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ABSTRACT
RNA binding proteins (RBPs) play a pivotal role in various biological processes, and aberrant 
expression of RBPs is closely associated with tumorigenesis and progression. However, the role of 
RBPs in oral cavity squamous cell carcinoma (OCSCC) is yet unveiled. In this study, RNA sequences 
and clinical information of OCSCC samples were acquired from The Cancer Genome Atlas (TCGA) 
database. A total of 650 RBPs, with significantly different expression between healthy and OCSCC 
samples, were identified using the limma package. A prognostic model was constructed by Lasso- 
Cox analysis, resulting in the determination of 7 prognosis-related RBPs: ERMP1, RNASE3, ARL4D, 
CSRP2, ULK1, ZC3H12D, and RPS28. Based on the prognostic model, the risk scores of the OCSCC 
samples were calculated. The capability of the prognostic model was further evaluated using the 
receiver operating characteristic curve (ROC). The areas under ROC were 0.764, 0.771, and 0.809 at 
1, 3 and 5-year respectively in the TCGA dataset. Internal and external validation showed 
satisfactory predictive capability for prognosis in OCSCC. In addition, a nomogram was created 
to graphically present the model. To further validate the analytical data, qRT-PCR was performed 
on normal and OCSCC cell lines. The mRNA expression of the 7 prognostic genes was in 
accordance with the analytical results. Functional analysis and gene connection networks were 
used to describe the biological functions and underlying interactions among the 7 prognostic 
genes Overall, 7 prognosis-related RBPs were identified, which could be used to predict clinical 
prognosis and to identify potential therapeutic targets for OCSCC.
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Introduction

Oral cavity squamous cell carcinoma (OCSCC) is 
the most common malignant neoplasm of the oral 
cavity and causes approximately a quarter million 
deaths annually worldwide [1]. Due to the special 
locality, OCSCC progression and treatment could 
severely impair patients’ quality of life, including 
speech and swallowing functions [2]. To achieve 
oncologic, functional and esthetic goals, current 
treatment guidelines for OCSCC suggest surgery 
for early-stage patients and surgery along with 
chemoradiotherapy for advanced-stage patients 
[3]. Although the OCSCC treatment techniques 
have been improved in the past decades, the reoc-
currence rate and 5-year survival rate 

(approximately 50%) are not yet satisfactory [1]. 
The risk factors for OCSCC include cigarette, alco-
hol, betel quid, human papillomavirus (HPV), and 
some genetic syndromes [4]. However, the under-
lying molecular mechanism and prognostic signa-
ture of OCSCC remain unclear.

RNA binding proteins (RBPs) are proteins that 
bind with coding and non-coding RNAs to form 
ribonucleoproteins (RNPs) [5]. Among human 
protein-coding genes, researchers have identified 
1542 (7.5%) RBPs that are involved in RNA meta-
bolism [6]. As the core of RNPs, RBPs orchestrate 
RNA processing and play an important role in 
post-transcriptional gene regulation (PTGR) – 
which supports cellular metabolism and 
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coordination in RNA maturation, transportation, 
stabilization and degradation [5].

In recent years, many studies have suggested 
that the dysregulation of RBPs is responsible for 
a range of diseases, such as cancer and nervous 
and muscular system disorders [7]. Genetic knock-
outs of RBPs can cause death or disturb all sys-
tems, indicating the importance of RBPs in cellular 
processes [5]. One of the important functions of 
RBPs in PTGR is to modulate cell growth and 
proliferation. As reported by previous studies, 
their aberrant expression may have implications 
for cancer. The expression of Sam68 (a member 
of the signal transduction and activation of RNA 
metabolism family) promotes the proliferation of 
prostate cancer cells and resistance to cytotoxic 
drugs [8]. The acetylation of AGO2 supports 
tumor progression by promoting the biogenesis 
of miR-19b [9], and the overexpression of 
LIN28B correlates with a worse prognosis in color-
ectal cancer [10]. However, no literature is avail-
able no functional RBPs in OCSCC. The 
hypothesis of this study is that the expression 
level of RBPs is related to the prognosis of patients 
with OCSCC, and an RBP-related prognostic 
model could predict the prognosis of patients 
with OCSCC. Thus, to reveal the possible function 
and clinical significance of RBPs in OCSCC, bioin-
formatics methods were used in the current study 
to identify differentially expressed RBPs between 
healthy and OCSCC samples. Then, an RBP- 
related prognostic model was constructed using 
Lasso-Cox regression to predict the prognosis of 
patients with OCSCC. These findings may provide 
clues for prognostic signatures in OCSCC.

