

Reconsideration of species boundaries and proposed DNA barcodes for *Calonectria*

Q.L. Liu^{1,2,3,5}, J.Q. Li^{1,2,3,5}, M.J. Wingfield³, T.A. Duong³, B.D. Wingfield³, P.W. Crous^{3,4}, and S.F. Chen^{1,2*}

¹China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China; ²State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, 100091, Beijing, China; ³Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa; ⁴Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT Utrecht, the Netherlands

*Correspondence: S.F. Chen, shuaifei.chen@gmail.com ⁵These authors contributed equally to this work.

Abstract: Calonectria represents a genus of phytopathogenic ascomycetous fungi with a worldwide distribution. In recent years, there has been an increase in the number of taxonomic studies on these fungi. Currently, there are 169 described species of *Calonectria* based on comparisons of DNA sequence data, combined with morphological characteristics. However, for some of these species, the sequence data utilised at the time of their description were relatively limited. This has justified an urgent need to reconsider the species boundaries for *Calonectria* based on robust genus-wide phylogenetic analyses. In this study, we utilised 240 available isolates including the ex-types of 128 *Calonectria* species, and re-sequenced eight gene regions (*act, cmdA, his3*, ITS, LSU, *rpb2, tef1* and *tub2*) for them. Sequences for 44 *Calonectria* species, for which cultures could not be obtained, were downloaded from GenBank. DNA sequence data of all the 169 *Calonectria* species were then used to determine their phylogenetic relationships. As a consequence, 51 species were reduced to synonymy, two new species were identified, and the name *Ca. lauri* was validated. This resulted in the acceptance of 120 clearly defined *Calonectria* spp. The overall data revealed that the genus includes 11 species complexes, distributed across the Prolate and Sphaero-Naviculate Groups known to divide *Calonectria* species. Sequences for the genus, as well as for each of the 11 species complexes. No single gene regions provided a clear identity for all *Calonectria* species. Sequences of the *tef1* and *tub2* genes were the most reliable markers; those for the *cmdA, his3, rpb2* and *act* gene regions also provided a stable and reliable resolution for *Calonectria* spp., while the ITS and LSU failed to produce useful barcodes for the *cmdA, his3, rpb2* and *act* gene regions also provided stable and reliable resolution for all 11 species complexes. A six-gene combined phylogeny resolved all 120 *Calonectria* species, and revealed that *te*

Key words: *Cylindrocladium*, DNA barcoding, Multi-gene phylogeny, Plant pathogens, Taxonomy. Taxonomic novelties: New species: *Calonectria lauri* Lechat & Crous, *Ca. lombardiana* Q.L. Liu & S.F. Chen, *Ca. pauciphialidica* Q.L. Liu & S.F. Chen.

Available online 7 October 2020; https://doi.org/10.1016/j.simyco.2020.08.001.

INTRODUCTION

The genus *Calonectria* (*Hypocreales, Nectriaceae*) includes many aggressive plant pathogens and species that are broadly distributed in sub-tropical and tropical regions of the world. These species have a wide host range that includes more than 335 plant species (Crous 2002) and they are commonly collected from soils, leaves, stems, roots and fruits (Lombard *et al.* 2010a, 2015a, Chen *et al.* 2011, Alfenas *et al.* 2015, Gehesquiere *et al.* 2015, Li *et al.* 2017, Lopes *et al.* 2017, Marin-Felix *et al.* 2017, Jiang *et al.* 2019, Pham *et al.* 2019). A total of 169 species have been described in *Calonectria* (Ca.) using DNA sequence-based phylogenetic inference and morphological comparisons (Li *et al.* 2017, Marin-Felix *et al.* 2019).

Many species of *Calonectria* are well-known causal agents of important diseases on various agricultural, horticultural and forestry crops. Species such as *Ca. pseudonaviculata* and *Ca. henricotiae* are important agents of boxwood (*Buxus* spp.) blight in Germany, the Netherlands, Slovenia, UK and USA (Henricot & Culham 2002, Brand 2005, Gehesquiere *et al.* 2015, Daughtrey 2019, Freitas *et al.* 2019). Many species such as *Ca. pentaseptata* (in China and Vietnam, Crous *et al.* 2012, Li *et al.* 2017),

Ca. pteridis (in Brazil, Freitas *et al.* 2019), *Ca. reteaudii* (in Australia, India and Vietnam, Old *et al.* 2003) and *Ca. spathulata* (in Colombia, Rodas *et al.* 2005) are important causal agents of Calonectria leaf blight (CLB) in *Eucalyptus* plantations. *Calonectria ilicicola* is known as a common pathogen responsible for the red crown rot of soybeans in China, Japan and USA (Gai *et al.* 2017, Yamamoto *et al.* 2017, Kleczewski *et al.* 2019), causing significant yield losses.

The importance of *Calonectria* spp. has justified many taxonomic studies on these fungi in recent years. Lombard *et al.* (2010a) provided a genus-wide phylogeny for the 66 available *Calonectria* spp. That study included sequence data for seven gene regions including *act* (actin), *cmdA* (calmodulin), *his3* (histone H3), ITS (the internal transcribed spacer regions 1 and 2 and the 5.8S gene of the ribosomal RNA), LSU (28S large subunit RNA gene), *tef1* (translation elongation factor 1-alpha) and *tub2* (β-tubulin). Subsequently, a polyphasic approach, including combined DNA sequence data for the *cmdA*, *tef1* and *tub2* gene regions together with morphological comparisons was used to resolve the taxonomy of 141 *Calonectria* species (Lombard *et al.* 2016). A year later, Marin-Felix *et al.* (2017) provided *rpb2* sequence data for 68 *Calonectria* species and

Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.

^{© 2020} The Authors. Published by Elsevier B.V. on behalf of Westerdijk Fungal Biodiversity Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Jayawardena et al. (2019) reconstructed the phylogeny of Calonectria based on sequence data for cmdA, his3, tef1 and tub2 gene regions. A problem has, however, arisen due to a lack of uniformity of sequence data in different studies, and particularly the his3 and rpb2. Futhermore, some other gene regions are not consistently available for all of 169 species of Calonectria. This calls to question the strength and relevance of the phylogenetic backbone for an important group of plant pathogens as well as the reliability of species boundaries that must define plant disease diagnoses and management.

DNA barcoding provides an effective and widely used tool for fungal species identification (Schoch *et al.* 2012, Stielow *et al.* 2015, Vu *et al.* 2019). Various molecular markers have been utilised for species recognition in *Calonectria* (Lombard *et al.* 2010a, 2016, Li *et al.* 2017, Marin-Felix *et al.* 2017, Jayawardena *et al.* 2019). But there is a lack of consistency in the markers used in different studies. There remains a need for a standard suite of DNA barcodes to distinguish among all species in *Calonectria.* This can be a complex goal given that barcodes for a particular species complex in a genus is not necessarily best suited to other species complexes, as has been seen in *Fusarium* (Lombard *et al.* 2019, Maryani *et al.* 2019). Under these circumstances, it has become necessary to explore whether a similar situation also applies to *Calonectria.*

The aim of this study was to produce a comprehensive suite of DNA sequence data for all 169 currently recognised species of *Calonectria* using eight gene regions. These data were then utilised to construct a genus-wide phylogeny and to reconsider the phylogenetic relationships and species boundaries for *Calonectria*. Furthermore, the resolution power of each of these eight gene regions was evaluated for the genus as a whole and the species complexes that define it. This made it possible to identify an optimal suite of DNA barcodes that can be used to reliably identify *Calonectria* species.

MATERIALS AND METHODS

Isolates

Sequence data for all the 169 described Calonectria species (including data for the ex-type isolates) were included in the phylogenetic analyses. Of these, 240 isolates representing 128 species (Supplementary Table S1) were obtained from culture collections, including those of the Westerdijk Fungal Biodiversity Institute (CBS), Utrecht, The Netherlands, the culture collection of the Forestry Agricultural and Biotechnology Institute, University of Pretoria, Pretoria (CMW), South Africa, and the Culture Collection of the China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, GuangDong Province, China. Isolates from these culture collections were plated onto 2 % malt extract agar (MEA: 20 g malt extract and 20 g agar per litre water) and subsequently single hyphal-tips were transferred to fresh MEA plates and incubated at 25 °C for 7 d. It was not possible to obtain cultures for 76 isolates representing 44 of the described Calonectria species (Supplementary Table S2). In this case, sequences were downloaded from GenBank (http://www.ncbi.nlm.nih.gov) and included in the analyses. For three species (Ca. angustata, Ca. pini and Ca. metrosideri), isolates were sequenced and data

were also downloaded from GenBank. They are consequently included in both Supplementary Tables S1 and S2. The fungarium specimens for the novel taxa represented by dried sporulating cultures were deposited in the Herbarium Mycologicum, Academiae Sinicae (HMAS), Beijing, China.

DNA extraction, PCR and sequencing

For the 240 Calonectria isolates representing 128 species obtained from culture collections (Supplementary Table S1) and used in this study, mycelium was harvested from 7-d-old cultures on MEA using a sterile scalpel, and genomic DNA was extracted using the CTAB method "5" described by Van Burik et al. (1998). Eight different loci were amplified and sequenced, including act. cmdA, his3, ITS, LSU, rpb2, tef1 and tub2. Primers ACT-512F and ACT-783R (Carbone & Kohn 1999) were used to amplify the act gene region; CAL-228F and CAL-2Rd (Carbone & Kohn 1999, Quaedvlieg et al. 2011) for the cmdA gene region; CYLH3F and CYLH3R (Crous et al. 2004) for the his3 gene region; V9G (De Hoog & van den Ende 1998) and ITS4 (White et al. 1990) for the ITS region; LR0R (Moncalvo et al. 1995) and LR5 (Vilgalys & Hester 1990) for the LSU region; fRpb2-5F and fRpb2-7cR (Liu et al. 1999, Reeb et al. 2004) for the rpb2 gene region; EF1-728F (Carbone & Kohn 1999) and EF2 (O'Donnell et al. 1998) for the tef1 gene region and primers pairs T1 (O'Donnell & Cigelnik 1997) and CYLTUB1R (Crous et al. 2004) were used to amplify the tub2 gene region.

The PCR reaction mixtures consisted of 17.5 μ L TopTaqTM Master Mix, 1 μ L of each primer, 2 μ L DNA samples and nuclease-free H₂O were made up to the final volume of 35 μ L. The PCR conditions for the seven regions (with the exception of *rpb2*) were as follows: an initial denaturation step at 95 °C for 5 min; then 35 amplification cycles at [95 °C for 30 s; annealing 61 °C (*act*) / 55 °C (*cmdA*, *his3*, ITS, LSU) / 52 °C (*tef1* and *tub2*) for 30 s; 72 °C for 1 min], and the final extension step at 72 °C for 10 min. For the *rpb2* gene region, a touchdown PCR protocol was used: an initial denaturation step at 95 °C for 5 min, then (95 °C for 30 s, 58 °C for 30 s, 72 °C for 90 s) × 10 cycles, (95 °C for 30 s, 58 °C for 45 s, 72 °C for 90 s + 5 s/cycle increase) × 30 cycles, and final extension step at 72 °C for 10 min.

All the PCR products were sequenced in both directions using the same primers used for amplification. Raw sequences for each gene region were edited and consensus sequences were generated using Geneious v. 9.1.4 (Kearse *et al.* 2012).

Phylogenetic analyses

Sequence data for eight gene regions of 316 *Calonectria* isolates were used in the phylogenetic analyses. These were derived from 240 isolates representing 128 species obtained from culture collections and sequenced in this study (Supplementary Table S1). For the 76 isolates representing 44 species that we were unable to obtain, available sequence data were downloaded from GenBank (Supplementary Table S2). Sequence data for *Curvicladiella cignea* (CBS 109167 and CBS 109168) were used as the outgroup taxa in the analyses following the example of Pham *et al.* (2019). Multiple sequences were aligned using the online version of MAFFT v. 7 (Katoh & Standley 2013) and the alignment was trimmed at both ends where necessary with MEGA v. 6.0.5 (Tamura *et al.* 2013). For some of the 316 isolates, not all the eight gene regions were available, and here

all of the available sequences were used in the individual analyses. In the case of the eight gene region combined analyses, missing sequence data were replaced with "N".

Two phylogenetic approaches were used in this study. These included Maximum Parsimony (MP) analyses performed with PAUP v. 4.0 b10 (Swofford 2003) and Maximum Likelihood (ML) analyses performed with PhyML v. 3.0 (Guindon & Gascuel 2003). The sequence datasets for the eight individual gene regions and a concatenated dataset for those regions were used to determine the phylogenetic relationships among species. A partition homogeneity test (PHT) (Farris *et al.* 1994) was conducted to determine whether the datasets for the eight gene regions could be combined.

For the MP analyses, all characters were unordered and equally weighted. Gaps were regarded as a fifth character, phylogenetic trees were obtained using a heuristic tree search criterion, including 1 000 random stepwise additions and treebisection-reconstruction (TBR) branch swapping. Branches of zero-length were collapsed. Statistical supports for tree-branch points were determined using bootstrap analyses with 1 000 replicates (Felsenstein 1985). Tree length (TL), retention index (RI), consistency index (CI), rescaled consistency index (RC) and homoplasy index (HI) (Supplementary Table S3) were calculated for parsimony trees.

For the ML analyses, the best substitution model for each dataset was selected by JModeltest v. 2.1.7 (Posada 2008). All sequences generated in this study were submitted to GenBank (www.ncbi.nlm.nih.gov) (Supplementary Table S1) and final alignments were deposited in TreeBASE (http://treebase.org).

Individual Calonectria species were recognised based on concordance of multiple gene genealogies. Two criteria were applied in determining species boundaries based on phylogenetic analyses and sequence comparisons. These were (i) when isolate(s) formed a distinct lineage that differentiated them from other isolates in at least two of the eight individual gene regions sequenced and where these groupings did not contradict those for other loci; (ii) when the isolates formed independent lineages supported by high bootstrap values in the combined tree based on the eight-gene concatenated dataset, and where they had fixed Single Nucleotide Polymorphisms (SNPs) that differentiated them from their phylogenetically closest relatives. These phylogenetically defined taxa were then also considered in terms of their morphology and mating type. To avoid confusion, in Supplementary Tables S1 and S2, the code "A" was used to represent the Calonectria species before the taxonomic reconsideration of species boundaries in the present study. The code "B" was used for the 120 species names that have been accepted after revision and as presented in the Taxonomy section of this study.

Morphology, mating system and geographic distribution

Depending on their availability, isolates representing the novel *Calonectria* spp. were selected for morphological study. Synthetic nutrient-poor agar (SNA, Nirenburg 1981) was used to induce the asexual morphs in culture. Agar plugs from axenic cultures were transferred to five replicate plates of SNA and incubated at 25 °C for 7 d. Fungal structures were transferred to a drop of 85 % lactic acid on microscope slides. Gross

morphological characteristics were examined with a Zeiss Axio Imager A1 microscope (Carl Zeiss Ltd., Germany).

