close

ancestor of tetrapods some 420 million years ago (mya) [3, 4]. KZFP genes were subsequently

amplified as the apparent result of adaptive expansion and contraction events [5–7], while

being subjected to intense positive selection, so as to constitute today a large repertoire of spe-

cies-specific TFs [8–12]. This pattern of evolution likely reflects the involvement of KZFPs in

the early embryonic repression of endogenous retroelements (EREs), many of which are them-

selves lineage- or species-restricted [13–15]. Consistent with this hypothesis, the total number
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of KZFPs encoded by various species somewhat correlates their burden in endogenous retrovi-

ruses (ERVs), a class of EREs, and recent waves of ERV invasions have coincided with episodes

of KZFP genes amplification [16, 17]. As well, the genomes of both humans and mice encode

for several hundred KZFPs, yet the pace of expansion of these genes has been higher in the

rodent lineage, correlating the persistence in mice, but not in humans, of transposition-com-

petent ERVs. Finally, an arms race model, whereby the host produces a dynamic pool of

KZFPs in order to control active EREs that in turn mutate to escape restriction, is supported

by evidence retracing the evolutionary history of two human KZFPs and their cognate ERE

targets [15].

Canonical KZFPs harbor a highly conserved N-terminal KRAB (Krüppel-associated box)

domain [18, 19], responsible for recruiting KAP1/TRIM28 (KRAB-associated protein 1, tripar-

tite motif protein 28) and its associated epigenetic effectors [20–22], and a C-terminal array of

zinc fingers (ZNFs), which confers sequence-specific DNA binding potential and is the region

where positive selection is observed [5, 23–26]. It seems likely that, after a KZFP gene is dupli-

cated through unequal crossing over, gene conversion, or yet other mechanisms, changes in its

zinc-finger coding portion can become fixed if they provide the product of this duplication

with novel target specificity that benefits the host [27–29].

Here, to investigate the evolutionary path of KZFP genes in a species where this family is

still subjected to dynamic selective pressures, we explored the mouse genome. This led us to

uncover an abundance of yet unreported KZFP-related genetic entities in this species [30, 31],

to obtain evidence supporting a variety of mechanisms for their expansion, to examine the

sequence diversification of closely related paralogs and to unveil a mode of regulation where

EREs seem to occupy a prominent place in the transcriptional control of their repressors.

Results

The MMSAT4 satellite repeat corresponds to KZFP genes and KZFP-

like entities

The repository of murine repetitive elements lists as a member of the Satellite family a simple

repeat named ‘MMSAT4’, the consensus sequence of which was derived from arrays of triplets

of C2H2 ZNFs located on chromosome 4 (Fig 1A, http://www.girinst.org/repbase/ [32]). How-

ever, unlike other Satellite repeats, MMSAT4s are not restricted to specific chromosomal posi-

tions, as we found 715 of these units spread all over the genome, often concentrated in regions

also containing high densities of bona fide C2H2 ZNF-coding sequences (Fig 1B). Of the anno-

tated C2H2-protein coding units containing an MMSAT4, the large majority (82%) are canon-

ical KZFP genes while a small fraction spans other types of poly-zinc finger protein genes.

Conversely, of the currently annotated KZFP genes, 87% overlap with MMSAT4 sequences.

Additional MMSAT4 elements, making up slightly more than half of the group, fall into

previously unannotated sequences (Fig 1B), yet we found them to harbor an upstream KRAB-

coding sequence and to coincide with the 3’ end of the cognate transcripts, comparably to

canonical KZFP-overlapping MMSAT4s (Fig 1C and S1A Fig). Therefore, MMSAT4s corre-

spond to almost the totality of KZFP genes and to additional KZFP-like entities. For conve-

nience, we coined the sum of these elements KZFP/rGUs, for KZFP-related genetic units.

Evolutionary relationships between KZFP/rGUs clusters

Through sequence and synteny analysis of murine KZFP/rGUs and their flanking sequences

[4], we could assign a putative age to about three quarters of these elements (518/715). We

found the vast majority to be mouse-restricted, whether KZFP genes or pseudogenes and non-
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Fig 1. Genomic features and evolutionary origins of murine KZFP/rGUs clusters. (A) (Top) Schematic representation of a

canonical C2H2 zinc finger (ZF) structure, coupled to its 7-amino acids linker, 6 of which (TGEKPY) are highly conserved. The
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annotated entities, and very few to have human orthologs, corresponding to an evolutionary

distance of 90.9 million years ago (mya) (Fig 1D). By setting a cutoff of at least 8 MMSAT4

elements less than 500 kilobases (kb) apart, we could further define 18 clusters distributed

amongst 11 chromosomes (S1 Table). Some clusters contained both mouse-specific and evolu-

tionarily older KZFP/rGUs (e.g. clusters 14 and 16 on chromosome 7), yet none was entirely

constituted of highly conserved members, and 5 of the 18 predefined clusters contained exclu-

sively mouse-restricted KZFP/rGUs (Fig 1E).

Consistent with previously proposed mechanisms of KZFP genes amplification [7], we

observed that murine KZFP/rGUs shared higher sequence homology within a cluster than

amongst spatially unrelated elements (S1B Fig). We thus derived a consensus sequence for

each cluster and built a tree based on their degree of similarity. This confirmed that clusters

located on a same chromosome were usually more closely related. However, there were excep-

tions to this trend. For instance, clusters 1 and 12, respectively on chromosomes 1 and 6, were

highly homologous, as were clusters 2 and 17, on chromosomes 10 and 7. This strongly sug-

gests that large segment duplications, followed by chromosomal rearrangements, have contrib-

uted to the expansion of KZFP/rGUs, as previously postulated for canonical KZFP genes [5].

Interestingly, clusters partially composed of conserved KZFP/rGUs, such as number 14, 16 and

18, segregated away from the others (Fig 1F). Careful examination revealed age-independent

clustering of KZFP/rGUs within these clusters (S1C Fig).