Materials & Methods

Dataset and identification of differentially 
expressed RBPs

In this study, RNA sequences of 16 healthy human 
tissues and 213 OCSCC samples with relevant 
clinical features were downloaded from the 
TCGA database by the Genomic Data Commons 
data portal (https://portal.gdc.cancer.gov). We 
then used the PERL software (https://www.perl. 
org) to process RNA-seq data, obtain the mRNA 
matrix and transform ID. The RNA-seq data used 

in the present study was Transcripts Per Million 
(TPM) format converted from Fragments Per 
Kilobase Million (FPKM) matrix. As an open- 
access database, the TCGA database consists of 
high-throughput sequencing and clinical informa-
tion of 34 types of cancers. RBPs from Homo 
sapiens were downloaded from the EuRBPDB 
(http://EuRBPDB.syshospital.org) [11]. The 
EuRBPDB dataset includes 315,222 RBPs from 
162 eukaryotic species, which enables 
a comprehensive analysis of the function of RBPs 
in various diseases.

After removed the genes with <0 expression, the 
limma package [12] was used to acquire differen-
tially expressed RBPs based on a false discovery 
rate (FDR) < 0.05 and |log2 FC(fold-change)| > 
0.5. Specifically, with the limma package, a linear 
model was used to analyze the expression differ-
ences of genes simultaneously.

Construction of the prognostic model

After removing 1 OCSCC sample without com-
plete clinical data, a total of 212 OCSCC samples 
from the TCGA database were included and ran-
domly divided into a training dataset (n = 146) 
and an internal testing dataset (n = 66). Univariate 
Cox regression and Kaplan–Meier test were per-
formed to locate prognosis-related RBPs. When 
the RBPs met the criteria of P value less than 
0.05 in the above two tests, they were considered 
as prognosis-related RBPs. Then, these selected 
RBPs were collected for the least absolute shrink-
age and selection operator (Lasso) and multiple 
Cox analysis to construct an optimal prognostic 
model in the training dataset. Specifically, Lasso 
analyses provided the optimal parameters 
(lambda) and identified the RBPs significantly 
associated with overall survival (OS) for further 
multiple Cox analysis to construct the prognostic 
model. The formula for the risk score is as follows:

Risk score = Exp1α1+ Exp1α2+ Exp1α3 + .
where Exp represents the expression value of the 

gene, and α represents the coefficient.
The OCSCC samples were then divided into 

high- and low-risk groups by comparing them to 
the median risk score of patients in the training 
dataset. The log-rank test was used to compare 
differences between the two subgroups. The 
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survivalROC package was used to establish a time- 
dependent ROC curve for the prognostic capabil-
ity of the model. Moreover, ROC analyses and 
multiple Cox regression analyses were performed 
to compare the prognostic capability between this 
model and traditional clinical risk factors. 
Univariate and multiple Cox regression analyses 
were used to evaluate the independent prognostic 
value of the regression model.

Validation of prognostic model and construction 
of nomogram

In the present study, 97 cancer samples were 
downloaded from GSE41613 as an external testing 
dataset. The prognostic capability of the model 
was validated using the TCGA internal testing 
dataset and the GSE41613 external testing dataset. 
Log-rank test and ROC analysis were both used in 
the two testing datasets to evaluate the prognostic 
value.

Based on the above prognostic model, 
a nomogram – a simple graphical representation, – 
was used to predict 1-, 3-, and 5-year OS in the 
training dataset. Moreover, the calibration curves 
and concordance index (c-index) were used to 
evaluate the prediction capability of the 
nomogram.