For isolates selected as the holotype of novel taxa, each characteristic morphological structure was measured with 50 replicates, and 30 replicate measurements were made for additional isolates. Minimum, maximum and average (mean) measurements were recorded as (minimum–) (average–standard deviation)–(aver+standard deviation) (–maximum).

Optimal growth temperatures for each of the novel *Calonectria* spp. were determined on MEA. Agar plugs were transferred from the actively growing edges of 7-d-old cultures with a 5 mm diam cork borer and inoculated at the centres of 90 mm Petri dishes containing MEA. Cultures were grown at seven different temperatures ranging from 5 °C to 35 °C, at 5 °C intervals (each isolate with five replicates). Colony diameters were measured after seven days. Colony colours were described based on the colour charts of Rayner (1970) and using 7-d-old cultures on MEA incubated at 25 °C.

Morphological characteristics of all *Calonectria* species were re-evaluated in comparison to multilocus DNA sequence phylogenetic analyses. The important morphological features include vesicle shape and diameter, macroconidial septation and dimensions, perithecial colour, number of ascospores in the asci, ascospore septation and dimensions. In addition, ex-type isolate location and the mating system (heterothallic or homothallic) were also considered where this was known.

Selection of DNA barcodes for species recognition

The analyses of DNA sequences for eight gene regions made it possible to identify clear boundaries between putative *Calonectria* species. These data formed the basis to test the success of each of these gene regions to distinguish species. This Identification Success Rate (ISR) was calculated by dividing the number of identified species for each gene region by the total number of species of *Calonectria* recognised in the phylogenetic analyses of eight gene regions.

The ISR of each candidate DNA barcode was computed based on the eight individual gene phylogenetic trees and the eight-gene combined phylogenetic tree. For each candidate DNA barcode, the ISRs were calculated both for the entire genus *Calonectria*, as well for each of the recognised species complexes.

RESULTS

Phylogenetic analyses

Sequence data generated for the eight gene regions of the 240 isolates representing 128 of the 169 described species of *Calonectria* were deposited in GenBank (Supplementary Table S1). Amplicons generated for *act*, *cmdA*, *his3*, ITS, LSU, *rpb2*, *tef1* and *tub2* gene regions were approximately 300, 750, 500, 700, 870, 860, 560, 650 bp, respectively. Sequence data for the 76 isolates representing 44 species for which cultures could not be obtained were downloaded from GenBank and included in the final datasets (Supplementary Table S2).

Fig. 1. Phylogenetic tree of the genus Calonectria based on maximum likelihood (ML) analyses of combined DNA dataset of act, cmdA, his3, ITS, LSU, rpb2, tef1 and tub2 gene sequences. Codes A1 to A169 showed the 169 Calonectria species before their taxonomic reconsideration in this study, codes B1 to B120 indicated the 120 accepted Calonectria species after the revision emerging from this study. Seventy-six isolates unable to obtain in this study were marked in blue, their sequences were downloaded from NCBI. Bootstrap values \geq 80 % for ML and MP analyses are presented at the branches. Bootstrap values lower than 80 % are marked with "*", and absent analyses values are marked with "-". Ex-type isolates of Calonectria species after revision are marked with "T". The tree is rooted to Curvicladiella cignea (CBS 109167, and CBS 109168). Calonectria species grouped in 11 species complexes. Typical morphological characteristics, mating type and location (geographic regions where isolates have been identified) of the 11 species complexes are shown at the right side of the phylogenetic tree.

act+cmdA+his3+ITS+LSU+rpb2+tef1+tub2

Fig. 1. (Continued)

act+cmdA+his3+ITS+LSU+rpb2+tef1+tub2

Fig. 1. (Continued).

98/85 A69 Ca. kyotensis CBS 114550 A46 Ca. floridana CBS 114692 90/* A69 Ca. kyotensis CBS 114525 T 100/100 A132 Ca. pseudoturangicola CERC 7127 A132 Ca. pseudoturangicola CERC 7126 A162 Ca. turangicola CMW 35410 A162 Ca. turangicola CMW 35410 A162 Ca. turangicola CMW 31411	B55 Ca. kyotensis	
A61 Ca. hongkongensis CERC 7132 A61 Ca. hongkongensis CERC 7132 A61 Ca. hongkongensis CERC 3570 A61 Ca. hongkongensis CERC 3570 A61 Ca. hongkongensis CERC 3570	B48 Ca. hongkongensis	
100/100 ×16 A72 Ca. lateralis CMW 31412 T	B58 Ca. lateralis	
A82 Ca. malesiana CBS 112710	B66 Ca. malesiana	
A82 Ca. malesiana CMW 23687 T		
100/100 832 97/98 97/97 97/98 97/97 97/98 97/97 97/98 97/97 97/98 97/97 97/98 97/97 97/97 97/97 97/97 97/97 97/97 97/97 97/97 97/97 97/97 97	Bi Ca. asiauca B120 Ca. yunnanensis	
Tx16 A21 Ca. brassicicola CBS 112841 T	B17 Ca. brassicicola	
*/90 A66 Ca. indonesiana CBS 112826 *4 A150 Ca. sumatrensis CMW 23698 T *4 A150 Ca. sumatrensis CMW 30987 A66 Ca. indonesiana CBS 112936 A66 Ca. indonesiana CBS 112936	B112 Ca. sumatrensis	6. Calonectria kyotensis species
194/99i A71 Ca. Jantauensis CERC 3302 T		complex
A71 Ca. lantauensis CERC 3301	B57 Ca. lantauensis	
100/99 A5 Ca. aeknauliensis CMW 48254	B5 Ca. aeknauliensis	Vesicle shape:
A5 Ca. aeknauliensis CMW 48253 T		Sphaeropedunculate
A64 Ca. IIICICOIa CMW 30998 1	B51 Ca. Ilicicola	Macroconidia:
A 106 Ca. vegrandis CMW 48245 89/99 100/99 A36 Ca. curvispora CMW 23693 T ×4 4 A 102 Ca. pacifica CMW 30988	B31 Ca. curvispora	1-septate Perithecia colour: Orange to red-brown
A102 Ca. pacifica CMW 16726 T	B80 Ca. pacifica	Asci:
85/86100/99×16×16×16×16×16×16×16×16×16×16×16×16×16×16×16×16×16×16×16×17×18×18×18×19×11×11×12×12×13×14×15×16×16×17×18<	B4 Ca. aconidialis	Ascospores: 1-septate Mating type: Heterothallic, homothallic Location: Africa, Asia, Europe, North and South America
A34 Ca. colombiensis CMW 23676 I	B29 Ca. colombiensis	
A34 Ca. coloniblensis Civity 30900	B113 Ca. svzvgiicola	
A163 Ca Uniseptata CBS 413 67 T	B116 Ca. uniseptata	
100/100 ×16 100/100 A31 Ca. cochinchinensis CMW 47187 A31 Ca. cochinchinensis CMW 47186 A31 Ca. cochinchinensis CMW 47186 A31 Ca. cochinchinensis CMW 49915 T	B26 Ca. cochinchinensis	
100/100 A58 Ca. heveicola CMW 49935	P46 Ca havaiaala	
100/100 - A58 Ca, heveicola CMW 49920		
100/100 *8 98/96 A94 Ca. multistipitata CMW 47211 100/100 A94 Ca. multistipitata CMW 47192 ×16 100/100 A94 Ca. multistipitata CMW 47192 ×16 100/100 A94 Ca. chinensis CMW 30986 97/99 A27 Ca. chinensis CMW 30986 97/95 Ca. indenseis CMW 30874 T 100/100 A94 Ca. multistipitata CMW 47192 ×16 100/100 A97 Ca. chinensis CMW 30986 97/99 A27 Ca. chinensis CMW 30874 T	B23 Ca. chinensis	
99/98 A65 Ca. indonesiae CMW 23683 T	B52 Ca. Indonesiae	
100/100 HA87 Ca. montana CERC 8957 A87 Ca. montana CERC 8952 x16 A24 Ca. canadiana CMW 23673 T	B20 Ca. canadiana	
100/97 ×32 A110 Ca. penicilloides CMW 23696 T	B86 Ca. penicilloides	
 ★16 A90 Ca. multilateralis CBS 110927 A90 Ca. multilateralis CBS 110926 99/100 A90 Ca. multilateralis CBS 110932 T ★8 A90 Ca. multilateralis CBS 110931 100/100 A90 Ca. multilateralis CBS 115606 F 376 A90 Ca. multilateralis CBS 115615 	B71 Ca. multilateralis	8. Calonectria naviculata species complex
100/100 ^{80/94} A95 Ca. naviculata CBS 116080	B75 Ca. naviculata	Macroconidia: 1-septate
100/81 100/101 A95 Ca. naviculata CBS 101121 T	Di 5 Ga. naviculata	Perithecia colour:
A91 Ca. multinaviculata CBS 134859	B72 Ca. multinaviculata	Orange to red-brown
100/100 FTTT A92 Ca multinhialidica CMW 23688 T	B73 Ca. multiphialidica	Asci: 2-o-spored Ascospores: 3-septate
100/100 100/100 A126 Ca. pseudonaviculata CBS 116251 T		Mating type: Heterothallic
*8 L A126 Ca. pseudonaviculata CMW 23672	Bas Ca. pseudonaviculata	Location: Africa, Asia,
100/99 *10 A57 Ca. henricotiae CB041	B45 Ca. henricotiae	Europe, North and South
100/100 Cunvicladiella cignea CBS 100168		- incrita, occurria
×16 <i>Cu. cignea</i> CBS 109167 T		

act+cmdA+his3+ITS+LSU+rpb2+tef1+tub2

Fig. 1. (Continued).

H

0.05

-

Alignments for each of the gene regions and for the combined datasets were as follows: act (246 isolates, 286 characters), cmdA (314 isolates, 721 characters), his3 (305 isolates, 498 characters), ITS (268 isolates, 705 characters), LSU (267 isolates, 866 characters), rpb2 (234 isolates, 863 characters), tef1 (316 isolates, 563 characters), tub2 (285 isolates, 652 characters) and combined (318 isolates, 5154 characters). The partition homogeneity test (PHT) performed on the concatenated dataset of eight gene regions yielded a P-value of 0.01. This suggested some incongruence in the datasets for the eight regions, and the accuracy of the combined data could have suffered relative to the individual partitions (Cunningham 1997). Although the P-value was low, the datasets for multiple gene regions were combined for phylogenetic analyses, as has been done in a number of previous studies (Lombard et al. 2016, Marin-Felix et al. 2017, Pham et al. 2019).

Phylogenetic analyses based on the eight individual gene regions and the combined sequence datasets were conducted using both the ML and MP methods (TreeBASE No. 26083). Tree topologies derived from the ML and MP analyses of the six individual gene regions (act, cmdA, his3, rpb2, tef1 and tub2) and the combined datasets were essentially congruent with each other and they formed well-supported lineages generally matching the morphological features of the purported species. The non-coding gene regions (ITS and LSU) are known to have poor ability to discriminate between Calonectria species (Lombard et al. 2010a) and several species resided in a single clade even though they had clearly different morphological characteristics (Supplementary Figs S4, S5). Only the ML trees are presented in this study, and bootstrap support values from ML and MP analyses are indicated above the tree branches (Fig. 1, Supplementary Figs S1-8). Statistical results and important parameters emerging from the phylogenetic analyses were provided in Supplementary Table S3.

The combined datasets for the eight sequenced gene regions comprised 5 154 characters, including alignment gaps. Of these, 3472 were parsimony-uninformative and 1682 were parsimonyinformative. The eight-gene phylogenetic tree (Fig. 1) divided the Calonectria spp. into 11 well-supported clades and these reside in two major groups, the Prolate Group and the Sphaero-Naviculate Group. In the Prolate Group, species are characterised by their clavate to pyriform to ellipsoidal vesicles. Nine well-supported clades reside in the Prolate Group. This group includes nine species complexes including the Ca. brassicae, Ca. candelabrum, Ca. colhounii, Ca. cylindrospora, Ca. gracilipes, Ca. mexicana, Ca. pteridis, Ca. reteaudii and Ca. spathiphylli species complexes (Fig. 1). The remaining two wellsupported clades reside in the Sphaero-Naviculate Group. The Sphaero-Naviculate Group is defined by vesicles having sphaeropedunculate or naviculate morphology. The two clades in this group accommodate two species complexes, those defined by Ca. kyotensis and Ca. naviculata (Fig. 1).

The *Calonectria* species before their taxonomic reconsideration in this study (codes A1 to A169) and after the revision emerging from this study (codes B1 to B120) are presented (Supplementary Tables S1 and S2, Fig. 1, Supplementary Figs S1–8). Based on the results of this study and a reconsideration of species boundaries, all accepted species are listed in Table 1. These species are also presented in the Taxonomy section below together with the taxonomic synonyms.

Morphology, mating system and geographic distribution

The key morphological characteristics of all Calonectria species were summarised, listing all species in the 11 species complexes (Supplementary Table S4). Based on the typical/dominant vesicle shape of species in each species complex, the 11 species complexes were separated into six groups: (1) clavate or narrowly clavate vesicle group (Ca. brassicae, Ca. colhounii, Ca. gracilipes and Ca. reteaudii species complexes); (2) naviculate vesicle group (Ca. naviculata species complex); (3) ellipsoidal to obpyriform vesicle group (Ca. candelabrum species complex); (4) ellipsoidal vesicle with papillate apex group (Ca. mexicana species complex); (5) sphaeropedunculate vesicle group (Ca. kyotensis and Ca. spathiphylli species complexes); (6) varied shapes vesicle group (Ca. cylindrospora and Ca. pteridis species complexes) (Table 2, Fig. 1). Other than vesicle shape, differences in other key morphological features including macroconidial septation, perithecial colour, number of ascospores in the asci and ascospore septation are presented in Table 2, Supplementary Table S4 and Fig. 1. Differences in mating type and geographic distribution for the species in all 11 species complexes are documented in Table 2, Supplementary Table S4 and Fig. 1.