When further studying KZFP/rGUs clusters, we very rarely found genes other than KZFPs.

The murine genome harbors several million loci derived from transposable elements (TEs),

and when examining the density of these units within clusters of KZFP/rGUs we found it to be

no different than elsewhere in the genome (S1D Fig). However, in KZFP/rGUs clusters, we

found a marked enrichment in members of two subgroups of ERVs, ERVK and ERV1 (S1E

Fig). Similar to KZFPs, olfactory and vomeronasal receptor genes (OLFR and VMNR genes,

respectively) have been amplified through rounds of segmental duplications while undergoing

positive selection [33, 34]. However, we found neither 14 clusters of OLFR genes nor a cluster

of VMNR genes, each defined as a group of at least 10 such genes situated less than 500 kb

apart, to display similarly biased TE distribution (S2 Table, S1F Fig). KZFP/rGUs clusters thus

exhibit a particular TE content when compared to the rest of the genome or to other gene

super-families amplified by related mechanisms.

When examining KZFP/rGUs not situated in clusters, we identified several instances

where they most likely resulted from retrotransposition, as indicated by the absence of introns,

the presence of a poly-A-coding sequence at their 3’ end and their homology with intron-

21–24 amino acid-long ZNF (C X2-4 C X12 H X3-4 H) is depicted, with zinc-coordinating cysteines and histidines in blue and

putative DNA-contacting residues located at positions -1, 3 and 6 of the alpha helix in red. (Bottom) Consensus sequence of

MMSAT4 Satellite Repeat as reported in Repbase, spanning three consecutive but incomplete C2H2 ZNF motifs, each reported

on a single line. Highlighted are the canonical cysteine and histidine residues (in blue) and the conserved part of the linker (in

grey). (B) Circular genomic map displaying the distribution of MMSAT4 elements. Inside the circular plot, stacked bar plot of

MMSAT4 elements belonging to C2H2 ZNF protein genes not encoding a KRAB domain, to KRAB C2H2 ZNF protein genes, or

to genomic locations not annotated as any type of C2H2 encoding protein genes. (C) Positional correlation between MMSAT4

consensus sequences and KRAB-encoding sequences, distinguishing MMSAT4 elements belonging to C2H2 ZNF protein genes

not encoding a KRAB domain, to KRAB C2H2 ZNF protein genes, or to genomic locations not annotated as any type of C2H2

encoding protein genes. Genes’ coordinates were extended by 1kb at the 3’ end, and the correlation was calculated over a

symmetrical window of 15 kb. (D) Raw counts of 518 murine KZFP/rGUs shared between phylogenetic branches, belonging to

annotated KZFP genes or other genetic entities (“other”), with the x-axis representing the evolutionary distances separating the

branches. 517/518 of these KZFP/rGUs bear a KRAB-encoding sequence within 30 kb upstream of the element itself. (E) Age-

distribution of KZFP/rGUs within clusters. The estimated time of emergence during evolution is color-coded as indicated by the

legend. (F) Phylogenetic tree of consensus sequences derived per KZFP/rGUs cluster, with indication of the chromosome where

the relative cluster is located.

https://doi.org/10.1371/journal.pone.0173746.g001
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containing cluster-located elements (Fig 2A, left panel). Although they were situated on other

chromosomes than their source element, such retrotransposed KZFPs displayed signs of posi-

tive selection. This was exemplified by the newly annotated pseudogene Gm8935b, where a

sharp increase in mutations density was found 3’ of a premature STOP codon gained in the

processed pseudogene, compared to its apparent donor gene. Moreover, we detected a distinc-

tive enrichment in RNA-polymerase II over Gm8935b (Fig 2A, right panel). These observa-

tions led us to conclude that KZFP/rGUs resulting from retrotransposition events can be

transcriptionally active and that, when positively selected, these elements could contribute to

seeding new KZFP/rGUs clusters.

Sequence evolution of KZFP/rGU paralogs

The analysis of KZFP/rGUs revealed that individual units accumulated various degrees of muta-

tions, some of which compromised their coding potential. However, of 1306 C2H2-encoding

transcripts that could be assigned to KZFP/rGUs in murine embryonic stem cells (mESC), 734

mapped to entries of the Ensembl listings of genes, accounting for multiple isoforms of a totality

of 252 genes. Of those, more than three quarters (196/252) corresponded to bona fide KZFP
genes, 13% (34/252) to non-KRAB ZFP genes and 9% (22/252) to other genes. Of 572 novel

transcripts, 490 coded for a stretch of C2H2 zinc fingers preceded by a KRAB domain in the

same reading frame and without intervening STOP codon (S1 File, S3 Table). This suggests that

positive selection is acting to preserve the functional core of most of these elements.

Retracing the full evolutionary history of KZFP/rGU clusters remains a complicated task,

due to both persistent retrotransposition activity of many mouse TEs and confounding effects

of partially overlapping genomic rearrangements (S2B Fig). We thus designed an additional

approach to date the emergence of mouse-specific and closely related KZFP/rGUs. For this, we

focused on the regions directly bordering KZFP/rGUs and studied their sequence conservation

after splitting them in segments, which we considered as separate units. Coupling our analysis

to newly annotated KZFP/rGUs-containing transcripts helped us circumscribe the region of

interest to the one enclosed by gene borders, although segments numbers and limits were arbi-

trarily fixed. As an example, cluster 11 contains three KZFP/rGUs:Zfp932, Gm15446 and a

putative gene not annotated in the RefSeq nor in other genes repositories, which we named

GmX. Zfp932 and Gm15466 are known paralogs, recently characterized through genomic and

functional studies as responsible for recognizing partly overlapping sets of TEs [35]. By defin-

ing discrete segments of DNA within the regions spanning Zfp932 and Gm15466, we could

determine by BLAT [36] that the next most conserved sequence was spanning GmX. Taking

Zfp932 (Fig 2B, segments 1–5) as main viewpoint allowed us to single out a series of new seg-

ments (Fig 2B, segments 6–9) that disrupted homology between the three genes. Segments 6–7

were present in Gm15446 and GmX, but not in Zfp932, while segment 8 was restricted to