Cell culture, RNA isolation, and qRT-PCR

Human normal oral keratinocytes (NOK) was 
donated by Professor Jinsong Li’s lab (Sun Yat- 
Sen Memorial Hospital, Sun Yat-Sen University) 
and the human OCSCC cell line CAL33 was kindly 
provided by Professor Jinsong Hou (Guangdong 
Province Key Laboratory of Stomatology, Sun Yat- 
sen University). Both cell lines were cultured in 
DMEM (Gibco) supplemented with 10% fetal 

bovine serum (FBS, Gibco) and maintained at 
37°C in a humidified atmosphere of 5% CO2.

The total RNA of NOK and CAL33 cell lines 
was extracted using an RNA-Quick Purification 
Kit (ESscience, Shanghai, China) according to the 
manufacturer’s protocol, and then cDNA was 
synthesized by reverse transcription using 
PrimeScriptTM RT Master Mix (Takara Bio, 
Ohtsu, Japan). Quantification was performed 
using the Hieff UNICON® Power qPCR SYBR 
Green Master Mix (YEASEN, Shanghai, China). 
The relative expression of target genes was nor-
malized to the amount of β-actin by using the 
2−ΔΔCT method. The primer sequences are pre-
sented in Table 1. All results are presented as the 
mean ± standard deviation (SD). Comparisons 
between the two groups were performed using 
student t test with GraphPad Prism 7.0. Statistical 
significance was set at P < 0.05.

Functional enrichment analysis and construction 
of correlation network

For the hub RBPs, the R package clusterProfiler 
3.6.2 [13] was used to perform GO functional and 
KEGG pathway enrichment analysis, with 
P < 0.05. The GO analysis was comprised of bio-
logical process (BP), molecular function (MF) and 
cellular component (CC), and the KEGG analysis 
aimed to identify the functions of the genes and 
their related pathways. Furthermore, a correlation 
network was constructed to demonstrate the cor-
relation between the hub RBPs, with a correlation 
value > 0.1 as the cutoff value.

Statistical analysis

All statistical analyses mentioned in this manu-
script were performed in R version 4.0.2. RBPs 

Table 1. Primers for qRT-PCR.
Gene Forward Reverse

β-ACTIN GCCGCCAGCTCACCAT TCGTCGCCCACATAGGAATC
ERMP1 CTCTACCTGATCGCGCTGC CTGTAGTCCTGGGGCCAATG
RNASE3 CCCACAGTTTACGAGGGCTC ACCCGGAATCTACTCCGATGA
ARL4D GCGGCTCACGAGAGATAAC GGTCTTTCCAGCAGAGTCCA
CSRP2 TGGGAGGACCGTGTACCAC CCGTAGCCTTTTGGCCCATA
ULK1 AGCACGATTTGGAGGTCGC GCCACGATGTTTTCATGTTTCA
ZC3H12D GCTGACACCCCTATCAGAGAG GGTCGTCGTAGCAGACCAG
RPS28 CCGTCTGCAGCCTATCAAG CTCGCTCTGACTCCAAAAGG
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with FDR < 0.05 and |Log2FC|> 0.5 were identified 
as differentially expressed RBPs. The prognosis- 
related RBPs were identified by univariate Cox 
regression and Kaplan–Meier test based on criteria 
of P value less than 0.05. In qRT-PCR, the relative 
expression of 7 hub genes was normalized to the 
amount of β-actin using the 2−ΔΔCT method. 
Comparisons between the two groups were per-
formed by student t test with GraphPad Prism 7.0. 
Statistical significance was set at P < 0.05.

Results

In this study, the differentially expressed RBPs in 
OCSCC were identified and the RBPs-related 
prognostic model was constructed. The GEO data-
set was used to validate the performance of the 
model. Subsequently, qRT-PCR confirmed the 
mRNA expression level of RBPs in normal and 
OCSCC cell lines. Finally, GO and KEGG analyses 

revealed the biological functions and related path-
ways of the hub RBPs.

Dataset and differently expressed RBPs in OCSCC

A flowchart of this study is displayed in Figure 1. 
In this study, RNA sequences of 16 healthy tissues 
and 212 OCSCC samples were acquired from 
TCGA. Among 2961 RBPs downloaded from the 
EuRBPDB dataset, 650 differentially expressed 
RBPs were identified (P < 0.05, |log2FC| > 0.5), 
including 342 upregulated and 308 downregulated 
RBPs (Table S1). The heat map and volcano plot 
of the differently expressed RBPs are shown in 
Figure 2.