Species in four species complexes (Ca. brassicae, Ca. colhounii, Ca. gracilipes and Ca. reteaudii) have vesicles that are clavate or narrowly clavate. The Ca. brassicae species complex generally produces 1-septate macroconidia and 1-septate ascospores, distinguishing them from taxa in the Ca. colhounii, Ca. gracilipes and Ca. reteaudii species complexes. The Ca. colhounii species complex typically has yellow perithecia and 4spored asci, rare in all the other species complexes. Species in both the Ca. gracilipes and Ca. reteaudii species complexes generally produce macroconidia with more than three septa (Table 2, Supplementary Table S4). Species in the Ca. naviculata species complex typically have naviculate vesicles and those in the Ca. mexicana species complex generally produces ellipsoidal vesicles with papillate apices, morphological features rarely found in other species complexes (Table 2, Supplementary Table S4). Ellipsoidal to obpyriform vesicles are typical of species in the Ca. candelabrum species complex (Table 2. Supplementary Table S4) and those in the Ca. kyotensis and Ca. spathiphylli species complexes generally produce sphaeropedunculate vesicles and have 1-septate macroconidia. Perithecial colour, and number of ascospores in the asci of Ca. kyotensis species complex taxa are generally similar to those in the Ca. spathiphylli species complex (Table 2, Supplementary Table S4). Species in the Ca. cylindrospora and Ca. pteridis species complexes do not have vesicles that are morphologically characteristic, those the former have vesicles of variable shape, while those in the latter are generally clavate or ovate (Table 2, Supplementary Table S4).

Morphological comparisons showed that most of the *Calonectria* species can be distinguished based on vesicle shape and diameter, macroconidial septation and dimensions, perithecial colour, number of ascospores in the asci, ascospore septation and dimensions (Supplementary Table S4). Some species were difficult to distinguish solely based on morphological characteristics. For example, the *Ca. pseudospathulata* (*Ca. candelabrum* species complex) and *Ca. auriculiformis* (*Ca. cylindrospora*

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B1	Calonectria acaciicola	CMW 47173 [⊤]	CBS 143557	Soil (Acacia auriculiformis plantation)	Do Luong, Nghe An, Vietnam	N.Q. Pham & T.Q. Pham	MT334933 ⁷ ; MT335160; MT335399; MT359620; MT359380; MT412474; MT412690; MT412930	Pham <i>et al.</i> (2019), this study
		CMW 47174	CBS 143558	Soil (A. auriculiformis plantation)	Do Luong, Nghe An, Vietnam	N.Q. Pham & T.Q. Pham	MT334934; MT335161; MT335400; MT359621; MT359381; MT412475; MT412691; MT412931	Pham <i>et al.</i> (2019), this study
B2	Ca. acicola	CMW 30996 [⊤]	-	Phoenix canariensis	Northland, New Zealand	H. Pearson	MT334935; MT335162; MT335401; MT359622; MT359382; MT412476; MT412692; MT412932	Gadgil & Dick (2004), Lombard <i>et al</i> . (2010a), this study
		CBS 114812	CMW 51216	P. canariensis	Northland, New Zealand	H. Pearson	MT334936; MT335163; MT335402; MT359623; MT359383; MT412477; MT412693; MT412933	Gadgil & Dick (2004), Lombard <i>et al</i> . (2010a), this study
B3	Ca. aciculata	CERC 5342 ^T	CBS 142883; CMW 47645	Eucalyptus urophylla × E. grandis	YunNan, China	S.F. Chen & J.Q. Li	MT334937; MT335164; MT335403; MT359624; MT359384; MT412478; MT412694; MT412934	Li <i>et al.</i> (2017), this study
B4	Ca. aconidialis	CMW 35174 ^T	CBS 136086; CERC 1850	Soil (Eucalyptus plantation)	HaiNan, China	X. Mou & S.F. Chen	MT334938; MT335165; MT335404; MT359625; MT359385; MT412479; MT412695; N/A ⁸	Lombard <i>et al</i> . (2015a), this study
		CMW 35384	CBS 136091; CERC 1886	Soil (Eucalyptus plantation)	HaiNan, China	X. Mou & S.F. Chen	MT334939; MT335166; MT335405; MT359626; MT359386; N/A; MT412696; N/A	Lombard <i>et al</i> . (2015a), this study
		CMW 31370	CBS 136079; CERC 1705	Soil (Eucalyptus plantation)	GuangXi, China	X. Zhou, G. Zhao & F. Han	MT334940; MT335167; MT335406; MT359627; MT359387; MT412480; MT412697; N/A	Lombard <i>et al.</i> (2015a), this study
		CMW 31390	CBS 136081; CERC 1725	Soil (Eucalyptus plantation)	GuangXi, China	X. Zhou, G. Zhao & F. Han	MT334952; MT335179; MT335418; MT359639; MT359399; MT412485; MT412709; N/A	Lombard <i>et al.</i> (2015a), this study
		CMW 31392	CBS 136247; CERC 1727	Soil (Eucalyptus plantation)	GuangXi, China	X. Zhou, G. Zhao & F. Han	MT334942; MT335169; MT335408; MT359629; MT359389; MT412481; MT412699; N/A	Lombard <i>et al.</i> (2015a), this study
		CMW 31439	CBS 137332; CERC 1774	Soil (Eucalyptus plantation)	GuangXi, China	X. Zhou, G. Zhao & F. Han	MT334951; MT335178; MT335417; MT359638; MT359398; N/A; MT412708; N/A	Lombard <i>et al.</i> (2015a), this study
		CMW 31440	CBS 136976; CERC 1775	Soil (Eucalyptus plantation)	GuangXi, China	X. Zhou, G. Zhao & F. Han	MT334950; MT335177; MT335416; MT359637; MT359397; N/A; MT412707; N/A	Lombard <i>et al.</i> (2015a), this study
		CMW 35169	CBS 136085; CERC 1845	Soil (Eucalyptus plantation)	GuangDong, China	X. Mou & R. Chang	MT334948; MT335175; MT335414; MT359635; MT359395; MT412483; MT412705; N/A	Lombard <i>et al</i> . (2015a), this study
		CMW 35184	CBS 136249; CERC 1860	Soil (<i>Eucalyptus</i> plantation)	GuangXi, China	X. Mou & R. Chang	MT334947; MT335174; MT335413; MT359634; MT359394; N/A; MT412704; N/A	Lombard <i>et al.</i> (2015a), this study (<i>continued on next page</i>)

Code B ¹	Accepted species name ²	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
		representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
		CMW 35187	CBS 136248; CERC 1863	Soil (Eucalyptus plantation)	HaiNan, China	X. Mou & S.F. Chen	MT334946; MT335173; MT335412; MT359633; MT359393; N/A; MT412703; N/A	Lombard <i>et al.</i> (2015a), this study
		CMW 35409	CBS 136092; CERC 1900	Soil (Eucalyptus plantation)	GuangXi, China	X. Mou & R. Chang	MT334944; MT335171; MT335410; MT359631; MT359391; N/A; MT412701; N/A	Lombard <i>et al.</i> (2015a), this study
B5	Ca. aeknauliensis	CMW 48253 [⊤]	CBS 143559	Soil (Eucalyptus plantation)	Aek Nauli, North Sumatra, Indonesia	M.J. Wingfield	MT334953; MT335180; MT335419; MT359640; MT359400; MT412486; MT412710; N/A	Pham <i>et al.</i> (2019), this study
		CMW 48254	CBS 143560	Soil (Eucalyptus plantation)	Aek Nauli, North Sumatra, Indonesia	M.J. Wingfield	MT334954; MT335181; MT335420; MT359641; MT359401; MT412487; MT412711; N/A	Pham <i>et al.</i> (2019), this study
B6	Ca. amazonica	CBS116250 ^T	CMW 51234; CPC 3534	E. tereticornis	Amazon, Brazil	P.W. Crous & A.C. Alfenas	MT334955; MT335182; MT335421; MT359642; MT359402; MT412488; MT412712; MT412935	Lombard <i>et al</i> . (2016), this study
		CBS 115486	CMW 51223; CPC 3894	E. tereticornis	Amazon, Brazil	P.W. Crous & A.C. Alfenas	MT334956; MT335183; MT335422; MT359643; MT359403; MT412489; MT412713; MT412936	Lombard <i>et al</i> . (2016), this study
		CBS 115440	CMW 51222; CPC 3885	E. tereticornis	Amazon, Brazil	P.W. Crous & A.C. Alfenas	MT334957; MT335184; MT335423; MT359644; MT359404; N/A; MT412714; MT412937	Lombard <i>et al</i> . (2016), this study
		CBS 116271	CMW 51236; CPC 3559	Eucalyptus sp.	Amazon, Brazil	P.W. Crous & A.C. Alfenas	MT335148; MT335385; MT335625; MT359846; MT359606; MT412677; MT412916; MT413123	Lombard <i>et al</i> . (2016), this study
		CBS 116319	CMW 51832; CPC 3761	Eucalyptus sp.	Amazon, Brazil	P.W. Crous & A.C. Alfenas	MT334960; MT335187; MT335426; MT359647; MT359407; MT412490; MT412717; MT412940	Marin-Felix <i>et al.</i> (2017), this study
B7	Ca. angustata	СМШ 30990 ^т	CBS 114544; CPC 2347; P99-0454	Tillandsia capitata	Sarasota nursery, Florida, USA	R.M. Leahy	MT334963; N/A; MT335429; MT359650; MT359410; MT412493; MT412720; MT412943	Crous <i>et al.</i> (2000, 2006), Lombard <i>et al.</i> (2010a), this study
		CBS 112133	CMW 30983; CPC 3152; P99-1321	Tillandsia capitata	USA	R.M. Leahy	GQ280427; GQ267362; DQ190695; GQ280549; GQ280670; KY653360; FJ918552; DQ190593	Crous <i>et al.</i> (2000, 2006), Lombard <i>et al.</i> (2010a), Marin-Felix <i>et al.</i> (2017)
B8	Ca. asiatica	CBS 114073 ^T	CMW 23782; CPC 3900	Debris (leaf litter)	Prathet Thai, Thailand	N.L. Hywel- Jones	GQ280428; AY725741; AY725658; GQ280550; GQ280672; N/A; AY725705; AY725616	Crous <i>et al</i> . (2004), Lombard <i>et al</i> . (2010a)
B9	Ca. auriculiformis	CMW 47178 ^T	CBS 143561	Soil (A. auriculiformis plantation)	Hau Loc, Thanh Hoa, Vietnam	N.Q. Pham & T.Q. Pham	MT334964; MT335190; MT335430; MT359651; MT359411; MT412494; MT412721; MT412944	Pham <i>et al.</i> (2019), this study
		CMW 47179	CBS 143562	Soil (A. auriculiformis plantation)	Hau Loc, Thanh Hoa, Vietnam	N.Q. Pham & T.Q. Pham	N/A; MT335191; MT335431; MT359652; MT359412; MT412495; MT412722; MT412945	Pham <i>et al.</i> (2019), this study
B10	Ca. australiensis	CMW 23669 [⊤]	CBS 112954; CPC 4714	Ficus pleurocarpa	Queensland, Australia	C. Pearce & B. Paulus	MT334965; MT335192; MT335432; MT359653; MT359413; MT412496; MT412723; MT412946	Crous <i>et al.</i> (2006), Lombard <i>et al.</i> (2010a), this study

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B11	Ca. avesiculata	CBS 313.92 [⊤]	ATCC 38226; CMW 23670; CPC 2373	llex vomitoria	Cairo, Georgia, USA	S.A. Alfieri	GQ280431; GQ267364; DQ190620; GQ280553; GQ280675; N/A; GQ267294; AF333392	Schubert <i>et al.</i> (1989), Crous (2002), Lombard <i>et al.</i> (2010a)
B12	Ca. brachiatica	CMW 25298 ^T	CBS 123700	Pinus maximinoi	Buga, Colombia	M.J. Wingfield	N/A; MT335195; MT335435; MT359656; MT359416; MT412499; MT412726; MT412948	Lombard et al. (2009), this study
		CMW 25302	-	Pi. tecunumanii	Buga, Colombia	M.J. Wingfield	N/A; MT335196; MT335436; MT359657; MT359417; MT412500; MT412727; MT412949	Lombard et al. (2009), this study
		CMW 25307	-	Pi. tecunumanii	Buga, Colombia	M.J. Wingfield	N/A; MT335197; MT335437; MT359658; MT359418; MT412501; MT412728; MT412950	Lombard <i>et al.</i> (2009), this study
B13	Ca. brasiliana	CBS 111484 [⊤]	CMW 51187; CPC 1924	Soil	Brazil	A.C. Alfenas	MT334968; MT335198; MT335438; MT359659; MT359419; MT412502; MT412729; MT412951	Lombard <i>et al.</i> (2016), this study
		CBS 111485	CMW 51188; CPC 1929	Soil	Brazil	A.C. Alfenas	MT334969; MT335199; MT335439; MT359660; MT359420; MT412503; MT412730; MT412952	Lombard <i>et al.</i> (2016), this study
B14	Ca. brasiliensis	CBS 230.51 ^T	IMI 299576	<i>Eucalyptus</i> sp.	Ceara state, Brazil	T.R. Ciferri	MT334970; MT335200; MT335440; MT359661; MT359421; MT412504; MT412731; MT412953	Batista (1951), Crous (2002), Lombard <i>et al.</i> (2010b), this study
		CMW 32949	CBS 114257; CPC 1944	Eucalyptus sp.	Aracruz, Brazil	A.C. Alfenas	MT334971; MT335201; MT335441; MT359662; MT359422; MT412505; MT412732; MT412954	Lombard <i>et al.</i> (2010a), this study
		CBS 133609	LPF245	Anadenanthera peregrina	Viçosa, Minas Gerais, Brazil	R.F. Alfenas	N/A; KC491222; N/A; N/A; N/A; N/A; KC491225; KC491228	Alfenas <i>et al</i> . (2013b, 2015)
		CBS 134818	LPF262	Azadirachta indica (leaf)	Viçosa, Minas Gerais, Brazil	R.F. Alfenas	N/A; KM395991; KM396079; N/A; N/A; N/A; KM395817; KM395905	Alfenas et al. (2015)
B15	Ca. brassiana	CBS 134855 [⊤]	LPF378	Soil (Eucalyptus brassiana plantation)	Teresina, Piauí, Brazil	R.F. Alfenas	N/A; KM396056; KM396139; N/A; N/A; N/A; KM395882; KM395969	Alfenas et al. (2015)
		CBS 134856	LPF379	Soil (E. brassiana plantation)	Teresina, Piauí, Brazil	R.F. Alfenas	N/A; KM396057; KM396140; N/A; N/A; N/A; KM395883; KM395970	Alfenas et al. (2015)
B16	Ca. brassicae	CBS 111869 ^T	CPC 2409	Argyreia splendens	Indonesia	F. Bugnicourt	MT334972; MT335202; MT335442; MT359663; MT359423; MT412506; MT412733; MT412955	Crous (2002), Lombard <i>et al.</i> (2010a, 2016), this study
B17	Ca. brassicicola	CBS 112841 [⊤]	CMW 51206; CPC 4552	Soil (<i>Brassica</i> sp.)	Indonesia	M.J. Wingfield	N/A; KX784561; N/A; N/A; N/A; N/A; KX784689; KX784619	Lombard et al. (2016)
B18	Ca. brevistipitata	CBS 115671 [⊤]	CMW 51226; CPC 949	Soil	Mexico	P.W. Crous	MT334973; MT335203; MT335443; MT359664; MT359424; MT412507; MT412734; MT412956	Lombard <i>et al.</i> (2016), this study
		CBS 110928	CMW 51170; CPC 951	Soil	Mexico	P.W. Crous	MT334974; MT335204; MT335444; MT359665; MT359425; MT412508; MT412735; MT412957	Lombard <i>et al.</i> (2016), this study (<i>continued on next page</i>)