Gm15446 and segment 9 to GmX. Furthermore, several nucleotide differences were found

within the studied segments of paralogs Zfp932 and Gm15446, and even more when comparing

them to GmX. Taking into account the sum of these observations, we could draw a tree repre-

senting the likely sequential emergence of these genes, with Zfp932 followed by Gm15446 and

then GmX. Interestingly, the ZNF signature of GmX strongly differs from those of Zfp932 and

Gm15446, which are highly similar. Accordingly, segment 5, which spans the KZFP/rGU of

each of these three genes, was the least conserved within the whole cluster. A broader examina-

tion of the specificity residues, that is, of the amino acids at positions -1, 3 and 6 of the DNA-

contacting alpha helix, encoded by KZFP/rGUs of cluster 10 similarly revealed complex mech-

anisms of diversification of neighboring poly-zinc fingers, with evidence for duplications, dele-

tions, inversions and mutations of ZNF-coding sequences. Triplets of the DNA-contacting

Evolution of KZFP genes in the mouse genome
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Fig 2. Evolutionary relationships within the KZFP-rGUs superfamily. (A) (Left) Schematic representation of how retrotransposition

of the KZFP/rGU Gm13051 (located on chromosome 4) may have yielded the Gm8935b retrogene (on chromosome 3, to which we

gave a different annotation than the one deposited in Ensembl as Gm8935, based on similarities with its putative donor gene). ChIP-seq

density signal of RNA polymerase II (PolII) at the corresponding loci and genomic structures of Gm13051 and Gm8935b are shown, with

Evolution of KZFP genes in the mouse genome
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residues belonging to one ZNF could be duplicated in tandem up to 4 times, and combinations

of 2 to 7 sequential triplets could be repeated within the same gene or pseudogene. These repe-

titions were different between highly homologous signatures, which were not residing in adja-

cent KZFP/rGUs and could even be encoded on the opposite strand (Fig 2C). Together, these

data support the model of a high level of plasticity within poly-zinc fingers coding sequences,

with fast emergence of new zinc fingerprints, which either get fixed by positive selection or

lose their coding potential and degenerate.

Transcriptional regulation of KZFP/rGUs

We next assessed by RNA-Seq the transcription of KZFP/rGUs in three distinct murine cell

types: mESC, hepatocytes and MEFs. Each displayed a specific pattern of KZFP/rGU expres-

sion, with mESC transcribing the highest number of elements (Fig 3A, S4 Table). The ZNF-

coding region of KZFP genes was previously demonstrated to recruit KAP1, and to be second-

arily subjected to trimethylation of histone 3 on lysine 9 (H3K9me3) [37, 38]. ChIP-seq analy-

ses confirmed the extensive binding of KAP1 at KZFP/rGUs in mESC, MEF and Hepa-1.6, a

murine hepatoma cell line that we used as a surrogate for hepatocytes (Fig 3B). The density of

KAP1 peaks correlated with that of KZFP/rGUs over many clusters in all three tissues, includ-

ing clusters completely devoid of annotated protein-coding genes (S3A–S3C Fig). However,

KZFP/rGUs themselves only accounted for a fifth to at most a third of all of KAP1 peaks within

these regions, where they were largely outnumbered by TEs (Fig 3C).

Upon Kap1 knockout (KO), many KZFP/rGUs were upregulated in all three tissues, albeit

with some differences: in mESC, 145 out of 150 dysregulated elements increased in expression,

while for liver and MEF the ratios were 66/67 and 77/124, respectively (Fig 3D). Noteworthy,

KZFP/rGUs upregulation upon KAP1 depletion was significant in mESC and liver only for ele-

ments situated within clusters, but not for their more isolated counterparts, while in MEF it

was significant in neither setting (S3D Fig). We explored more in depth the apparently collec-

tive behavior of KZFP/rGUs located within a same cluster upon KAP1-depletion. For this, we

scrutinized cluster 10, which contained the highest fraction of upregulated elements in these

systems (23/25 in mESC, 15/25 in liver and MEF). We first found that, in spite of a high degree

of homology between these KZFP/rGUs, their promoter regions were markedly divergent (S3E

Fig). Second, only a third of these units (8/25) were deregulated in all three tissues, all the oth-

ers behaving in a cell-specific manner. KZFP/rGUs transcription, as its perturbation, was not

thick lines depicting exons and thin lines intronic or non-transcribed sequences. KZFP/rGUs (black) and poly-A sequences (red) are

annotated separately. (Right) Amino acid sequence comparison of putative GM13051 and GM8935b proteins. KRAB and ZNF domains

are shaded in dark and light purple, respectively. Orange rectangle, location of stop codon in GM8935b; red rectangle, mutations located

in 3’ UTR. (*) indicates full conservation, (:) amino acids with highly similar properties and (.) unrelated residues. (B) (Top) UCSC

Genome Browser view of a genomic region containing KZFP/rGU-related genes GmX (annotated in present study), Gm15446, and

Zfp932, located in cluster 11 on chromosome 5. In order from the top, tracks for: genes annotated in RefSeq, our de-novo transcripts

annotation, KRAB-encoding sequences, KZFP/rGUs, and repeats as reported in RepeatMasker. BLAT results for segments 1–5 of

Zfp932 over the studied region are shown, with red lines indicating single differences in homologous sequences. (Center) Segments 6

and 7 of Gm15446, together with their BLAT results over GmX, are highlighted by red vertical bars. Segments 8 and 9, belonging to

Gm15446 and GmX are highlighted by blue and green vertical bars, respectively. Homology interruptions of segments 1, 3 and 4 are

depicted by hollow bars. Lengths of DNA stretches between genes are not to scale. (Bottom) Putative evolutionary tree of Zfp932,

Gm15446 and GmX, with their zinc finger signature, that is, for each ZNF the three major DNA-contacting residues. (C) Strand, name of

the corresponding annotated gene and ZNF specificity residues of KZFP/rGUs for which a related transcript was detected in cluster 10.