Prognostic model construction

Out of 650 differentially expressed RBPs, a total 
of 17 RBPs were related to the prognosis of 
OCSCC in univariate Cox regression and 

Figure 1. Flow chart for analyzing RBPs in OCSCC.
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K-M test (Table 2). The high expression levels of 
ANLN, ENO1, ERMP1, PGK1, KPNA3, GPD2, 
P4HA1, EGLN3, PLOD2, RACGAP1, RNASE2, 
RNASE3, and ARL4D were positively associated 
with poor prognosis. Meanwhile, the high 
expression of CSRP2, ULK1, ZC3H12D, and 
RPS28 showed the opposite tendency. Then, 
LASSO analysis was conducted to identify the 
qualified prognostic genes and eliminate over-
fitting of the model. These 17 differential 
expressed RBPs were involved in LASSO analysis 
and 11 RBPs were identified to be closely related 
to the prognosis of OCSCC (Figure 3a and 3b). 
To build a predictive model for time-to-event 
data and achieve the best prognostic perfor-
mance, the multiple stepwise Cox regression 
was used in this study. Seven hub RBPs were 
finally selected to construct the prognostic 
model to predict the overall survival of patients 
with OCSCC (Figure 3c). In this model, an 
increased expression of ERMP1, RNASE3 and 
ARL4D was suggested to be related to poor 
prognosis, while the overexpression of CSRP2, 
ULK1, ZC3H12D and RPS28 resulted in 
a better prognosis (Figure 3c). According to 
this prognostic model, the risk score of patients 
with OCSCC was calculated using the following 
formula:

Risk score = (−0.5071*ExpCSRP2) + 
(−0.6041*ExpULK1) + (−1.3086*ExpZC3H12D) + 
(−1.0810*ExpRPS28) + (0.5029*ExpERMP1) + 
(3.8935*ExpRNASE3) + (0.4760*ExpARL4D).

Here, 73 patients with risk scores higher than the 
median risk score were categorized into the high- 
risk group, while the other half were classified into 
the low-risk group (Figure 4a). As shown in 
Figure 4e, patients in the low-risk group had 
a better prognosis than those in the high-risk 
group. Then, t-SNE analysis were used recognize 
the difference of space features among samples. 
The patients in the low- and high-risk groups were 
distributed in two directions in the t-SNE analysis, 
indicating that these patients were well separated 
into low- and high-risk groups by our model 
(Figure 4d). ROC analysis was performed to evalu-
ate the predictive value of the prognostic model for 
patients with OCSCC. The AUC of the ROC curve 
was 0.764 at 1 year, 0.771 at 3 years, and 0.809 at 

Figure 2. Heat map (a) and volcano plot (b) to show the differently expressed RBPs in OCSCC.

Table 2. RBPs associated with the prognosis of OCSCC in uni-
variate Cox regression analysis.

RBPs Hazard ratio (95% CI) P value

ANLN 1.362 (1.018 − 1.821) 0.037
ENO1 1.664 (1.037 − 2.671) 0.035
ERMP1 1.320 (1.061 − 1.644) 0.013
PGK1 1.978(1.311 − 2.985) 0.001
KPNA3 1.757 (1.013 − 3.045) 0.045
GPD2 1.796 (1.166 − 2.766) 0.008
P4HA1 1.374 (1.020 − 1.850) 0.037
EGLN3 1.228 (1.017 − 1.483) 0.033
PLOD2 1.301(1.027 − 1.648) 0.029
RACGAP1 1.629(1.023 − 2.595) 0.040
RNASE2 1.512(1.012 − 2.258) 0.044
RNASE3 13.051(1.977 − 86.151) 0.008
CSRP2 0.672(0.519 − 0.871) 0.003
ARL4D 1.368(1.015 − 1.846) 0.040
ULK1 0.620(0.419 − 0.917) 0.017
ZC3H12D 0.495(0.251 − 0.976) 0.042
RPS28 0.636 (0.406 − 0.997) 0.048
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5 years, indicating a satisfactory prediction of this 
prognostic model (Figure 5a). Compared to age 
(AUC = 0.619), gender (AUC = 0.489), grade 
(AUC = 0.572), stage (0.654), T-stage 
(AUC = 0.639) and N-stage (AUC = 0.657), our 
risk score demonstrated a better prediction perfor-
mance with an AUC value of 0.760. Univariate Cox 
regression showed that the stage (HR = 2.299, 95% 
CI = 1.352–3.911, P < 0.01), T-stage (HR = 1.634, 