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
		CBS 110837	CMW 51163; CPC 913	Soil	Mexico	P.W. Crous	MT335057; MT335289; MT335529; MT359750; MT359510; MT412586; MT412820; MT413034	Lombard <i>et al.</i> (2016), this study
B19	Ca. bumicola	CMW 48257 [⊤]	CBS 143575	Soil (<i>Eucalyptus</i> plantation)	Aek Nauli, North Sumatra, Indonesia	M.J. Wingfield	MT334975; MT335205; MT335445; MT359666; MT359426; MT412509; MT412736; N/A	Pham <i>et al.</i> (2019), this study
B20	Ca. canadiana	CMW 23673 [⊤]	CBS 110817; STE-U 499	Picea sp.	Canada	S. Greifenhagen	MT334976; MT335206; MT335446; MT359667; MT359427; MT412510; MT412737; MT412958	Kang <i>et al.</i> (2001b), Crous (2002), Lechat <i>et al.</i> (2010), this study
		CERC 8952	-	Soil	HeNan, China	S.F. Chen	MT335058; MT335290; MT335530; MT359751; MT359511; MT412587; MT412821; MT413035	Liu & Chen (2017), this study
B21	Ca. candelabrum	CMW 31000	CPC 1675; UFV 117	<i>Eucalyptus</i> sp.	Amazonas, Brazil	A.C. Alfenas	MT334977; MT335207; MT335447; MT359668; MT359428; MT412511; MT412738; MT412959	Crous (2002), Lombard <i>et al.</i> (2010a, 2015b), this study
		CMW 31001	STE-U 1679; UFV 126	<i>Eucalyptus</i> sp.	Amazonas, Brazil	A.C. Alfenas	MT334978; MT335208; MT335448; MT359669; MT359429; MT412512; MT412739; MT412960	Crous (2002), Lombard <i>et al.</i> (2010a, 2015b), this study
		CMW 15218	CBS 125257	E. grandis	Las Golondrinas, Pichincha, Ecuador	M.J. Wingfield	MT334979; MT335209; MT335449; MT359670; MT359430; MT412513; MT412740; MT412961	Lombard <i>et al</i> . (2010a), this study
B22	Ca. cerciana	CMW 25309 ^T	CBS 123693	<i>E. urophylla</i> × <i>E. grandis</i> hybrid cutting	CERC nursery, GuangDong, China	M.J. Wingfield & X.D. Zhou	MT334981; MT335211; MT335451; MT359672; MT359432; MT412515; MT412742; MT412963	Lombard <i>et al</i> . (2010c), this study
		CMW 25290	CBS 123695	<i>E. urophylla</i> × <i>E. grandis</i> hybrid cutting	CERC nursery, GuangDong, China	M.J. Wingfield & X.D. Zhou	MT334982; MT335212; MT335452; MT359673; MT359433; MT412516; MT412743; MT412964	Lombard <i>et al.</i> (2010c), this study
		CMW 35180	CBS 136642; CERC 1856	Soil (Eucalyptus plantation)	GuangDong, China	X. Mou & R. Chang	MT334986; MT335216; MT335456; MT359677; MT359437; MT412520; MT412747; MT412968	Lombard <i>et al</i> . (2015a), this study
		CMW 37976	CBS 136097; CERC 1939; CPC 23517	Soil (<i>Eucalyptus</i> plantation)	GuangDong, China	X. Mou & R. Chang	MT334983; MT335213; MT335453; MT359674; MT359434; MT412517; MT412744; MT412965	Lombard <i>et al.</i> (2015a), this study
B23	Ca. chinensis	CMW 23674 ^T	CBS 114827; CPC 4101	Soil	Hong Kong, China	E.C.Y. Liew	MT334990; MT335220; MT335460; MT359681; MT359441; MT412524; MT412751; MT412972	Crous <i>et al.</i> (2004), Lombard <i>et al.</i> (2010a), this study
		CMW 30986	CBS 112744; CPC 4104	Soil	Hong Kong, China	E.C.Y. Liew	MT334991; MT335221; MT335461; MT359682; MT359442; MT412525; MT412752; MT412973	Crous <i>et al.</i> (2004), Lombard <i>et al.</i> (2010a), this study
		CMW 47192	CBS 143573	Soil (Acacia hybrid plantation)	Tuyen Quang, Vietnam	N.Q. Pham & T.Q. Pham	MT335068; MT335300; MT335540; MT359761; MT359521; MT412597; MT412831; MT413045	Pham <i>et al</i> . (2019), this study

Code B ¹	Accepted	Isolates	Other	Other Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B24	Ca. citri	CMW 23675 [⊤]	CBS 186.36	Citrus sinensis	Florida, USA	H.S. Fawcett	MT334992; MT335222; MT335462; MT359683; MT359443; MT412526; MT412753; MT412974	Fawcett & Klotz (1937), Crous (2002), this study
B25	Ca. clavata	CMW 23690 ^T	ATCC 66389; CBS 114557; CPC 2536; P078-1543	Callistemon viminalis	Lake Placid, Florida, USA	C.P. Seymour & E.L. Barnard	MT334993; MT335223; MT335463; MT359684; MT359444; MT412527; MT412754; MT412975	El-Gholl <i>et al.</i> (1993b), Crous (2002), Lombard <i>et al.</i> (2010a), this study
		CMW 30994	CBS 114666; CPC 2537; P078-1261	Root debris in peat	Lee County, Florida, USA	D. Ferrin	MT334994; MT335224; MT335464; MT359685; MT359445; MT412528; MT412755; MT412976	El-Gholl <i>et al.</i> (1993b), Crous (2002), Lombard <i>et al.</i> (2010a), this study
B26	Ca. cochinchinensis	CMW 49915 [⊤]	CBS 143567	Soil (Hevea brasiliensis plantation)	Duong Minh Chau, Tay Ninh, Vietnam	N.Q. Pham, Q.N. Dang & T.Q. Pham	MT334995; MT335225; MT335465; MT359686; MT359446; MT412529; MT412756; MT412977	Pham <i>et al.</i> (2019), this study
		CMW 47186	CBS 143568	Soil (A. auriculiformis plantation)	Song May, Dong Nai, Vietnam	N.Q. Pham & T.Q. Pham	MT334996; MT335226; MT335466; MT359687; MT359447; MT412530; MT412757; MT412978	Pham <i>et al</i> . (2019), this study
		CMW 47187	CBS 143569	Soil (A. auriculiformis plantation)	Song May, Dong Nai, Vietnam	N.Q. Pham & T.Q. Pham	MT334997; MT335227; MT335467; MT359688; MT359448; MT412531; MT412758; MT412979	Pham <i>et al</i> . (2019), this study
B27	Ca. colhounii	CBS 293.79 ^T	CMW 30999	Camellia sinensis	Mauritius	A. Peerally	GQ280443; GQ267373; DQ190639; GQ280565; GQ280687; KY653376; GQ267301; DQ190564	Peerally (1973), Crous (2002), Crous <i>et al.</i> (2006), Lombard <i>et al.</i> (2010a)
B28	Ca. colombiana	CBS 115127 [⊤]	CMW 30871; CPC 1160	Soil	La Selva, Colombia	M.J. Wingfield	GQ280538; GQ267455; FJ972442; GQ280660; GQ280782; N/A; FJ972492; FJ972423	Schoch <i>et al</i> . (1999), Crous (2002), Lombard <i>et al</i> . (2010a, b)
		CBS 115638	CMW 30766; CPC 1161	Soil	La Selva, Colombia	M.J. Wingfield	GQ280539; GQ267456; FJ972441; GQ280661; GQ280783; N/A; FJ972491; FJ972422	Schoch <i>et al</i> . (1999), Crous (2002), Lombard <i>et al</i> . (2010a, b)
B29	Ca. colombiensis	CMW 23676 ^T	CBS 112220; CPC 723	Soil (E. grandis trees)	La Selva, Colombia	M.J. Wingfield	MT334998; MT335228; MT335468; MT359689; MT359449; MT412532; MT412759; MT412980	Crous <i>et al.</i> (2004), this study
		CMW 30985	CBS 112221; CPC 724	Soil (E. grandis trees)	La Selva, Colombia	M.J. Wingfield	MT334999; MT335229; MT335469; MT359690; MT359450; MT412533; MT412760; MT412981	Crous <i>et al</i> . (2004), this study
B30	Ca. crousiana	CMW 27249 ^T	CBS 127198	E. grandis	FuJian, China	M.J. Wingfield	MT335000; MT335230; MT335470; MT359691; MT359451; MT412534; MT412761; MT412982	Chen <i>et al.</i> (2011), this study
		CMW 27253	CBS 127199	E. grandis	FuJian, China	M.J. Wingfield	MT335001; MT335231; MT335471; MT359692; MT359452; MT412535; MT412762; MT412983	Chen <i>et al.</i> (2011), this study
								(continued on next page)

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B31	Ca. curvispora	CMW 23693 [⊤]	CBS 116159; CPC 765	Soil	Tamatave, Madagascar	P.W. Crous	MT335002; MT335232; MT335472; MT359693; MT359453; MT412536; MT412763; N/A	Victor <i>et al.</i> (1997), Crous (2002), Lombard <i>et al.</i> (2010a, 2015a), this study
		CMW 48245	CBS 143565	Soil (Eucalyptus plantation)	Aek Nauli, North Sumatra, Indonesia	M.J. Wingfield	MT335003; MT335233; MT335473; MT359694; MT359454; MT412537; MT412764; N/A	Pham <i>et al.</i> (2019), this study
B32	Ca. cylindrospora	CBS 119670	CMW 51310; CPC 12766	Pistacia lentiscus	Italy	N/A	MT335006; MT335236; MT335476; MT359697; MT359457; MT412540; MT412767; MT412985	Lombard <i>et al.</i> (2015a,b, 2016), this study
		CMW 30978	CBS 110666; P90.1479; STE- U 497	llex vomitoria	Florida, USA	N.E. El-Gholl	MT335007; MT335237; MT335477; MT359698; MT359458; MT412541; MT412768; MT412986	Crous (2002), Lombard <i>et al.</i> (2010a, 2015b), this study
		CBS 136425	CMW 51321; CPC 21859	Blephilia ciliata	Ellerbe, North Carolina, USA	T. Sharp	MT335005; MT335235; MT335475; MT359696; MT359456; MT412539; MT412766; MT412984	Crous <i>et al.</i> (2013), this study
B33	Ca. densa	CMW 31182 [⊤]	CBS 125261	Soil	Las Golondrinas, Pichincha, Ecuador	M.J. Wingfield	MT335008; MT335238; MT335478; MT359699; MT359459; N/A; MT412769; MT412987	Lombard <i>et al</i> . (2010a), this study
		CMW 31184	CBS 125249	Soil	Las Golondrinas, Pichincha, Ecuador	M.J. Wingfield	MT335009; MT335239; MT335479; MT359700; MT359460; N/A; MT412770; MT412988	Lombard <i>et al</i> . (2010a), this study
B34	Ca. duoramosa	CBS 134656 ^T	LPF434	Soil (tropical rainforest)	Monte Dourado, Pará, Brazil	R.F. Alfenas	N/A; KM396027; KM396110; N/A; N/A; N/A; KM395853; KM395940	Alfenas et al. (2015)
		LPF453	-	Soil (Eucalyptus plantation)	Monte Dourado, Pará, Brazil	R.F. Alfenas	N/A; KM396028; KM396111; N/A; N/A; N/A; KM395854; KM395941	Alfenas et al. (2015)
B35	Ca. ecuadorae	CMW 23677 [⊤]	CBS 111406; CPC 1635	Soil	Ecuador	M.J. Wingfield	MT335012; MT335242; MT335482; MT359703; MT359463; MT412544; MT412773; MT412991	Crous <i>et al.</i> (2006), Lombard <i>et al.</i> (2010a), this study
		CBS 111706	CMW 51821; CPC 1636	Soil	Ecuador	M.J. Wingfield	MT335010; MT335240; MT335480; MT359701; MT359461; MT412542; MT412771; MT412989	Marin-Felix <i>et al</i> . (2017), this study
B36	Ca. eucalypti	CMW 18444 ^T	CBS 125275	E. grandis	Aek Nauli, Sumatra Utara, Indonesia	M.J. Wingfield	MT335013; MT335243; MT335483; MT359704; MT359464; MT412545; MT412774; MT412992	Lombard <i>et al</i> . (2010a), this study
		CMW 18445	CBS 125276	E. grandis	Aek Nauli, Sumatra Utara, Indonesia	M.J. Wingfield	MT335014; MT335244; MT335484; MT359705; MT359465; MT412546; MT412775; MT412993	Lombard <i>et al</i> . (2010a), this study
		CMW 27209	CBS 127195	E. dunnii	FuJian, China	M.J. Wingfield	MT335108; MT335341; MT335581; MT359802; MT359562; MT412634; MT412872; MT413084	Chen <i>et al.</i> (2011), this study
B37	Ca. eucalypticola	CBS 134847 ^T	LPF124	Eucalyptus sp. (seedling)	Santa Barbara, Minas Gerais state, Brazil	A.C. Alfenas	N/A; KM396051; KM396134; N/A; N/A; N/A; KM395877; KM395964	Alfenas <i>et al.</i> (2015)