Elements are reported in linear order of appearance in the cluster. Each ZNF, represented by the triplet of its DNA-contacting amino

acids, is separated from the others by a dash. Red characters indicate tandem duplications of a given triplet of amino acids. Colored

underlining highlights triplets conserved in multiple putative and bona-fide KZFP genes, to mark potential paralogs and closely related

genes or pseudogenes. Pink shading marks triplets repeated multiple times, in the same order, within one KZFP gene or pseudogene.

Yellow shading marks the first triplets of highly homologous genes Gm13235, Gm13051, Gm13151, Zfp534, exemplifying the variability

of divergence patterns observed within a cluster.

https://doi.org/10.1371/journal.pone.0173746.g002
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Fig 3. KAP1 binds to KZFP/rGUs and neighboring TEs. (A) Heatmap of RNA-Seq depicting expression levels of KZFP-rGUs-

derived transcripts in WT mES cells, liver cells and MEFs. Exact values were reported in S4 Table. (B) Positional correlation

between KZFP/rGUs and KAP1 peaks in mES cells, Hepa 1.6 cells and MEFs, over a window of 10 kb. In the legend, indication of

the p-values obtained by Fisher’s exact test. (C) Distribution analysis of KAP1 peaks located within KZFP/rGUs clusters per tissue.

Selected TEs (“Sel. TEs”) comprise repeats annotated in RepeatMasker excluding Satellite, Simple, Low Complexity, Unknown

Evolution of KZFP genes in the mouse genome
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restricted to elements that were part of previously annotated protein-coding genes, and it

always occurred in the sense orientation, indicating that transcriptional read-through from

other units, which would have contributed both sense and antisense transcripts, was not signif-

icantly affecting our analysis (S3F Fig).

Noteworthy, along with the higher density of KAP1 peaks measured within KZFP/rGUs

clusters compared to OLFR and VMNR genes clusters, we found an important frequency of

upregulated TEs in Kap1 KO tissues (S3G Fig). TEs are subjected to KAP1-mediated repres-

sion via sequence-specific tethering by KZFPs [15, 35, 39–41]. Elements of the ERVK and

ERV1 subgroups were found to be preferential sites of KAP1 recruitment within KZFP/rGUs

clusters, but other TEs and KZFP/rGUs were equally upregulated upon KAP1 removal (Fig 3E

and S3H and S3I Fig), indicating that de-repression then extended to the whole cluster when

KAP1-targeted TEs lost the regulator.

Mechanisms of KZFP/rGUs clusters control

The histone lysine methyltransferase (KMT) SETDB1, a mediator of KAP1-induced repres-

sion, was also enriched at KZFP/rGUs, where its recruitment markedly dropped upon Kap1
knockdown, in agreement with previous findings for canonical KZFP genes [38] (S4A Fig).

Furthermore, the same range of KZFP/rGUs was upregulated in Kap1 and Setdb1 KO mESC

(Fig 4A), indicating that the transcriptional dysregulation recorded at these loci was likely

mediated by the canonical KAP1-SETDB1 complex, known to lead to H3K9me3 deposition

and silencing of underlying elements [21, 37, 42–44].

Although KAP1-dependent deposition of H3K9me3 could be so extensive as to appear as

covering entire KZFP/rGUs clusters both in MEF and liver, the underlying elements were

actively transcribed (Fig 4B). Remarkably, neighboring elements within a cluster could display

from rather homogeneous to very dissimilar expression levels in a given tissue, and the same

element could be highly expressed in one cell type and barely detectable or completely silenced

in another (Fig 4C). A closer examination revealed that H3K9me3 was not homogeneously

distributed over clusters, being very high over the 3’ end of KZFP genes and KZFP/rGUs but

practically absent from their promoters (Fig 4D, left). Loss of H3K9me3 upon Kap1 removal

was observed over the entire cluster, including every 3’ end of KZFP/rGUs (Fig 4D, top right).

Nevertheless, there was no correlation between its loss and the upregulation of the underlying

element in Kap1 KO cells, and this mark was particularly abundant over highly transcribed

KZFP/rGUs (Fig 4D, bottom right, S4C Fig).

We thus examined the impact of KAP1 depletion on the prevalence of H3K27ac, a histone

mark associated with active promoters and enhancers, within KZFP/rGUs clusters. In clusters

where a high fraction of KZFP/rGUs were dysregulated upon Kap1 KO in MEF cells, many

new sites became enriched for this mark, most of which were just upstream of previously

unidentified transcriptional start site (TSS, Fig 5A, left). ChIP-qPCR for H3K4me1, another

histone modification marking actively transcribed promoters, confirmed the activation of

numerous KZFP/rGUs genes in these clusters upon Kap1 deletion (Fig 5A, bottom right

panel). Other regions within KZFP/rGUs clusters, not corresponding to any TSS, gained

repeats and subgroups counting less than a 100 hits among all KZFP/rGUs clusters. Peaks overlapping yet other entities, for

instance genes, are listed as “other”. (D) Normalized RNA-Seq average coverage over significantly dysregulated KZFP-rGUs,

considering a flanking region of 1.5 kb upstream and 3.5 kb downstream of each element, in mES (top), liver (center) and MEF

(bottom) WT and Kap1 KO cells. Shaded curves represent the 95% confidence interval around the mean. (E) Mean log2 of the

expression fold change upon Kap1 removal in mES cells of elements present in KZFP/rGUs clusters: KZFP/rGUs, ERVKs, ERV1s

and the rest of TEs (“others”) (dots), as well as their total average (dashed line). The analysis was performed per cluster, with the

number of elements in each category reported on the right (categories with fewer than 5 elements were not considered).

https://doi.org/10.1371/journal.pone.0173746.g003
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Fig 4. KAP1 and SETDB1-mediated transcriptional regulation of KZFP/rGU clusters. (A) Normalized RNA-Seq average coverage over