95%CI = 1.132–2.358, P < 0.01), N-stage 
(HR = 2.138, 95%CI = 1.387–3.298, P < 0.001) and 
risk score (HR = 1.211, 95%CI = 1.137–1.290, 
P < 0.001) were associated with the prognosis of 
patients with OCSCC (Figure 5c). According to the 
multiple Cox regression analysis, the risk score 
remained the only independent predictor for the 
prognosis of patients with OCSCC (HR = 1.223, 
95%CI = 1.128–1.325, P < 0.001) (Figure 5d).

Figure 3. Construction of the prognostic model. (a, b) Lasso analysis identified 11 RBPs closely related to the prognosis of OCSCC. (c) 
Forest plot of the multiple Cox regression. Seven RBPs were determined as independent predictors for the prognosis of OCSCC.
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Validation of the prognostic model and 
nomogram construction

The internal (TCGA) and external (GSE41613) 
testing datasets were used to validate the predic-
tion of the prognostic model. The risk score 
formula mentioned above was used for the two 
testing groups. Patients in the low-risk group had 
a better prognosis than those in the high-risk 
group, which was similar to the findings in the 
training dataset (Figure 6a-d). The AUC of the 
ROC curve in the internal testing group was 
0.846 at 1 year, 0.659 at 3 years, and 0.728 at 
5 years, while the values in the external testing 
group were 0.633 at 1 year, 0.631 at 3 years, and 
0.654 at 5 years (Figure 6e and f). Moreover, the 
present prognostic model was compared with the 
two published OSCC signatures [14,15]. Hou’s 
signature consisted of 13 prognostic autophagy- 
related genes, and the Miao’s model was con-
structed based on 7 prognostic long non-coding 
RNAs. Compared to the two models, our model 
exhibits a better performance (Figure S1).

Based on the above prognostic model, the role of 7 
hub RBPs was displayed in survival analysis by 
nomogram (Figure 7a), which was used to evaluate 
the prognostic prediction for patients with OCSCC. 
By summing up the score for each independent pre-
dictor, we obtained the total points, by estimation of 
the 1-, 3- and 5-year survival rates of patients with 
OCSCC. The predictive capability of the nomogram 
was validated by calibration curves and concordance 
index in the TCGA training dataset and external 
(GSE41613) testing dataset. Figure 7b shows the 
consistency between predicted survival and actual 
survival in the training dataset, with a C-index of 
0.753 (95%CI = 0.714–0.792, P < 0.001). In the 
GSE41613 testing dataset, the C-index was 0.674 
(95%CI = 0.670–0.678, P < 0.01), suggesting a decent 
predictive capability of the nomogram (Figure 7c).

Validation of mRNA expression

To further confirm the mRNA expression of RBPs 
in OCSCC, qRT-PCR was used to detect the 

Figure 4. Survival analysis of TCGA training dataset. A. Dividing high and low risk group by median risk score; B. Survival time and 
status of OCSCC patients. C. Heatmap of the 7 significant RBPs expression. D. T-SNE analysis demonstrated that the patients in low 
and high risk groups were distributed in two directions. E. Survival curves showed noticeable stratification of high and low risk 
group.
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mRNA expression levels of the 7 prognostic RBPs 
in NOK and CAL33 cell lines. In CAL33 cells, the 
expression of ERMP1, RNASE3 and ARL4D was 
significantly higher than that in NOK cells 
(P < 0.05) (Figure 8). The mRNA expression of 
CSRP2, ULK1, ZC3H12D and RPS28 was signifi-
cantly decreased in CAL33 cells, compared with 
NOK cells (P < 0.05) (Figure 8).