Table 1.	(Continued).							
Code B ¹	Accepted species name ²	Isolates representing the species ^{3,4,5}	Other collection number ⁵	Hosts	Area of occurrence	Collector	GenBank accession Numbers ⁶ act; cmdA; his3; ITS; LSU; rpb2;	References or source of data
		CBS 134846	LPF121	Eucalyptus sp. (leaf)	– Eunapolis, Bahia, Brazil	A.C. Alfenas	N/A; KM396050; KM396133; N/A; N/A; N/A; KM395876; KM395963	Alfenas <i>et al.</i> (2015)
B38	Ca. fragariae	CBS 133607 ^T	LPP040	Fragaria × ananassa	Santa Maria do Jetibá, Espírito Santo, Brazil	U.P. Lopes	N/A; KM998966; KM998964; N/A; N/A; N/A; KM998963; KM998965	Lopes <i>et al</i> . (2017)
		LPF141.1	-	Fragaria × ananassa	Santa Maria do Jetibá, Espírito Santo, Brazil	U.P. Lopes	N/A; KX500191; KX500194; N/A; N/A; N/A; KX500197; KX500195	Lopes <i>et al</i> . (2017)
		LPF141.2	-	Fragaria × ananassa	Santa Maria do Jetibá, Espírito Santo, Brazil	U.P. Lopes	N/A; KX500192; KX500193; N/A; N/A; N/A; KX500198; KX500196	Lopes <i>et al.</i> (2017)
B39	Ca. fujianensis	CMW 27257 ^T	CBS 127201	E. grandis	FuJian, China	M.J. Wingfield	MT335019; MT335249; MT335489; MT359710; MT359470; MT412551; MT412780; MT412998	Chen <i>et al</i> . (2011), this study
		CMW 27254	CBS 127200	E. grandis	FuJian, China	M.J. Wingfield	MT335020; MT335250; MT335490; MT359711; MT359471; MT412552; MT412781; MT412999	Chen <i>et al</i> . (2011), this study
		CBS 131802	CMW 51317; HGUP 100003	Nymphaea tetragona	Guiyang, Guizhou, China	S.Y. Qin	MT335070; MT335302; MT335542; MT359763; MT359523; MT412599; MT412833; MT413047	Xu <i>et al.</i> (2012), this study
B40	Ca. glaebicola	CBS 134852 ^T	LPF406	Soil (Eucalyptus plantation)	Martinho Campos, Minas Gerais, Brazil	A.C. Alfenas	N/A; KM396053; KM396136; N/A; N/A; N/A; KM395879; KM395966	Alfenas et al. (2015)
		CBS 134853	LPF407	<i>Eucalyptus</i> sp. (leaf)	Tocantins, Bico do Papagaio, Brazil	R.F. Alfenas	N/A; KM396054; KM396137; N/A; N/A; N/A; KM395880; KM395967	Alfenas et al. (2015)
B41	Ca. gordoniae	CMW 23694 ^T	ATCC 201837; CBS 112142; P97-2567; STE- U 3136	Gordonia Iasianthus	Florida, USA	D. Chiappini	MT335021; MT335251; MT335491; MT359712; MT359472; MT412553; MT412782; MT413000	Leahy <i>et al.</i> (2000), Crous (2002), Lombard <i>et al.</i> (2010a), this study
B42	Ca. gracilipes	CBS 115674 ^T	CMW 51227; STE-U 1153	Soil	La Selva, Colombia	M.J. Wingfield	MT335022; MT335252; MT335492; MT359713; MT359473; MT412554; MT412783; MT413001	Crous <i>et al.</i> (1997a, 2006), Crous (2002), this study
		CBS 111141	CMW 51174; CPC 1211	Soil	La Selva, Colombia	M.J. Wingfield	MT335023; MT335253; MT335493; MT359714; MT359474; MT412555; MT412784; MT413002	Crous (2002), Crous et al. (2006), this study
B43	Ca. gracilis	CBS 111807 [⊤]	AR2677; CMW 51189; PPRI 4176; STE-U 2634	Manilkara zapota	Pará, Brazil	F. Carneiro de Albuquerque	GQ280488; GQ267407; DQ190646; GQ280610; GQ280732; KY653390; GQ267323; AF232858	Crous <i>et al.</i> (1993c, 2006), Crous (2002), Lombard <i>et al.</i> (2016), Marin-Felix <i>et al.</i> (2017)
		CBS 111284	CMW 51175; CPC 1483	Soil	Imbrapa, Brazil	P.W. Crous	GQ280489; GQ267408; DQ190647; GQ280611; GQ280733; KY653389; GQ267324; DQ190567	Crous <i>et al.</i> (1993c, 2006), Crous (2002), Lombard <i>et al.</i> (2016), Marin-Felix <i>et al.</i> (2017)

RECONSIDERATION OF CALONECTRIA SPECIES BOUNDARIES

(continued on next page)

Code B ¹	Accepted species name ²	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
		representing the species ^{3,4,5}	collection number⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B44	Ca. hawksworthii	CBS 111870 ^T	CMW 51194; CPC 2405	Nelumbo nucifera	Pamplemousses garden, Mauritius	A. Peerally	MT335024; MT335254; MT335494; MT359715; MT359475; MT412556; MT412785; MT413003	Crous (2002), this study
		CMW 14878	CBS 125277	Eucalyptus sp.	Sulawesi, Indonesia	M.J. Wingfield	MT335141; MT335378; MT335618; MT359839; MT359599; MT412670; MT412909; MT413119	Lombard <i>et al.</i> (2010a), this study
		CMW 31393	CBS 136641	E. urophylla × E. grandis	GuangXi, China	X. Zhou & G. Zhao	MT335017; MT335247; MT335487; MT359708; MT359468; MT412549; MT412778; MT412996	Lombard <i>et al.</i> (2015a), this study
B45	Ca. henricotiae	CBS 138102 ^T	CB045	Buxus sempervirens	Lokeren, East Flanders, Belgium	B. Gehesquiere & K. Heungens	N/A; KF815157; KF815185; JX535322; N/A; N/A; N/ A; JX535308	Gehesquiere <i>et al.</i> (2015)
		CB041	-	B. sempervirens	Lokeren, East Flanders, Belgium	B. Gehesquiere & K. Heungens	N/A; KF815156; KF815184; N/A; N/A; N/A; N/A; N/A; KF815129	Gehesquiere <i>et al.</i> (2015)
B46	Ca. heveicola	CMW 49913 [⊤]	CBS 143570	Soil (Hevea brasiliensis plantation)	Bau Bang, Binh Duong, Vietnam	N.Q. Pham, Q.N. Dang & T.Q. Pham	MT335025; MT335255; MT335495; MT359716; MT359476; N/A; MT412786; MT413004	Pham <i>et al.</i> (2019), this study
		CMW 49928	CBS 143571	Soil	Bu Gia Map National Park, Binh Phuoc, Vietnam	N.Q. Pham, Q.N. Dang & T.Q. Pham	MT335048; MT335280; MT335520; MT359741; MT359501; MT412577; MT412811; MT413025	Pham <i>et al.</i> (2019), this study
		CMW 49935	CBS 143572	Soil	Bu Gia Map National Park, Binh Phuoc, Vietnam	N.Q. Pham, Q.N. Dang & T.Q. Pham	MT335049; MT335281; MT335521; MT359742; MT359502; MT412578; MT412812; MT413026	Pham <i>et al.</i> (2019), this study
B47	Ca. honghensis	CERC 5572 [⊤]	CBS 142885; CMW 47669	Soil (Eucalyptus plantation)	HongHe, YunNan, China	S.F. Chen & J.Q. Li	MT335026; MT335256; MT335496; MT359717; MT359477; MT412557; MT412787; MT413005	Li <i>et al.</i> (2017), this study
		CERC 5571	CBS 142884; CMW 47668	Soil (Eucalyptus plantation)	HongHe, YunNan, China	S.F. Chen & J.Q. Li	MT335027; MT335257; MT335497; MT359718; MT359478; MT412558; MT412788; MT413006	Li <i>et al.</i> (2017), this study
B48	Ca. hongkongensis	CBS 114828 ^T	CMW 51217; CPC 4670	Soil	Hong Kong, China	M.J. Wingfield	MT335028; MT335258; MT335498; MT359719; MT359479; MT412559; MT412789; MT413007	Crous <i>et al</i> . (2004), this study
		CERC 7132	CMW 47499	Soil	FuJian, China	S.F. Chen	MT335031; MT335261; MT335501; MT359722; MT359482; MT412562; MT412792; MT413010	Li <i>et al.</i> (2017), this study
B49	Ca. humicola	CMW 31183 ^T	CBS 125251	Soil	Las Golondrinas, Pichincha, Ecuador	M.J. Wingfield	MT335032; MT335262; MT335502; MT359723; MT359483; N/A; MT412793; MT413011	Lombard <i>et al.</i> (2010a), this study
		CMW 31186	CBS 125252	Soil	Las Golondrinas, Pichincha, Ecuador	L. Lombard	MT335033; MT335263; MT335503; MT359724; MT359484; N/A; MT412794; MT413012	Lombard <i>et al.</i> (2010a), this study
		CMW 31187	CBS 125269	Soil	Las Golondrinas, Pichincha, Ecuador	L. Lombard	MT335034; MT335264; MT335504; MT359725; MT359485; N/A; MT412795; MT413013	Lombard <i>et al.</i> (2010a), this study
B50	Ca. hurae	CBS 114182	CMW 51823; CPC 1714; UFV 216	Rumohra adiantiformis	Brazil	A.C. Alfenas	MT335035; MT335265; MT335505; MT359726; MT359486; MT412563; MT412796; MT413014	Crous (2002), Crous <i>et al.</i> (2006), this study

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B51	Ca. ilicicola	CMW 30998 [⊤]	CBS 190.50; IMI 299389; STE-U 2482	Solanum tuberosum	Bogor, Java, Indonesia	K.B. Boedijn & J. Reitsma	MT335036; MT335266; MT335506; MT359727; MT359487; MT412564; MT412797; N/A	Boedijn & Reitsma (1950), Crous (2002), Lombard <i>et al.</i> (2010a), this study
B52	Ca. indonesiae	CMW 23683 ^T	CBS 112823; CPC 4508	Syzygium aromaticum	Warambunga, Indonesia	M.J. Wingfield	MT335037; MT335267; MT335507; MT359728; MT359488; MT412565; MT412798; MT413015	Crous <i>et al</i> . (2004), this study
		CBS 112840	CMW 51205; CPC 4554	S. aromaticum	Warambunga, Indonesia	M.J. Wingfield	MT335038; MT335268; MT335508; MT359729; MT359489; MT412566; MT412799; MT413016	Crous <i>et al</i> . (2004), this study
B53	Ca. indusiata	CBS 144.36 ^T	CMW 23699	Camellia sinensis	Sri lanka	N/A	GQ280536; GQ267453; GQ267262; GQ280658; GQ280780; KY653396; GQ267332; GQ267239	Crous (2002), Lombard <i>et al.</i> (2010a, 2016), Marin-Felix <i>et al.</i> (2017)
		CBS 114684	CMW 51213; CPC 2446; UFV16	Rhododendron sp.	Florida, USA	N.E. El-Gholl	GQ280537; GQ267454; DQ190653; GQ280659; GQ280781; N/A; GQ267333; AF232862	Crous <i>et al</i> . (1999, 2006), Crous (2002)
B54	Ca. insularis	CMW 30991 [⊤]	CBS 114558; CPC 768	Soil	Tamatave, Madagascar	P.W. Crous	N/A; MT335269; MT335509; MT359730; MT359490; MT412567; MT412800; MT413017	Schoch <i>et al.</i> (1999), Lombard <i>et al.</i> (2010a, 2016), this study
		CMW 30992	CBS 114559; CPC 954	Soil	Conejos, Veracruz, Mexico	M.J. Wingfield	N/A; MT335270; MT335510; MT359731; MT359491; MT412568; MT412801; MT413018	Lombard <i>et al.</i> (2010a, 2016), this study
B55	Ca. kyotensis	CBS 114525 [⊤]	ATCC 18834; CMW 51824; CPC 2367	Robinia pseudoacacia	Japan	T. Terashita	MT335039; MT335271; MT335511; MT359732; MT359492; MT412569; MT412802; MT413019	Terashita (1968), Crous (2002), Lombard <i>et al.</i> (2016), this study
		CBS 114550	CMW 51825; CPC 2351	Soil	China	M.J. Wingfield	MT335016; MT335246; MT335486; MT359707; MT359467; MT412548; MT412777; MT412995	Lombard <i>et al.</i> (2016), this study
		CBS 114692	ATCC18882; CMW 51826	Prunus persica	Georgia, USA	N/A	MT335015; MT335245; MT335485; MT359706; MT359466; MT412547; MT412776; MT412994	Sobers (1969), Crous (2002), Marin-Felix <i>et al.</i> (2017), this study
		CERC 7126	CBS 142890; CMW 47496	Soil	FuZhou, FuJian, China	S.F. Chen	MT335121; MT335356; MT335596; MT359817; MT359577; MT412649; MT412887; MT413098	Li <i>et al.</i> (2017), this study
		CMW 31411	CBS 136077	Soil (Eucalyptus plantation)	GuangXi, China	X. Zhou, G. Zhao & F. Han	MT335151; MT335388; MT335628; MT359849; MT359609; N/A; MT412919; MT413126	Lombard <i>et al.</i> (2015a), this study
B56	Ca. lageniformis	CBS 111324 ^T	CMW 51177; CPC 1473	Eucalyptus sp. (leaf)	Rivière Noire, Mauritius	H. Smith	N/A; KX784574; N/A; KY653256; KY653312; KY653400; KX784702; KX784632	Lombard <i>et al</i> . (2016), Marin-Felix <i>et al</i> . (2017)
								(continued on next page)