KZFP-rGUs, considering a flanking region of 1.5 kb upstream and 3.5 kb downstream of each element. Shaded curves represent the 95%

confidence interval around the mean. RNA-Seq data is plotted for KZFP/rGUs upregulated (main panels) or unaffected (smaller top right inserts)

in either Kap1 (left) or Setdb1 (right) KO ES cells. (B) UCSC Genome Browser view of H3K9me3 ChIP-Seq profiles over KZFP/rGUs in cluster 10
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H3K27ac (Fig 5B and S5A Fig). These did not overlap with KZFP/rGUs themselves, but with

TEs from all subclasses (S5B Fig). Upon KAP1 depletion, H3K27Ac was notably, but not exclu-

sively, enriched at ERV1 and ERVK integrants normally situated in the vicinity of a KAP1

binding site (Fig 5C). Removal of KAP1 thus appeared to unleash enhancers, many located

within TEs, with secondary transcriptional activation of KZFP/rGUs and other TEs situated

nearby (Fig 6). Of note, proximity to a KAP1 binding site was not critical for the dysregulation

of KZFP/rGUs, indicating that the regulatory mechanisms acting on these units are long-range

(S6A Fig). Moreover, the transcriptional dysregulation of KZFP/rGUs was fully reversible

upon re-expressing Kap1 in Kap1 KO MEF, but their upregulation was comparable or more

pronounced immediately after deletion than at later times, suggesting that after long-term cul-

ture some compensatory mechanisms could dampen the transcriptional phenotype of Kap1
KO cells (S6B and S6C Fig). Upregulation of KZFP/rGUs upon Kap1 removal was confirmed

on cDNAs generated by priming with random hexamers, suggesting that Poly(A)- transcripts,

known to generate from ZFP genes [45], are not following a different transcriptional regula-

tion compared to their Poly(A)+ counterparts (S6C Fig).

Discussion

The majority of present members of the murine KZFP/rGUs family emerged after the mouse-

rat split and is organized in clusters of sequence-related elements. The genomes of mice and

close ancestors appear to have constituted a particularly favorable ground for the expansion of

KZFP/rGUs, as their number in this species far exceeds what is found in most other higher ver-

tebrates [4]. Most murine KZFP/rGUs clusters include mainly such recent elements. Moreover,

more evolutionary conserved clusters also contain young KZFP/rGUs, indicating that they too

have been subjected to recent expansion. We presume that the sequence relatedness of clusters

located on distinct chromosomes results from new genetic rearrangements, some of which may

have been initiated by retrotransposition events. The majority of mouse KZFP/rGUs being spe-

cific of this species, comparative genomics could not be used to explore further the evolutionary

relationships between these elements. Examining sequence conservation solely at the level of

these units also proved rather uninformative, as were neighboring coding sequences because

most KZFP/rGUs clusters are devoid of genes other than KZFPs. Therefore, we decided to study

the local sequence divergence, limiting the region of interest to the transcript borders and divid-

ing it into smaller segments which were examined individually and as a bloc. This approach

consolidated the model of an expansion of KZFP/rGUs clusters, after initial seeding of a chro-

mosomal locus, via gene and segment duplication [5, 7, 11, 46]. The mechanisms driving these

waves of expansion remains to be formally established, although we observed an enrichment of

discrete families of EREs, ERV1 and ERVK, within KZFP/rGUs clusters. Whether this is causally

linked or purely coincidental cannot be determined, yet it is remarkable that the ancestral

mouse genome was massively targeted by these ERVs between 80 and 50 mya (for ERV1) and

50 and 30 mya (for ERVK) [47], that is at the same time as KZFP/rGUs expanded.

Comparing neighboring KZFP/rGUs within a cluster revealed signs of both genetic drift

and genetic shift concentrated on their ZNF-coding sequences. On the one hand, paralogs

in WT and Kap1 KO cells (light and dark color shades, respectively) for MEFs (top track), and liver cells (bottom track). Underneath, tracks for

single KZFP/rGUs and for clusters are shown. (C) Heatmap illustration of RNA-Seq signal over KZFP/rGUs in cluster 10, reported linearly in their

genomic order, for MEFs, liver and ES cells. (D) (Left) UCSC Genome Browser view of two KZFP genes with RNA-Seq profiles of WT MEFs

(blue) and H3K9me3 of WT and Kap1 KO MEFs (red and pink, respectively). Below the RNA-Seq profile, genes annotated in RefSeq and the

KZFP/rGUs tracks are displayed. The 3’ end of KZFP genes is highlighted by red-shaded vertical bars. (Right) Normalized H3K9me3 ChIP-Seq

enrichment over (upper panel) KZFP/rGUs in WT and Kap1 KO MEFs, and (lower panel) KZFP/rGUs highly and lowly expressed in WT MEFs,

including 5.5 kb on each side of KZFP/rGUs.

https://doi.org/10.1371/journal.pone.0173746.g004
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Fig 5. KAP1 influence at KZFP/rGU clusters. (A) (Top) UCSC Genome Browser view of a region containing a high density of KZFP/rGUs (black bars),

many of which are dysregulated in MEF Kap1 KO cells (pink bars). From the top, tracks for KZFP/rGUs, H3K27ac peaks in MEF WT and Kap1 KO cells (light

and dark green bars, respectively), and genes annotated in Ensembl and RefSeq are displayed. (Bottom, left) zoom-in of H3K27ac ChIP-Seq profiles and

peaks upstream of two distinct KZFP/rGUs upregulated upon Kap1 deletion. Transcripts annotated in the frame of this study are reported below the track of

Evolution of KZFP genes in the mouse genome
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dysregulated KZFP/rGUs. (Bottom, right) ChIP-PCR of H3K4me1 over several newly revealed TSSs within this region in MEF WT and Kap1 KO cells.