GO functional, KEGG pathway enrichment 
analysis and gene correlation network

To further understand the biological functional 
pathways of the 7 hub RBPs in OCSCC, the GO 
functional and KEGG pathway enrichment ana-
lyses were conducted. Significant enrichment 

was found in the RNA catabolic process, endo-
nuclease activity and nuclease activity (Table 1, 
P < 0.05, FDR < 0.05) (Figure 9a). Moreover, 
KEGG pathway analysis showed that these hub 
RBPs were significantly enriched in asthma, 
mitophagy-animal, longevity regulating pathway 
and AMPK signaling pathway (Figure 9b). In 
addition, a correlation network for the potential 
correlation between hub RBPs was developed. As 
shown in Figure 9c, the correlation network 
contained 8 edges and 6 nodes (ARL4D, 
CSRP2, RPS28, ZC3H12D, RNASE3, and 
ULK1). The correlation between RNASE3 and 
ULK1, RPS28 and ZC3H12D, CSRP2 and 
ZC3H12D was negative, while the other correla-
tions were positive.

Figure 5. Predictive performance of the prognostic model in training dataset. A. ROC curves of the prognostic model in 1-, 3-, 5-year. 
B. ROC curves of the clinical risk factors and RBPs-related risk score for 1-year survival. C, D. Univariable and multiple Cox regression 
analysis involving clinical risk factors and the risk score.
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Discussion
Despite advances in diagnosis and treatment, the 
outcome of OCSCC remains poor. As a malignant 
neoplasm, OCSCC involves the alteration of onco-
genes and tumor suppressor genes. With the dawn 
of whole-genome sequencing, the underlying 
genetic changes of OCSCC were likely unveiled, 

which enabled early diagnosis and targeted therapy 
to come on the scene. Studies have shown that 
RBPs are crucial for post-transcriptional gene reg-
ulation [7]. Dysregulated expression of RBPs can 
lead to various human tumors [16]. Thus, 
a systematic analysis of RBP expression in 
OCSCC may help uncover the underlying 

Figure 6. Internal and external validation of the prognostic model. A, B. The distribution of survival time, life status and the 
expression patterns of the 7 prognostic RBPs in TCGA internal testing dataset and GSE41613 testing dataset. C, D. Survival curves of 
high and low risk group showed noticeable stratification in two testing datasets. E, F. ROC curve of TCGA testing group and 
GSE41613 testing group in 1-, 3-, 5-year survival.
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molecular mechanism and thus identify potential 
diagnostic biomarkers and treatment targets for 
OCSCC. With the development of high- 
throughput techniques, researchers are able to 
obtain abundant online information to study 
using bioinformatics programs. Here, using bioin-
formatics resources, the RNA sequence data were 
acquired to analyze the expressions of different 
RBPs between OCSCC and healthy tissues. 
A prognostic model was constructed followed by 

an evaluation of its compatibility. Furthermore, 
the mRNA expression of RBPs in normal and 
OCSCC cell lines was assessed to validate the 
analytical results.

A 7-RBP prognostic model was conducted using 
the Lasso-Cox regression analysis. The model was 
validated using TCGA and GSE41613 datasets. The 
ROC analysis showed that the risk score obtained 
from the model demonstrated better prediction per-
formance than other routine clinical factors. 

Figure 7. Nomogram to predict 1-, 3- and 5-year survival rate of OCSCC patients. A. Prognostic nomogram to predict survival of 
OCSCC patients based on TCGA dataset. B, C. The calibration plots for 1-, 3- and 5-year survival in TCGA training dataset (b) and 
testing dataset (c) demonstrated that the nomogram-predicted survival fit well with the actual survival.
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Currently, the TNM stage and histopathological 
grade are widely used by clinicians to evaluate the 
prognosis of OCSCC [17]. However, prognostic eva-
luation based on tumor stage and grade only con-
siders tumor per se. According to our results, the 
AUC values for stage and grade were 0.654 and 
0.572 respectively. Our RBP-related risk score 
reached an AUC value of 0.760. Our study provides 
a reliable way to predict the prognosis of patients 
with OCSCC, which could help in planning the 
treatment and assessing the survival.