Code B ¹ Ac	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B57	Ca. lantauensis	CERC 3302 [⊤]	CBS 142888; CMW 47252	Soil	LiDao, Hong Kong, China	M.J. Wingfield & S.F. Chen	MT335040; MT335272; MT335512; MT359733; MT359493; MT412570; MT412803; N/A	Li <i>et al.</i> (2017), this study
		CERC 3301	CBS 142887; CMW 47251	Soil	LiDao, Hong Kong, China	M.J. Wingfield & S.F. Chen	MT335041; MT335273; MT335513; MT359734; MT359494; N/A; MT412804; N/A	Li <i>et al.</i> (2017), this study
B58	Ca. lateralis	CMW 31412 [⊤]	CBS 136629	Soil (Eucalyptus plantation)	GuangXi, China	X. Zhou, G. Zhao & F. Han	MT335042; MT335274; MT335514; MT359735; MT359495; MT412571; MT412805; MT413020	Lombard <i>et al.</i> (2015a), this study
B59	Ca. lauri sp. nov.	CMW 23682 [™]	CBS 749.70	llex aquifolium	Vijlen, Vijlenerbos, South-East Limburg, Netherlands	H.A. van der Aa	MT335043; MT335275; MT335515; MT359736; MT359496; MT412572; MT412806; MT413021	Lechat <i>et al.</i> (2010), Lombard <i>et al.</i> (2010a), this study
B60	Ca. leguminum	CMW 23684 ⁺	CBS 728.68	Annona squamosa	Sao Paulo, Brazil	M.B. Figueiredo	MT335044; MT335276; MT335516; MT359737; MT359497; MT412573; MT412807; MT413022	Figueiredo & Namekata (1967), Crous (2002), Lombard <i>et al.</i> (2010a), this study
B61	Ca. leucothoes	CMW 30977 [⊤]	ATCC 64824; CBS 109166; CPC 2385; P88-490	Leucothoe axillaris	Florida, USA	N.E. El-Gholl	MT335045; MT335277; MT335517; MT359738; MT359498; MT412574; MT412808; N/A	El-Gholl <i>et al.</i> (1989), Crous (2002), Lombard <i>et al.</i> (2015a), this study
B62	Ca. lichi	CERC 8866 ^T	-	Soil	HeNan, China	S.F. Chen	MT335046; MT335278; MT335518; MT359739; MT359499; MT412575; MT412809; MT413023	Liu & Chen (2017), this study
		CERC 8850	-	Soil	HeNan, China	S.F. Chen	MT335047; MT335279; MT335519; MT359740; MT359500; MT412576; MT412810; MT413024	Liu & Chen (2017), this study
B63	Ca. lombardiana sp. nov.	CMW 30602 [⊤]	CBS 112634; CPC 4233; Lynfield 417	Xanthorrhoea australis	Victoria, Australia	T. Baigent	MT335156; MT335395; MT335635; MT359856; MT359616; MT412686; MT412926; MT413133	Crous (2002), Crous <i>et al.</i> (2006), Lombard <i>et al.</i> (2010c), this study
B64	Ca. macroconidialis	CBS 114880 ^T	CMW 51219; CPC 307; PPRI 4000	E. grandis	Sabie, Mpumalanga, South Africa	P.W. Crous	MT335050; MT335282; MT335522; MT359743; MT359503; MT412579; MT412813; MT413027	Crous <i>et al.</i> (1993c), Crous (2002), Lombard <i>et al.</i> (2010a), this study
		CBS 110798	CMW 51817; CPC 410	<i>E. grandis</i> (roots)	Sabie, Mpumalanga, South Africa	P.W. Crous	MT335051; MT335283; MT335523; MT359744; MT359504; MT412580; MT412814; MT413028	Lombard <i>et al.</i> (2016), this study
B65	Ca. madagascariensis	CMW 23686 [⊤]	CBS 114572; CPC 2252	Soil	Rona, Madagascar	J.E. Taylor	MT335052; MT335284; MT335524; MT359745; MT359505; MT412581; MT412815; MT413029	Crous (2002), Crous <i>et al.</i> (2006), Lombard <i>et al.</i> (2010a), this study
		CMW 30993	CBS 114571; CPC 2253	Soil	Rona, Madagascar	J.E. Taylor	MT335053; MT335285; MT335525; MT359746; MT359506; MT412582; MT412816; MT413030	Crous (2002), Crous <i>et al.</i> (2006), Lombard <i>et al.</i> (2010a), this study

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B66	Ca. malesiana	CMW 23687 [⊤]	CBS 112752; CPC 4223	Soil	Northern Sumatra, Indonesia	M.J. Wingfield	MT335054; MT335286; MT335526; MT359747; MT359507; MT412583; MT412817; MT413031	Crous <i>et al</i> . (2004), this study
		CBS 112710	CMW 51199; CPC 3899	Leaf litter	Prathet, Thailand	N.L. Hywel- Jones	MT335055; MT335287; MT335527; MT359748; MT359508; MT412584; MT412818; MT413032	Crous <i>et al</i> . (2004), this study
B67	Ca. maranhensis	CBS 134811 [⊤]	LPF142	Eucalyptus sp. (leaf)	Açailandia, Maranhao, Brazil	A.C. Alfenas	N/A; KM396035; KM396118; N/A; N/A; N/A; KM395861; KM395948	Alfenas et al. (2015)
		CBS 134812	LPF143	Eucalyptus sp. (leaf)	Açailandia, Maranhao, Brazil	A.C. Alfenas	N/A; KM396036; KM396119; N/A; N/A; N/A; KM395862; KM395949	Alfenas et al. (2015)
B68	Ca. metrosideri	CBS 133603 [⊤]	LPF101	Metrosideros polymorpha	Wataninao, biazii Rification Viçosa, Minas R.F. Alfenas N/A; KC294304; KC294307; N/A; N/A; N/A; Gerais state, Brazil KC294310; KC294313		Alfenas <i>et al</i> . (2013a, 2015)	
		CBS 133604	CMW 51320; LPF103	Metrosideros polymorpha	Viçosa, Minas Gerais state, Brazil	R.F. Alfenas	MT335056; MT335288; MT335528; MT359749; MT359509; MT412585; MT412819; MT413033	Alfenas <i>et al</i> . (2013a, 2015), this study
B69	Ca. mexicana	CBS 110918 [⊤]	CMW 9055; STE-U 927	Soil	Uxmal, Yucatan, Mexico	M.J. Wingfield	GQ280474; GQ267396; FJ972460; GQ280596; GQ280718; KY653412; FJ972526; AF210863	Schoch <i>et al</i> . (1999), Crous (2002), Lombard <i>et al</i> . (2010a), Marin- Felix <i>et al</i> . (2017)
B70	Ca. monticola	CBS 140645 ^T	CPC 28835	Soil	Chiang Mai, Thailand	P.W. Crous	N/A; KT964771; N/A; KT964775; KT983443; N/A; KT964773; KT964769	Crous et al. (2015)
		CPC 28836	-	Soil	Chiang Mai, Thailand	P.W. Crous	N/A; KT964772; N/A; KT964776; KT983444; N/A; KT964774; KT964770	Crous et al. (2015)
B71	Ca. multilateralis	CBS 110932 [⊤]	CMW 51171; CPC 957	Soil	Uxmal, Mexico	P.W. Crous	MT335060; MT335292; MT335532; MT359753; MT359513; MT412589; MT412823; MT413037	Lombard <i>et al.</i> (2016), this study
		CBS 110926	CMW 51168; CPC 947	Soil	Uxmal, Mexico	P.W. Crous	MT335061; MT335293; MT335533; MT359754; MT359514; MT412590; MT412824; MT413038	Lombard <i>et al.</i> (2016), this study
		CBS 110927	CMW 51169; CPC 948	Soil	Uxmal, Mexico	P.W. Crous	MT335062; MT335294; MT335534; MT359755; MT359515; MT412591; MT412825; MT413039	Lombard <i>et al.</i> (2016), this study
B72	Ca. multinaviculata	CBS 134858 ^T	LPF233	Soil (Eucalyptus plantation)	Mucuri, Bahia, Brazil	E. Zauza	N/A; KM396072; KM396155; N/A; N/A; N/A; KM395898; KM395985	Alfenas et al. (2015)
		CBS 134859	LPF418	Soil (Eucalyptus plantation)	Monte Dourado, Pará, Brazil	R.F. Alfenas	N/A; KM396073; KM396156; N/A; N/A; N/A; KM395899; KM395986	Alfenas et al. (2015)
B73	Ca. multiphialidica	CMW 23688 ^T	Cam 13; CBS 112678	Soil (roots of <i>Musa</i> sp.)	Cameroon	Abadie	MT335066; MT335298; MT335538; MT359759; MT359519; MT412595; MT412829; MT413043	Crous <i>et al.</i> (2004), Lombard <i>et al.</i> (2010a), this study
								(continued on next page)

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B74	Ca. multiseptata	CMW 23692 [⊤]	CBS 112682; CPC 1589	E. grandis	North Sumatra, Indonesia	M.J. Wingfield	MT335067; MT335299; MT335539; MT359760; MT359520; MT412596; MT412830; MT413044	Crous <i>et al.</i> (1998, 2006), Crous (2002), this study
B75	Ca. naviculata	CBS 101121 ^T	CMW 30974	Leaf litter	Joao Pessoa, Brazil	R.F. Castaneda	GQ280478; GQ267399; GQ267252; GQ280600; GQ280722; KM232309; GQ267317; GQ267211	Lombard <i>et al</i> . (2010a, 2015b)
		CBS 116080	CMW 16723; STE-U 627	Soil	Manaus, M.J. Wingfield GQ280477; GQ267398; GQ267251; GQ280 Amazonas, Brazil GQ280721; KY653417; GQ267316; AF3334		GQ280477; GQ267398; GQ267251; GQ280599; GQ280721; KY653417; GQ267316; AF333409	Crous <i>et al.</i> (1997a), Crous (2002), Lombard <i>et al.</i> (2010a), Marin- Felix <i>et al.</i> (2017)
B76	Ca. nemoricola	CBS 134837 ^T	LPF085	Soil (tropical rainforest)	Araponga, Minas A.C. Alfenas & N/A; KM396066; KM396149; N/A; N/A; N/A; Gerais, Brazil P.W. Crous KM395892; KM395979		Alfenas et al. (2015)	
		CBS 134838	LPF090	Soil (tropical rainforest)	Araponga, Minas A.C. Alfenas & N/A; KM396067; KM396150; N/A; N/A; N/A; Gerais, Brazil P.W. Crous KM395893; KM395980		Alfenas et al. (2015)	
B77	Ca. octoramosa	CBS 111423 [⊤]	CMW 51819; CPC 1650	Soil Ecuador M.J. Wingfield MT3: MT3:		MT335071; MT335303; MT335543; MT359764; MT359524; MT412600; MT412834; MT413048	Marin-Felix <i>et al.</i> (2017), this study	
B78	Ca. orientalis	CMW 20291 ^T	CBS 125260	Soil	Langam, Indonesia	M.J. Wingfield	MT335072; MT335304; MT335544; MT359765; MT359525; MT412601; MT412835; MT413049	Lombard <i>et al</i> . (2010a), this study
		CMW 20273	CBS 125259	Soil	Teso East, Indonesia	M.J. Wingfield	MT335073; MT335305; MT335545; MT359766; MT359526; MT412602; MT412836; MT413050	Lombard <i>et al</i> . (2010a), this study
B79	Ca. ovata	CMW 16724 ^T	CBS 111299; ATCC 76225; UFV 89	E. urophylla	Monte Dourado, Pará, Brazil	N.E. El-Gholl	MT335075; MT335307; MT335547; MT359768; MT359528; N/A; MT412838; MT413052	El-Gholl <i>et al.</i> (1993a), Crous (2002), Marin- Felix <i>et al.</i> (2017), this study
		CMW 30979	CBS 111307; UFV 90	E. tereticornis	Tucuruí, Pará, Brazil	P.W. Crous	MT335076; MT335308; MT335548; MT359769; MT359529; N/A; MT412839; MT413053	Crous (2002), Lombard <i>et al.</i> (2010a), this study
		CBS 111301	CMW 51176; CPC 1429	E. tereticornis	Tucuruí, Pará, Brazil	P.W. Crous	MT335077; MT335309; MT335549; MT359770; MT359530; N/A; MT412840; MT413054	Lombard <i>et al</i> . (2016), this study
		CBS 114755	CMW 51827; CPC 1403	E. tereticornis	Tucuruí, Pará, Brazil	P.W. Crous	MT335078; MT335310; MT335550; MT359771; MT359531; N/A; MT412841; MT413055	Marin-Felix <i>et al.</i> (2017), this study
		CBS 116249	CMW 51829; CPC 3533	Soil (Eucalyptus plantation)	Brazil	P.W. Crous	MT335074; MT335306; MT335546; MT359767; MT359527; MT412603; MT412837; MT413051	Marin-Felix <i>et al.</i> (2017), this study
B80	Ca. pacifica	CMW 16726 ^T	A1568; CBS 109063; IMI 354528; STE-U 2534	Araucaria heterophylla	Hawaii, USA	M. Aragaki	MT335079; MT335311; MT335551; MT359772; MT359532; MT412604; MT412842; N/A	Kang <i>et al.</i> (2001b), Crous (2002), Crous <i>et al.</i> (2004), this study

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
		CMW 30988	CBS 114038	Ipomoea aquatica	Auckland, New Zealand	C.F. Hill	MT335080; MT335312; MT335552; MT359773; MT359533; MT412605; MT412843; N/A	Crous (2002), Crous <i>et al.</i> (2004), Lombard <i>et al.</i> (2010a), this study
B81	Ca. paracolhounii	CBS 114679 ^T	CMW 51212; CPC 2445	N/A	USA	A.Y. Rossman	N/A; KX784582; N/A; KY653268; KY653324; KY653423; KX784714; KX784644	Lombard <i>et al</i> . (2016), Marin-Felix <i>et al</i> . (2017)
		CBS 114705	CMW 51215; CPC 2423	Annona reticulata (fruit)	Australia D. Hutton		N/A; N/A; N/A; KY653269; KY653325; KY653424; KX784715; KX784645	Lombard <i>et al</i> . (2016), Marin-Felix <i>et al</i> . (2017)
B82	Ca. paraensis	CBS 134669 ^T	LPF430	Soil (Eucalyptus plantation)	Monte Dourado, Pará, Brazil	R.F. Alfenas	N/A; KM396011; KM396094; N/A; N/A; N/A; KM395837; KM395924	Alfenas et al. (2015)
		LPF429	-	Soil (tropical rainforest)	Monte Dourado, Pará, Brazil	R.F. Alfenas	N/A; KM396015; KM396098; N/A; N/A; N/A; KM395841; KM395928	Alfenas et al. (2015)
		CBS 134664	LPF217	Soil (tropical rainforest)	Mucuri, Bahia, Brazil	E. Zauza	N/A; KM396017; KM396100; N/A; N/A; N/A; KM395843; KM395930	Alfenas et al. (2015)
B83	Ca. parvispora	CBS 111465 ^T	CPC 1902	Soil	Brazil	A.C. Alfenas	MT335082; MT335314; MT335554; MT359775; MT359535; MT412607; MT412845; MT413057	Marin-Felix <i>et al</i> . (2017), this study
		CMW 30981	CBS 111478; CPC 1921	Soil	Brazil	A.C. Alfenas	MT335081; MT335313; MT335553; MT359774; MT359534; MT412606; MT412844; MT413056	Lombard <i>et al.</i> (2010a, 2016), this study
B84	Ca. pauciphialidica sp. nov.	CMW 30980 ^T	CBS 111394; CPC 1628	Soil	Ecuador	M.J. Wingfield	MT335083; MT335315; MT335555; MT359776; MT359536; MT412608; MT412846; MT413058	Crous <i>et al.</i> (2006), Lombard <i>et al.</i> (2010a), this study
B85	Ca. pauciramosa	CBS 138824 ^T	CMW 5683; CPC 971	Soil	Knysna, South Africa	P.W. Crous	MT335093; MT335325; MT335565; MT359786; MT359546; MT412618; MT412856; MT413068	Schoch <i>et al.</i> (1999), Crous (2002), Lombard <i>et al.</i> (2010a), this study
		CMW 9151	-	A. mearnsii	South Africa	L. Lombard	MT335096; MT335328; MT335568; MT359789; MT359549; MT412621; MT412859; MT413071	Lombard <i>et al.</i> (2010b), this study
		CBS 111812	CMW 51190; CPC 2631	Cliffordia feruginea	George, Western Cape Province, South Africa	P.W. Crous	MT335084; MT335316; MT335556; MT359777; MT359537; MT412609; MT412847; MT413059	Lombard <i>et al.</i> (2016), this study
		CBS 114458	CMW 51211; CPC 2019	Erica capensis	California, USA	S.T. Koike	MT335087; MT335319; MT335559; MT359780; MT359540; MT412612; MT412850; MT413062	Lombard <i>et al.</i> (2016), this study
		CBS 123183	CMW 51311; CPC 15378	Machaerina sinclairii	Auckland University Campus, Auckland, New Zealand	C.F. Hill	MT335090; MT335322; MT335562; MT359783; MT359543; MT412615; MT412853; MT413065	Lombard <i>et al.</i> (2016), this study
								(continued on next page)