Enrichments are normalized to those over Gapdh promoter, Beta-Tubulin being an additional promoter whose transcription is not affected by Kap1 removal

(control). (B) UCSC Genome browser views of H3K27ac profiles in MEF (superimposing WT in red and Kap1 KO in green) over part of KZFP/rGUs cluster 3.

From top, tracks for genes annotated in Ensembl and RefSeq, de-novo KZFP/rGUs transcripts annotation, H3K27ac ChIP-Seq profiles, KZFP/rGUs and

repeats as reported by RepeatMasker. Genomic stretches gaining H3K27ac signal upon Kap1 KO do not overlap with any TSS. (C) H3K27ac ChIP-Seq

normalized average coverage in WT (red) and Kap1 KO (green) MEFs over: left, ERV1 and ERVK elements located within KZFP/rGUs clusters and less

than 3 kb away from a KAP1 peak in the same tissue; center, H3K27ac peaks within KZFP/rGUs clusters, not matching any KZFP/rGU transcript nor

annotated promoter, less than 3 kb away from a KAP1 peak; right, without any restriction for KAP1 peak proximity. Shaded curved represent the 95%

confidence interval around the mean.

https://doi.org/10.1371/journal.pone.0173746.g005

Fig 6. Model for transcriptional regulation of KZFP/rGUs clusters. (Top) Schematic representation of KZFP/rGUs clusters main features in WT and

Kap1 KO cells. From top: KZFP/rGUs cluster limits, profiles of H3K9me3 and H3K27ac enrichment (full and hollow curves, respectively); KZFP/rGUs,

showing the characteristic local high density of elements; KAP1 peaks, correlating with the KZFP/rGUs-dense region; track of TEs. (Bottom, left) an example

illustrating the precise distribution in WT and Kap1 KO cells of H3K27ac and H3K9me3 profiles, and their correspondence with to KZFP/rGU-derived

transcripts, where thicker lines represent coding sequences and thin lines non-coding sequences, with arrows indicating directionality of the transcripts.

KRAB-encoding sequences and KZFP/rGUs are outlined separately, below the annotated transcripts. (Bottom, right) Molecular model of KAP1-mediated

regulation of KZFP/rGUs clusters. In WT cells, the complex KAP1-SETDB1, possibly coupled to other HMTs, binds KZFP/rGUs and discrete sets of TEs.

KZFP/rGUs accumulate H3K9me3 at their 3’end, but their promoter is devoid of this mark and can be bound by transcription factors and the RNA-

polymerase II machinery, generating transcripts (higher panel). Upon Kap1 deletion, SETDB1 is no longer recruited, H3K9me3 levels drop, and H3K27ac

becomes enriched over TEs and promoters allowing for a general increase in transcription, albeit still under the differential influence of specific transcription

factors (lower panel).

https://doi.org/10.1371/journal.pone.0173746.g006
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drifted by progressively accumulating non-synonymous mutations in these regions, on the

other hand their putative DNA binding specificity could altogether shift by insertion of new

ZNF-coding segments. KZFPs and EREs appear to be engaged in an evolutionary arms race,

and the burden of EREs correlates with the number of KZFPs in 16 mammalian genomes [16].

It could be that clusters counting more elements target a particularly conspicuous group of

EREs, or possibly closely related groups of EREs, as recently observed [35]. Alternatively,

mutations within a cluster could confer to its components specificity to very diverse classes of

EREs and other genetic elements, and over-amplification of one cluster compared to others

could be partially due to a higher degree of plasticity of its genomic locus. Co-option in the

transcriptional control of genes and other cellular functions also likely explain the fixation of a

significant fraction of KZFPs [4, 15].

Expression of KZFP genes, like that of other transcription factors, is selective and generally

low, whether in undifferentiated cells or in somatic tissues [11]. It is thought that this allows

controlling the number of sites bound genome-wide by a KZFP at any given time, and to limit

its recruitment at imperfect target sequences [17]. Here, we observed that, within KZFP/rGUs

clusters, transcriptional control of KZFP genes was partly achieved through KAP1-mediated

taming of enhancers contained in neighboring EREs. Of note, KAP1 also binds to the 3’, ZNF-

coding end of KZFP genes, but from this location we found it to exert no repressive effect on

their expression, as previously noted [48]. It suggests that at these locations the master regula-

tor, associated effectors and resulting histone marks play different roles. Preventing recombi-

nation within these highly repetitive sequences has been suggested [37, 49], but it is unclear

how this alone would explain that KAP1 be particularly abundant on highly expressed KZFP/
rGUs within a cluster. It could thus be that KAP1 recruitment at the 3’ end of these units con-

tributes to three-dimensional topology of KZFP clusters, which display a peculiar chromatin

organization with accumulation of both repressive and active histone marks [49–51].

ERV-contained enhancer sequences serve as tissue-specific transcription modulators [52–

55] and KAP1 control over such cis-acting elements was documented in undifferentiated and

somatic cells [56, 57]. KAP1-mediated repression of ERV enhancers seems to impact on all

KZFP/rGUs, at least based on the global upregulation of these units when it is knocked out.

However, even closely located elements within a cluster exhibit exquisitely individualized regu-

lation, as illustrated by their often highly tissue-specific patterns of expression [58]. On the one

hand, this could reflect the recognition of their promoters by equally tissue-specific activators.

On the other, it could result from the loss of KAP1 at selected ERV enhancers, following the low

expression in a given tissue of particular KAP1-tethering KZFPs responsible for the sequence-

specific recognition of these ERVs. Irrespective of the underlying mechanism, this rapid diver-

gence in the transcriptional control of closely related paralogs is yet another evidence for the

multifaceted roles accomplished this remarkably plastic family of gene regulators.

Material and methods

Cell culture and mouse work

mESCs and MEFs wild-type (WT) and KO for Kap1 were cultured and generated as previously

described [57, 59] (strain C57BL/6J). Hepatocyte-specific Kap1 KO mice were generated and

genotyped according to [60] (strain C57BL/6J). Murine hepatoma cell line Hepa 1.6 cells were

cultured using standard methods.