In the present study, 7 RBPs were identified as 
independent predictors for the prognosis of 
OCSCC using Lasso-Cox regression analysis. The 
RBPs, including ERMP1, RNASE3, and ARL4D, 
were suggested to be related to poor prognosis 
and therefore, can be regarded as oncogenes. 
Endoplasmic reticulum metalloprotease 1 
(ERMP1) is located on chromosome 9p24 and is 
found to be an amplicon in cancers [18]. Qu et al 
reported that miR-148b suppresses human endo-
metrial cancer RL95-2 cell proliferation by inhibit-
ing ERMP1 [19]. Overexpression of ERMP1 
enhances cell proliferation, whereas knockdown 
of ERMP1 inhibits cell proliferation. Meanwhile, 
ERMP1 has been found to function as a prognostic 
gene in kidney renal clear cell carcinoma by 

bioinformatics analysis, which is consistent with 
the findings of the present study [20]. 
Collectively, higher expression levels f ERMP1 
may suggest a poor prognosis in cancers. 
RNASE3 (also known as eosinophil cationic pro-
tein, ECP) is a major eosinophil secreted protein 
[21]. In patients with renal cell adenocarcinoma 
cancer, the serum concentrations of ECP were 
higher than those of the controls [22]. An 
in vitro study found that ECP affected the viability 
of human oral squamous carcinoma cells [23]. 
However, considering the involvement of ECP in 
the immune defense processes, it is not easy to 
determine the role of high expression of ECP in 
suggesting the upcoming victory against the 
tumor, or the severity of the tumor [21]. In our 
study, the increased ECP suggested a poor prog-
nosis of OCSCC, which was in line with the qRT- 
PCR results that showed higher expression of ECP 
(RNASE3) in oral cancer cell line. ADP- 
ribosylation factor (Arf)-like 4D (ARL4D) is an 
Arf-like small GTPase that regulates actin cytoske-
leton remodeling, cell morphology and migration 
[24]. Lin et al reported that ARL4D plays an 
important role in microtubule growth [25]. 
Upregulated ARL4D promotes neurite outgrowth 
in N1E-115 neuroblastoma cells [26]. Taken 

Figure 8. The mRNA expression level of seven prognostic genes in the normal oral keratinocyte cells (NOK) and OCSCC cells (CAL33). 
The expression of ERMP1, RNASE3, ARL4D were significantly upregulated in CAL33 than the control (NOK), while the expression of 
CSRP2, ULK, ZC3H12D, RPS28 were significantly downregulated in CAL33 compared with the NOK cells. *P < 0.05, **P < 0.01, 
***P < 0.001.
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together with our findings, ARL4D can serve as an 
oncogene, at least, for OCSCC.

In our study, CSRP2, ULK1, ZC3H12D and 
RPS28 were found to be associated with a better 
prognosis and can be considered as tumor sup-
pressor genes. Cysteine-rich protein 2 (CSRP2) has 
been implicated in many types of cancer. In head 
and neck squamous cell carcinoma (HNSCC), the 
high expression of CSRP2 implied a better prog-
nosis, which is highly consistent with our results 
[27]. A previous study reported lower expression 
of CSRP2 in colorectal cancer tissues than in nor-
mal tissues [28]. The progression of colorectal 
cancer can be suppressed by CSRP2 via ERK, 
PAK, and HIPPO signaling pathways in vitro 
[28]. ULK1 (unc-51 like autophagy activating 
kinase 1) is a key regulator of autophagy [29]. 
The increased acetylation of ULK1 results in the 
activation of autophagy in the SAS oral cancer cell 
line [30]. Knockout of ULK1 led to mitophagy 

deficiency and promoted the metastasis of breast 
cancer cells, which implied that ULK1 might be 
a therapeutic target for breast cancer. Knockdown 
of Aurora B promoted autophagy by decreasing 
mTOR/ULK1, and thereby suppressing osteosar-
coma metastasis [31]. As autophagy is a double- 
edged sword in tumorigenesis and progression, 
more research is needed to elucidate the physiolo-
gical and pathological functions of ULK1 in 
OCSCC. In this study, we found that the higher 
the expression of ZC3H12D (zinc finger CCCH- 
type containing 12D), the better the prognosis. 
According to the literature, ZC3H12D can regulate 
cell growth by binding the 3ʹ untranslated region 
of mRNA [32]. ZC3H12D might act as a tumor- 
suppressor gene by regulating cell growth in lym-
phoma [32] and lung cancer [33]. As for RPS28 
(ribosomal proteins S28), it could influence T cell- 
mediated cancer immunosurveillance by regulat-
ing the generation of MHC class I peptide on the 