westeroux investigation investigation investigation

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
		CBS 123402	CMW 30872	Arbutus unedo	Carrubba, Sicily, Italy	G. Polizzi	MT335099; MT335331; MT335571; MT359792; MT359552; MT412624; MT412862; MT413074	Lombard <i>et al.</i> (2010b), this study
		CBS 137243	CMW 36327	E. grandis × E. camaldulensis	Bandula, Manica, Mozambique	J. Roux & S. Maússe-Sitoe	MT335091; MT335323; MT335563; MT359784; MT359544; MT412616; MT412854; MT413066	Crous <i>et al</i> . (2013), Lombard <i>et al</i> . (2016), this study
		CMW 9188	CBS 125268	E. grandis	Kwambonambi, KwaZulu-Natal, South Africa	L. Lombard	MT335159; MT335398; MT335638; MT359859; MT359619; MT412689; MT412929; MT413136	Lombard <i>et al.</i> (2010b), this study
		CMW 31450	CBS 136632; CERC 1785	E. urophylla × E. grandis	ZhanJiang, GuangDong, China	G. Zhao	MT335102; MT335334; MT335574; MT359795; MT359555; MT412627; MT412865; MT413077	Lombard <i>et al</i> . (2015a), this study
		CMW 31474	CBS 136635; CERC 1809	E. urophylla × E. grandis	ZhanJiang, GuangDong, China	G. Zhao	MT335104; MT335336; MT335576; MT359797; MT359557; MT412629; MT412867; MT413079	Lombard <i>et al</i> . (2015a), this study
B86	Ca. penicilloides	CMW 23696 [⊤]	CBS 174.55; STE-U 2388	Prunus sp.	Hatizyo Island, Japan	M. Ookubu	MT335106; MT335338; MT335578; MT359799; MT359559; MT412631; MT412869; MT413081	Tubaki (1958), Crous (2002), this study
B87	Ca. piauiensis	CBS 134850 ^T	LPF377	Soil (Eucalyptus plantation)	Teresina, Piauí, Brazil	R.F. Alfenas	N/A; KM396060; KM396143; N/A; N/A; N/A; KM395886; KM395973	Alfenas et al. (2015)
		CBS 134851	LPF381	Soil (tropical rainforest)	Teresina, Piauí, Brazil	R.F. Alfenas	N/A; KM396061; KM396144; N/A; N/A; N/A; KM395887; KM395974	Alfenas et al. (2015)
B88	Ca. pini	CMW 31209 [™]	CBS 123698	Pinus patula	Buga, Valle del Cauca, Colombia	C.A. Rodas	MT335107; MT335339; MT335579; MT359800; MT359560; MT412632; MT412870; MT413082	Lombard <i>et al.</i> (2010a), this study
		CBS 125523	CMW 31210	Pinus patula	Buga, Valle del Cauca, Colombia	C.A. Rodas	GQ280518; GQ267437; GQ267274; GQ280640; GQ280762; N/A; GQ267345; GQ267225	Lombard et al. (2010a)
B89	Ca. plurilateralis	CBS 111401 ^T	CMW 51178; CPC 1637	Soil	Ecuador	M.J. Wingfield	N/A; MT335340; MT335580; MT359801; MT359561; MT412633; MT412871; MT413083	Lombard <i>et al</i> . (2016), this study
B90	Ca. propaginicola	CBS 134815 [⊤]	LPF220	Eucalyptus sp. (seedling)	Santana, Pará, Brazil	A.C. Alfenas	N/A; KM396040; KM396123; N/A; N/A; N/A; KM395866; KM395953	Alfenas et al. (2015)
		CBS 134816	LPF222	Eucalyptus sp. (seedling)	Santana, Pará, Brazil	A.C. Alfenas	N/A; KM396041; KM396124; N/A; N/A; N/A; KM395867; KM395954	Alfenas et al. (2015)
		CBS 134824	LPF367	Eucalyptus sp. (seedling)	Santana, Pará, Brazil	A.C. Alfenas	N/A; KM396049; KM396132; N/A; N/A; N/A; KM395875; KM395962	Alfenas et al. (2015)
B91	Ca. pseudobrassicae	CBS 134662 ^T	LPF280	Soil (Eucalyptus plantation)	Santana, Pará, Brazil	A.C. Alfenas	N/A; KM396023; KM396106; N/A; N/A; N/A; KM395849; KM395936	Alfenas et al. (2015)
		CBS 134661	LPF260	Soil (Eucalyptus plantation)	Santana, Pará, Brazil	A.C. Alfenas	N/A; KM396022; KM396105; N/A; N/A; N/A; KM395848; KM395935	Alfenas et al. (2015)

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or	
	species name ²	representing the species ^{3,4,5}	collection number⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data	
B92	Ca. pseudoecuadoriae	CBS 111402 [⊤]	CMW 51179; CPC 1639	Soil	Ecuador	M.J. Wingfield	N/A; KX784589; N/A; KY653273; KY653329; KY653432; KX784723; KX784652	Lombard <i>et al.</i> (2016), Marin-Felix <i>et al.</i> (2017)	
B93	Ca. pseudometrosideri	CBS 134845 ^T	LPF210	Soil (Eucalyptus plantation)	Maceió, Alagoas, Brazil	M.M. Coutinho	N/A; KM395995; KM396083; N/A; N/A; N/A; KM395821; KM395909	Alfenas et al. (2015)	
		CBS 134843	LPF100	Metrosideros polymorpha	Viçosa, Minas Gerais, Brazil	A.C. Alfenas	N/A; KM395993; KM396081; N/A; N/A; N/A; KM395819; KM395907	Alfenas et al. (2015)	
B94	Ca. pseudomexicana	CBS 130354 ^T CMW 51313; <i>Callistemon</i> sp. DISTEF- TCROU1		Tunis, Carthage, Tunisia	G. Polizzi	MT335110; MT335343; MT335583; MT359804; MT359564; MT412636; MT412874; MT413086	Lombard <i>et al.</i> (2011), this study		
		CBS 130355	CMW 51314; DISTEF- TCROU3	Callistemon sp.	Tunis, Carthage, Tunisia	G. Polizzi	MT335111; MT335344; MT335584; MT359805; MT359565; MT412637; MT412875; MT413087	Lombard <i>et al.</i> (2011), this study	
		CBS 130357	CMW 51316; DISTEF-TCL1	Ca. laevis	Tunis, Carthage, Tunisia	G. Polizzi	MT335149; MT335386; MT335626; MT359847; MT359607; MT412678; MT412917; MT413124	Lombard et al. (2011), this study	
B95	Ca. pseudonaviculata	CBS 116251 [⊤]	CBS 116251 [™] CMW 51235; Buxus sempervirens Kumeu, V CPC 3399; Auckland, Lynfield 824 Zealand		Kumeu, West Auckland, New Zealand	R. MacDiarmid	N/A; MT335345; MT335585; MT359806; MT359566; MT412638; MT412876; MT413088	Crous <i>et al.</i> (2002), Lombard <i>et al.</i> (2016), this study	
		CMW 23672	CBS 114417; CPC 10926	B. sempervirens	New Zealand	C. Crepel	N/A; MT335346; MT335586; MT359807; MT359567; MT412639; MT412877; MT413089	Lombard <i>et al.</i> (2010a, 2016), this study	
B96	Ca. pseudopteridis	CBS 163.28 [⊤]	CMW 51159; IMI 299579	Washingtonia robusta	USA	C.D. Sherbakoff	MT335112; MT335347; MT335587; MT359808; MT359568; MT412640; MT412878; N/A	Sherbakoff (1928), Alfenas <i>et al.</i> (2015), Lombard <i>et al.</i> (2016), this study	
B97	Ca. pseudoreteaudii	CMW 25310 ^T	CBS 123694	E. urophylla × E. grandis	GuangDong, China	M.J. Wingfield & X.D. Zhou	MT335119; MT335354; MT335594; MT359815; MT359575; MT412647; MT412885; MT413096	Lombard et al. (2010c), this study	
		CMW 25292	CBS 123696	E. urophylla × E. grandis	GuangDong, China	M.J. Wingfield & X.D. Zhou	MT335120; MT335355; MT335595; MT359816; MT359576; MT412648; MT412886; MT413097	Lombard et al. (2010c), this study	
		CMW 31487	CBS 136638; CERC 1822	E. urophylla × E. grandis	ZhanJiang, GuangDong, China	G. Zhao	MT335113; MT335348; MT335588; MT359809; MT359569; MT412641; MT412879; MT413090	Lombard <i>et al.</i> (2015a), this study	
		CBS 133349	CMW 51318	Eucalyptus hybrid	Hanoi, Bavi, Vietnam	P.Q. Thu	MT335117; MT335352; MT335592; MT359813; MT359573; MT412645; MT412883; MT413094	Crous <i>et al</i> . (2012), this study	
B98	Ca. pseudospathiphylli	CBS 109165 ^T	CMW 30976; CPC 1623	Soil	Ecuador	M.J. Wingfield	GQ280493; GQ267412; AF348241; GQ280615; GQ280737; KY653435; FJ918562; FJ918513	Kang <i>et al.</i> (2001b), Crous (2002), Lombard <i>et al.</i> (2010a, c), Marin- Felix <i>et al.</i> (2017)	

(continued on next page)

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B99	Ca. pseudospathulata	CBS 134841 ^T	LPF072	Soil (tropical rainforest)	Araponga, Minas Gerais, Brazil	A.C. Alfenas & P.W. Crous	N/A; KM396070; KM396153; N/A; N/A; N/A; KM395896; KM395983	Alfenas et al. (2015)
		CBS 134840	LPF066	Soil (tropical rainforest)	Araponga, Minas Gerais, Brazil	A.C. Alfenas & P.W. Crous	N/A; KM396069; KM396152; N/A; N/A; N/A; KM395895; KM395982	Alfenas et al. (2015)
B100	Ca. pseudouxmalensis	CBS 110924 [⊤]	CMW 51166; CPC 942	Soil	Mexico	P.W. Crous	MT335123; MT335358; MT335598; MT359819; MT359579; MT412651; MT412889; MT413100	Lombard <i>et al.</i> (2016), this study
		CBS 110923	CMW 51165; CPC 941	Soil	Mexico	P.W. Crous	MT335124; MT335359; MT335599; MT359820; MT359580; MT412652; MT412890; MT413101	Lombard <i>et al.</i> (2016), this study
		CBS 115677	CMW 51228; CPC 943	Soil	Mexico	P.W. Crous	MT335125; MT335360; MT335600; MT359821; MT359581; MT412653; MT412891; MT413102	Lombard <i>et al.</i> (2016), this study
B101	Ca. pseudovata	CBS 134674 ^T	LPF267	Soil (Eucalyptus plantation)	Santana, Pará, A.C. Alfenas N/A; KM396032; KM396115; N/A; N/A; N/A; Brazil KM395858; KM395945		Alfenas et al. (2015)	
		CBS 134675	LPF285	Soil (<i>Eucalyptus</i> plantation) Santana, Pará, A.C. Alfenas N/A; Brazil KM3		N/A; KM396033; KM396116; N/A; N/A; N/A; KM395859; KM395946	Alfenas et al. (2015)	
B102	Ca. pteridis	CBS 111793 [⊤]	ATCC 34395; CMW 16736; CPC 2372	Arachniodes adiantiformis	USA	F. Schickedanz	GQ280494; GQ267413; DQ190679; GQ280616; GQ280738; KY653438; FJ918563; DQ190578	Crous <i>et al.</i> (1993c, 2006), Crous (2002), Lombard <i>et al.</i> (2010a), Marin-Felix <i>et al.</i> (2017)
B103	Ca. putriramosa	CBS 111449 ^T	CMW 51181; CPC 1951	Eucalyptus cutting	Brazil	A.C. Alfenas	MT335129; MT335364; MT335604; MT359825; MT359585; MT412657; MT412895; MT413105	Lombard <i>et al.</i> (2016), this study
		CBS 111470	CMW 51182; CPC 1940	Soil	Brazil	A.C. Alfenas	MT335130; MT335365; MT335605; MT359826; MT359586; MT412658; MT412896; MT413106	Lombard <i>et al.</i> (2016), this study
		CBS 111477	CMW 51183; CPC 1928	Soil	Brazil	A.C. Alfenas	MT335131; MT335366; MT335606; MT359827; MT359587; MT412659; MT412897; MT413107	Lombard <i>et al.</i> (2016), this study
B104	Ca. queenslandica	CMW 30604 [⊤]	CBS 112146; CPC 3213	E. urophylla	Lannercost, Queensland, Australia	B. Brown	MT335132; MT335367; MT335607; MT359828; MT359588; MT412660; MT412898; MT413108	Kang <i>et al.</i> (2001a), Lombard <i>et al.</i> (2010c), this study
		CMW 30603	CBS 112155; CPC 3210	E. pellita	Lannercost, Queensland, Australia	P.Q Thu & K.M. Old	MT335133; MT335368; MT335608; MT359829; MT359589; MT412661; MT412899; MT413109	Kang <i>et al.</i> (2001a), Lombard <i>et al.</i> (2010c), this study
		CMW 30601	CBS 112151; CPC 3202; DFRI00150	E. urophylla	Cardwell, Queensland, Australia	C. Hanwood	MT335134; MT335369; MT335609; MT359830; MT359590; MT412662; MT412900; MT413110	Crous (2002), Crous <i>et al.</i> (2006), Lombard <i>et al.</i> (2010c), this study
B105	Ca. quinqueramosa	CBS 134654 [⊤]	LPF065	Soil (Eucalyptus plantation)	Monte Dourado, Pará, Brazil	R.F. Alfenas	N/A; KM396029; KM396112; N/A; N/A; N/A; KM395855; KM395942	Alfenas et al. (2015)