Plasmids and lentiviral vectors

For KAP1 knockdown experiments, pLKO vector encoding shKAP1 and the empty vector as

control were used. For KAP1 overexpression, pSicoR-KAP1-HA vector was used. 48 h after
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transduction, infected cells were selected with 1 μg mL−1 puromycin in growth medium for an

additional 72 h. For de novo Kap1 excision, a non-integrating pHAGE2 Cre-IRES-PuroR len-

tiviral vector was used. Lentiviral vectors production protocols are available at http://tronolab.

epfl.ch and backbones at Addgene (http://www.addgene.org).

RT-PCR and RNA-Seq

Total RNA was extracted and DNase-I treated using a spin column-based RNA purification

kit (Macherey-Nagel). cDNA was prepared with SuperScript II reverse transcriptase (Invitro-

gen). Primers were used for SYBR green qPCR (Applied Biosystems) and the sequences are

provided in S2 File. For sequencing of mRNA (poly(A)+), 100-bp single-end RNA-seq librar-

ies were prepared using the Illumina TruSeq Stranded or Unstranded mRNA reagents (Illu-

mina). Cluster generation was performed with the resulting libraries using the Illumina

TruSeq SR Cluster Kit v4 reagents. Sequencing was performed in 100-bp reads runs by Illu-

mina HiSeq 2500. Further information about the mapping and analysis procedures is provided

in S2 File.

ChIP-qPCR and ChIP-Seq

ChIP and library preparation were done according to (Ecco, Cassano et al. 2016), with modifi-

cations as described in S2 File. Sequencing was performed in 100-bp reads run on Illumina

HiSeq 2500. Primers sequences used for ChIP-qPCR are provided in S2 File.

Bioinformatics analyses and statistics

R version 3.1.2 (http://www.R-project.org) or GraphPad Prism version 6.0 and 7.0 (http://

www.graphpad.com) were used for statistical analyses and graphical representations of the

data. Detailed bioinformatics analyses are provided in S2 File.

Ethics statement

Experimental protocols were performed according to European Council Guidelines and the

Swiss Federal Veterinary Office. Acceptable standards of human animal care and the experi-

mental design of this study were approved by the Ethics Committee for Animal Care of the

Vaud Region in Switzerland (licenses 25350 and 22919).

Data access

All next-generation sequencing data have been submitted to the NCBI Gene Expression

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) database under the accession number

GEO: GSE87734.

Supporting information

S1 Fig. (A) Positional correlation between the 3’ end of MMSAT4-related transcripts and

MMSAT4 elements, whether overlapping annotated genes or not. (B) (Top) Sequence align-

ment of KZFP/rGUs coming from three circumscribed stretches of DNA, located on chromo-

some 13 (cluster 5, 6_1 and 6_2 on the plot). The clusters are color-coded as follows: cluster

5 in yellow, cluster 6_1 in purple and cluster 6_2 in green. (Center) Separate alignments of

KZFP/rGUs per region are depicted. (Bottom) Alignment of all KZFP/rGUs elements, keeping

the initial color code. The sequence alignment, summarized by vertical bars on the left side of

the plot, reconstitutes almost perfectly the initial boundaries between regions. (C) Sequence

alignment of the KZFP-rGUs in clusters (top) 7, (middle) 14 and (bottom) 16. Color-coding of
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KZFP-rGUs reflects their imputed age, indicated on the vertical left axis. The conservation

score is represented on top of each alignment. (D) Number of TEs located within KZFP/rGUs

clusters compared to the expected one, estimated by counting the TEs falling within compara-

ble borders after shuffling the clusters within the same chromosome 100 times. The same was

performed for OLFR and VMNR clusters. P-values were obtained by Fisher’s exact test. (E)

TE-enrichment analysis by subfamily in KZFP/rGUs clusters. For each cluster, the x-axis repre-

sents the proportion in the genome, while the proportion in the region is plotted on the y-axis.

Larger dots depict subfamilies significantly over-represented in the region (p-value < 0.01).

(F) Same as S1E Fig, for OLFR and VMNR clusters.

(EPS)

S2 Fig. (A) Divergence analysis of recent duplication events within KZFP/rGUs clusters: three

nearly identical genomic stretches of approximately 40 kb were delineated within cluster 2

(core segments 1, 2 and 3, delineated by blue boxes, > 98% using UCSC BLAT alignment

tool). The homology score for nucleotides flanking the core segments dramatically dropped

(sequences enclosed by purple and red boxes), while a conserved pattern of EREs spanning

the core segments and their neighboring regions could still be identified, notably two ERVs

(IAPEz and RLTR19) found upstream and a LINE (L1Md F2) immediately downstream.

Sequences between RLTR19 and L1Md F2 were highly homologous, each containing two units

composed of a KRAB domain and a KZFP/rGU in close proximity and same orientation. Con-

servation was higher between core segments 1 and 2, including downstream of L1Md F2, sug-

gesting that they emerged through a more recent duplication event than the one responsible

for core segment 3.

(EPS)

S3 Fig. (A) KAP1 peaks enrichment in KZFP/rGUs compared to OLFR and VMNR genes

clusters in ES cells, MEF and liver cells. Peak counts were normalized by the total number of

nucleotides contained in the clusters. (B) Enrichment analysis of KAP1 peaks per KZFP/rGUs

cluster in ES cells, MEFs and Hepa 1.6 cells. The actual number of peaks within each cluster is

compared to the expected one, estimated by counting the peaks falling within the cluster bor-

ders after shuffling the peaks within the same chromosome 10’000 times. (C) UCSC Genome

Browser view of KZFP/rGUs clusters 3 and 4. From the top, tracks for genes annotated in

RefSeq and Ensembl, KZFP/rGUs, KZFP/rGUs clusters and KAP1 peaks in ES cells, MEFs and

Hepa 1.6 cells are displayed. Both KZFP/rGUs clusters 3 and 4 correlate an increased KAP1

binding sites density, although changes in terms of targeted loci and density of targets are visi-

ble across tissues. (D) Evaluation of expression differences upon Kap1 removal between KZFP/
rGUs in clusters and the isolated counterparts for each tissue. (E) Sequence alignment of (left)