Figure 9. GO functional, KEGG pathway enrichment analysis and correlation network of the 7 prognostic RBPs. A, B. GO functional, 
KEGG pathway enrichment analysis. C. Correlation network of the 7 hub RBPs. The correlation coefficients were denoted by different 
colors.

BIOENGINEERED 7259



cell surface [34]. Nevertheless, RBPs in OCSCC 
remain to be a cap of knowledge in the literature. 
Considering their biological behavior and func-
tions in different cancers, as well as the findings 
of the present study, it is reasonable to assume that 
these 7 prognostic RBPs could be used as potential 
biomarkers for prognosis evaluation in patients 
with OCSCC.

Moreover, our in vitro qRT-PCR analysis con-
firmed the differentially expressed mRNA of the 7 
prognostic RBPs between normal and OCSCC 
cells, which served as the molecular evidence for 
our prognostic model. Using GO and KEGG ana-
lysis, it was found that these prognostic RBPs were 
involved in many biological processes and signal-
ing pathways, for example, ULK1 participated in 
the AMPK signaling pathway. This could be direc-
ted toward further research on the underlying 
mechanisms. Nevertheless, the 7 prognostic RBPs 
we obtained in the present study are still poorly 
understood in OCSCC. Further studies are needed 
to elucidate their prognostic role and possible 
mechanisms in OCSCC.

To assess the role of prognostic RBPs and pro-
vide clinician-friendly prognostic models for 
patients with OCSCC, we created a nomogram 
based on the multiple Cox regression prognostic 
model. A nomogram is a prognostic device con-
taining a simple graphical representation of 
a predictive model [35]. It can able to integrate 
biological and clinical models and has been recom-
mended as a novel standard superior to the tradi-
tional tumor-node-metastasis (TNM) staging 
systems for many cancers [36].

There were some recent studied aimed to build 
prognostic signature for oral malignant carcinoma 
[14,15,37]. Zhao et al [37] reported a prognostic 
model based on GEO dataset for predicting the 
prognosis of oral squamous cell carcinoma. Hou 
et al [14] build an autophagy-related prognostic 
signature and Miao et al [15] constructed 
a lncRNAs prognostic model. However, these 
study lack of validation of laboratory sample. 
Our study provided mRNA expression validation 
of the 7 prognostic genes. Further molecular 
mechanism study of the 7 prognostic genes 
would be an interesting topic to explore.

Overall, our RBP-related prognostic model was 
built on the basis of the TCGA database and was 

validated in the internal (TCGA) and external 
(GSE41613) databases. The AUC values of the 
ROC curve in the training and test groups were 
0.764 and 0.633, respectively, at 1 year, indicating 
moderate performance in predicting the overall 
survival of patients with OCSCC. The risk score 
based on our prognostic model demonstrated 
a better prediction performance than the current 
clinical factors, which further confirmed the clin-
ical significance of the risk score in the present 
study. However, the construction and validation of 
the prognostic model were based on the existing 
rather than the clinical patient cohort, which was 
a limitation of the present study. Further prospec-
tive studies that focus on clinical patient cohorts 
may help to evaluate the capability of our prog-
nostic model. The underlying biological mechan-
ism of RBPs in OCSCC remains to be further 
explored.

Conclusions

The expression of RBPs was comprehensively ana-
lyzed in OCSCC and healthy tissues. ERMP1, 
RNASE3, ARL4D, CSRP2, ULK1, ZC3H12D and 
RPS28 were associated with the overall survival in 
OCSCC. These findings could be used to predict 
clinical prognosis and to identify potential thera-
peutic targets for OCSCC.
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