KZFP/rGUs and (right) promoters of KZP/rGUs-containing transcripts of cluster 10. The con-

servation score is represented on top. (F) Normalized RNA-Seq coverage over KZFP/rGUs in

ES cells, considering a flanking region of 1.5 kb upstream and 3.5 kb downstream of each ele-

ment. Signal from WT cells is depicted in green, while that of Kap1 KO cells in grey. All ele-

ments expressed are plotted, separating sense and antisense transcription, and KZFP/rGUs in

and out of APC genes (left, top and bottom, respectively). (Right) UCSC Genome Browser

view of strand-specific RNA-Seq signals in ES Kap1 KO and WT cells (grey and green tracks,

respectively). Below the RNA-Seq profiles, the following tracks were added: RefSeq genes, our

de-novo transcripts annotation, KZFP/rGUs, KRAB-encoding sequences, KAP1 peaks in the

same tissue and repeats as reported in RepeatMasker. Green vertical bars highlight two ERVs

(RLTR4 and IAPEZ) and a KZFP/rGU targeted by KAP1 and upregulated upon Kap1 removal.

Despite their proximity, deregulation of these ERVs and the KZFP/rGU resulted from individ-

ual, oriented transcription. (G) Fraction of TEs upregulated upon Kap1 KO in KZFP/rGUs
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compared to OLFR and VMNR genes clusters in ES cells, MEF and liver cells. (H) TEs targeted

by KAP1 within KZFP-rGUs clusters in mES cells, MEFs and Hepa 1.6 cells. For each cluster,

numbers of TE-targeting KAP1 peaks were normalized for total numbers of TEs from corre-

sponding subclass. (I) Mean log2 of the expression fold change upon Kap1 removal in MEF

(left) and liver (right) cells of elements present in KZFP/rGUs clusters: KZFP/rGUs, ERVKs,

ERV1s and the rest of TEs (“others”) (dots), as well as their total average (dashed line). The

analysis was performed per cluster, with the number of elements in each category reported on

the right (categories with fewer than 5 elements were not considered).

(EPS)

S4 Fig. (A) Positional correlation between KZFP/rGUs and KAP1 and SETDB1 peaks, deter-

mined by ChIP-Seq enrichments, in Hepa 1.6 cells. A window of 5 kb on each side of the

KZFP/rGUs was considered. (B) ChIP-PCR analysis of SETDB1 binding over KZFP/rGUs in

WT and KAP1 KD Hepa 1.6 cells. KAP1 KD cells stably express a short hairpin targeting Kap1
transcripts (shKAP1), while the WT counterpart were similarly selected for expressing the cor-

responding control vector (shEmpty). (C) Normalized H3K9me3 ChIP-Seq enrichment in

MEF WT and Kap1 KO cells over KZFP/rGUs upregulated or unaffected upon Kap1 inactiva-

tion.

(EPS)

S5 Fig. (A) Nucleotide fraction found beneath H3K27ac KO but not WT MEFs in OLFR or

VMNR and KZFP/rGUs clusters. In each case we computed the same calculation excluding

peaks matching APC gene promoters or newly annotated KZFP/rGUs promoters. The same

analysis limited to clusters 3–6 and 10, being the most deregulated ones in Kap1 KO cells, was

performed. (B) Ratio of H3K27Ac-enriched KZFP-rGUs clusters-contained TEs in Kap1 KO

and in WT MEF cells, listed by subfamilies (with an inclusion threshold of at least 3 elements

for a given subfamily).

(EPS)

S6 Fig. (A) Expression of KZFP/rGUs in ES cells WT and Kap1 KO based on their distance to

a KAP1 binding site. We isolated KZFP/rGUs overlapping a KAP1 peak, those less than 5 kb,

less than 20 kb and more than 20 kb away from a KAP1 targeted locus. Each element belongs

exclusively to one category. (B) Normalized RNA-Seq coverage over KZFP/rGUs, considering

a flanking region of 1.5 kb upstream and 3.5 kb downstream of each element. Elements dysre-

gulated upon KAP1 depletion in MEFs are selected, and their coverage is plotted for WT cells,

Kap1 KO cells and Kap1 KO cells complemented with a sh-resistant copy of Kap1. (C) KZFP-
rGUs transcriptional changes detected by RT-qPCR upon de-novo KAP1 excision in MEF WT

cells (top), and upon KAP1 complementation of Kap1 KO cells (bottom), compared to their

WT and stable Kap1 KO counterparts.

(EPS)

S1 Table. Table containing genomic coordinates of KZFP/rGUs clusters.

(EPS)

S2 Table. Table containing genomic coordinates of OLFR and VMNR genes clusters.

(EPS)

S3 Table. KZFP/rGUs database, listing: genomic sequences of KZFP/rGUs, orientation,

cluster, coordinates of the cluster, coordinates of the relative transcript, orientation and

ID of the transcript, whether it corresponds to an existing entry of the Ensembl version 67

annotated genes (with the Ensembl ID and the associated gene name), number of C2H2

ZNFs, whether a KRAB-encoding sequence is present in the same transcript, the ZNFs
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specificity residues and the amino acid sequence encoded by the transcript (until a STOP

codon in the same reading frame). For detailed information on the analysis procedures fol-

lowed to build this table, refer to S2 File.

(XLSX)

S4 Table. Table containing normalized counts over KZFP/rGUs derived from RNA-Seq

analyses performed in mESC, MEF and liver cells.

(XLSX)

S1 File. Gene transfer format (GTF) file of putative KZFP/rGUs-related ORFs. Their identi-

fiers (“gene_id” and “transcript_id”) were attributed arbitrarily. For detailed information over

the sequences, see S3 Table.

(GTF)

S2 File. Supplemental Procedures. File containing detailed information about the experimen-

tal and data analysis procedures.

(DOCX)
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