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or	
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data	
		CBS 134655	LPF281	Soil (Eucalyptus plantation)	Santana, Pará, Brazil	A.C. Alfenas	N/A; KM396030; KM396113; N/A; N/A; N/A; KM395856; KM395943	Alfenas <i>et al</i> . (2015)	
B106	6 Ca. reteaudii CMW 30984 [⊤] CBS 112144; <i>E. cama</i> . CPC 3201		E. camaldulensis	Chon Thanh, Binh Phuoc, Vietnam	M.J. Dudzinski & P.Q. Thu	MT335135; MT335370; MT335610; MT359831; MT359591; MT412663; MT412901; MT413111	Kang <i>et al.</i> (2001a), Crous (2002), Crous <i>et al.</i> (2006), this study		
		CMW 16738	CBS 112143; CPC 3200	Eucalyptus sp. (leaves)	Binh Phuoc, Vietnam	M.J. Dudzinski & P.Q. Thu	MT335136; MT335371; MT335611; MT359832; MT359592; MT412664; MT412902; MT413112	Kang <i>et al.</i> (2001a), Crous (2002), Crous <i>et al.</i> (2006), this study	
		CMW 47410	CBS 143563	<i>E. urophylla</i> (leaf)	Bavi, Hanoi, Vietnam	N.Q. Pham & T.Q. Pham	MT334966; MT335193; MT335433; MT359654; MT359414; MT412497; MT412724; N/A	Pham <i>et al</i> . (2019), this study	
B107	Ca. robigophila	CBS 134652 [⊤]	LPF192	<i>Eucalyptus</i> sp. (leaf)	Açailandia, Maranhao, Brazil	R.F. Alfenas	N/A; KM396024; KM396107; N/A; N/A; N/A; KM395850; KM395937	Alfenas et al. (2015)	
		CBS 134653	LPF193	<i>Eucalyptus</i> sp. (leaf)	Açailandia, Maranhao, Brazil	R.F. Alfenas	N/A; KM396025; KM396108; N/A; N/A; N/A; KM395851; KM395938	Alfenas et al. (2015)	
B108	Ca. rumohrae	CMW 23697 [⊤]	CBS 111431; CPC 1716; UFV 218	Rumohra adiantiformis	Volkan, Panama	J.W. Miller & R.M. leahy	MT335137; MT335372; MT335612; MT359833; MT359593; N/A; MT412903; MT413113	El-Gholl <i>et al.</i> (1997), Crous (2002), Crous <i>et al.</i> (2006), this study	
		CMW 30989	CBS 109062; CPC 1603	Adiantum sp.	The Netherlands	R. Pieters	MT335138; MT335373; MT335613; MT359834; MT359594; MT412665; MT412904; MT413114	El-Gholl <i>et al.</i> (1997), Crous (2002), Crous <i>et al.</i> (2006), this study	
B109	Ca. silvicola	CBS 135237 [⊤]	LPF081	Soil (tropical rainforest)	Mucuri, Bahia, Brazil	A.C. Alfenas & P.W. Crous	N/A; KM396065; KM396148; N/A; N/A; N/A; KM395891; KM395978	Alfenas et al. (2015)	
		CBS 134836	LPF079	Soil (tropical rainforest)	Araponga, Minas Gerais, Brazil	A.C. Alfenas & P.W. Crous	N/A; KM396062; KM396145; N/A; N/A; N/A; KM395888; KM395975	Alfenas et al. (2015)	
	Calonectria sp.	CBS 112152	CPC 3203	E. camaldulensis	Vietnam	N/A	N/A; KX784602; N/A; KY653291; KY653347; KY653463; KX784745; KX784672	Lombard et al. (2016), Marin-Felix et al. (2017)	
	Calonectria sp.	CBS 112753	CPC 4225	N/A	Indonesia	N/A	N/A; KX784598; N/A; KY653292; KY653348; KY653464; KX784740; KX784667	Lombard <i>et al.</i> (2016), Marin-Felix <i>et al.</i> (2017)	
B110	Ca. spathiphylli	CMW 16742 ^T	ATCC 44730; CBS 114540; STE-U 2185	Spathiphyllum sp.	Florida, USA	C.L. Schoulties	N/A; MT335374; MT335614; MT359835; MT359595; MT412666; MT412905; MT413115	El-Gholl <i>et al.</i> (1992), Crous (2002), Lombard <i>et al.</i> (2010a, 2016), this study (<i>continued on next page</i>)	

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
		CMW 30997	CBS 116168; CPC 789	Spathiphyllum sp.	Switzerland	L. Petrini	N/A; MT335375; MT335615; MT359836; MT359596; MT412667; MT412906; MT413116	El-Gholl <i>et al.</i> (1992), Crous (2002), Lombard <i>et al.</i> (2016), this study
B111	Ca. spathulata	CMW 16744 ^T	CBS 555.92	E. viminalis	Brazil	N.E. El-Gholl	MT335139; MT335376; MT335616; MT359837; MT359597; MT412668; MT412907; MT413117	Crous & Kang (2001), Crous (2002), Lombard <i>et al.</i> (2016), this study
		CBS 112513	CMW 51197; CPC 3851	<i>Eucalyptus</i> sp.	Colombia	M.J. Wingfield	MT335140; MT335377; MT335617; MT359838; MT359598; MT412669; MT412908; MT413118	Lombard <i>et al.</i> (2016), this study
B112	Ca. sumatrensis	CMW 23698 ^T	CBS 112829; CPC 4518	Soil	Northern Sumatra, Indonesia	ern Sumatra, M.J. Wingfield MT335145; MT335382; MT335622; MT359843; esia MT359603; MT412674; MT412913; N/A		Crous <i>et al</i> . (2004), this study
		CMW 30987	CBS 112934; CPC 4516	Soil	Northern Sumatra, Indonesia	rthern Sumatra, M.J. Wingfield MT335146; MT335383; MT335623; MT359844; onesia MT359604; MT412675; MT412914; N/A		Crous <i>et al.</i> (2004), this study
		CBS 112936	CMW 51207; CPC 4504	Soil	Northern Sumatra, Indonesia	M.J. Wingfield	MT335143; MT335380; MT335620; MT359841; MT359601; MT412672; MT412911; N/A	Lombard <i>et al.</i> (2016), this study
B113	Ca. syzygiicola	CBS 112831 ^T	CMW 51204; CPC 4511	Syzygium aromaticum	maticum Sumatra, Indonesia M.J. Wingfield N/A; N/A; N/A; N/A; N/A; N/A; KX784736; KX784		N/A; N/A; N/A; N/A; N/A; N/A; KX784736; KX784663	Lombard et al. (2016)
B114	Ca. terricola	CBS 116247 ^T	CMW 51232; CPC 3583	Soil (Eucalyptus plantation)	Brazil	P.W. Crous	N/A; N/A; N/A; N/A; N/A; N/A; KX784738; KX784665	Lombard et al. (2016)
B115	Ca. tonkinensis	CMW 47430 ^T	CBS 143576	Soil (Eucalyptus plantation)	Bavi, Hanoi, Vietnam	N.Q. Pham & T.Q. Pham	MT335147; MT335384; MT335624; MT359845; MT359605; MT412676; MT412915; MT413122	Pham <i>et al</i> . (2019), this study
B116	Ca. uniseptata	CBS 413.67 [⊤]	CMW 23678; CPC 2391; IMI 299577	Paphiopedilum callosum	Celle, Germany	W. Gerlach	GQ280451; GQ267379; GQ267248; GQ280573; GQ280695; N/A; GQ267307; GQ267208	Lombard et al. (2016)
B117	Ca. uxmalensis	CBS 110925 ^T	CMW 51167; CPC 945	Soil	Uxmal, Mexico	P.W. Crous	MT335153; MT335390; MT335630; MT359851; MT359611; MT412681; MT412921; MT413128	Lombard <i>et al.</i> (2016), this study
		CBS 110919	CMW 51164; CPC 928	Soil	Uxmal, Mexico	P.W. Crous	MT335154; MT335391; MT335631; MT359852; MT359612; MT412682; MT412922; MT413129	Lombard <i>et al.</i> (2016), this study
B118	Ca. variabilis	CMW 3187 ^T	AR2675; CBS 114677; CPC 2436	Schefflera morototoni	Pará, Brazil	razil F.C. de N/A; MT335392; MT335632; MT359853; Albuquerque MT359613; MT412683; MT412923; MT413130		Crous <i>et al.</i> (1993b), Crous (2002), Lombard <i>et al.</i> (2010a, 2016), this study
		CMW 2914	CBS 112691; CPC 2506	Theobroma grandiflorum	Pará, Brazil	F. Carneiro	N/A; MT335393; MT335633; MT359854; MT359614; MT412684; MT412924; MT413131	Crous <i>et al.</i> (1993b), Crous (2002), Lombard <i>et al.</i> (2010a, 2016), this study

Code B ¹	Accepted	Isolates	Other	Hosts	Area of	Collector	GenBank accession Numbers ⁶	References or
	species name ²	representing the species ^{3,4,5}	collection number ⁵		occurrence		act; cmdA; his3; ITS; LSU; rpb2; tef1; tub2	source of data
B119	Ca. venezuelana	CBS 111052 ^T	CMW 51173; CPC 1183	Soil	Acarigua, Venezuela	M.J. Wingfield	MT335155; MT335394; MT335634; MT359855; MT359615; MT412685; MT412925; MT413132	Lombard <i>et al</i> . (2016), this study
B120	Ca. yunnanensis	CERC 5339 ^T	CBS 142897; CMW 47644	Soil (Eucalyptus plantation)	YunNan, China	S.F. Chen & J.Q. Li	MT335157; MT335396; MT335636; MT359857; MT359617; MT412687; MT412927; MT413134	Li <i>et al.</i> (2017), this study
		CERC 5337	CBS 142895; CMW 47642	Soil (Eucalyptus plantation)	YunNan, China	S.F. Chen & J.Q. Li	MT335158; MT335397; MT335637; MT359858; MT359618; MT412688; MT412928; MT413135	Li <i>et al.</i> (2017), this study
		CERC 5376	CBS 142892; CMW 47655	Soil (Eucalyptus plantation)	PuEr, YunNan, China	S.F. Chen & J.Q. Li	MT335126; MT335361; MT335601; MT359822; MT359582; MT412654; MT412892; MT413103	Li <i>et al.</i> (2017), this study
	Curvicladiella cignea	CBS 109167 ^T	CPC 1595; MUCL 40269	Decaying leaf	French Guiana	C. Decock	KM231122; KM231287; KM231461; AF220973; AY793431; KM232311; KM231867; KM232002	Decock & Crous (1998), Crous <i>et al</i> . (2006), Lombard <i>et al</i> . (2015b)
		CBS 109168	CPC 1594; MUCL 40268	Decaying seed	French Guiana	C. Decock	KM231121; KM231286; KM231460; KM231745; JQ666074; KM232312; KM231868; KM232003	Decock & Crous (1998), Crous <i>et al</i> . (2006), Lombard <i>et al.</i> (2015b)

¹ Codes (B1 to B120) of the 120 accepted *Calonectria* species resulting from the present study.

² One hundred and twenty accepted species resulting from the present study.

³ Key isolates of the 120 Calonectria species after revision.

⁴ T: ex-type isolates of the *Calonectria* species after revision.

⁵ AR: Amy Y. Rossman working collection; ATCC: American Type Culture Collection, Virginia, USA; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CERC: China Eucalypt Research Centre, ZhanJiang, GuangDong Province, China; CMW: Culture collection of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; CPC: Pedro Crous working collection housed at Westerdijk Fungal Biodiversity Institute; HGUP: Plant Pathology Herbarium of Gui Zhou University, GuiYang 550025, China; IMI: International Mycological Institute, CABI Bioscience, Egham, Bakeham Lane, UK; LPF: Laboratorio de Patologia Florestal, Universidade Federal de Viçsa, Viçsa, Brazil; MUCL: Mycotheque, Laboratorie de Mycologie Systematique st Appliqee, l'Universite, Louvian-la-Neuve, Belgium; PPRI: Plant Protection Research Institute, Pretoria, South Africa; STE-U: Department of Plant Pathology, University of Stellenbosch, South Africa; UFV: Universidade Federal de Viçsa, Viçsa, Brazil.

⁶ act: actin; cmdA: calmodulin; his3: histone H3; ITS: the internal transcribed spacer regions 1 and 2 and the 5.8S gene of the ribosomal RNA; LSU: 28S large subunit RNA gene; rpb2: the second largest subunit of RNA polymerase; tef1: translation elongation factor 1-alpha; tub2: β-tubulin.

⁷ GenBank accession number obtained in this study are in bold.

⁸ N/A: information are not available.

Species complex	Vesicle	e shape	Macro sept	conidia ation	Periti col	necial our	Ascospor in a	e numbers asci	bers Ascospores septation		Thallism ⁶	Area of occurrence
	Typical or dominant ¹	Additional or minor	Typical or dominant ²	Additional or minor	Typical or dominant ³	Additional or minor	Typical or dominant ⁴	Additional or minor	Typical or dominant ⁵	Additional or minor		
1. Calonectria brassicae species complex	Clavate	Acicular, broadly clavate, narrowly clavate	1	1(–2), 1(–3)	Orange to red-brown	Brown, red	8		1	1(–3), (1–)3	Heterothallic or homothallic	Asia, North and South America
3. Calonectria colhounii species complex	Clavate	Acicular, broadly clavate, narrowly clavate	3	(1–)3, (1–)3(–4), 3–4	Yellow	Bright yellow, brown, dull yellow, orange, red, red-brown	4	(2–)4, 8	3	(1–)3, 2–3	Heterothallic or homothallic	Africa, Asia, North America
5. Calonectria gracilipes species complex	Narrowly clavate	Clavate	>3	1, 3, up to 12	Orange to red-brown	Brown, orange-brown	8		Varied	1, (1–)3, 3–6(–9)	Homothallic	North and South America
10. <i>Calonectria</i> <i>reteaudii</i> species complex	Narrowly clavate	Clavate	>3	(1–)3, up to 8	Orange to red-brown	Orange-red, red	8		3	(1–)3, (1–)3(–5), 3–4, (1–)3–6(–9)	Heterothallic or homothallic	Asia, Oceania
8. <i>Calonectria</i> <i>naviculata</i> species complex	Naviculate	Clavate, ellipsoidal, sphaero- pedunculate	1	1(–3)	Orange to red-brown		2–8		3		Heterothallic	Africa, Asia, Europe, North and South America, Oceania
2. Calonectria candelabrum species complex	Ellipsoidal to obpyriform	Broadly ellipsoidal, clavate, fusiform, narrowly obpyriform, ovoid, spathulate	1	(1–)3(–6)	Orange to red-brown	Red	8	4–8	1	(1–)3	Heterothallic or homothallic	Africa, Asia, Europe, North and South America, Oceania
7. Calonectria mexicana species complex	Ellipsoidal with papillate apex	Acicular, clavate, fusiform, narrowly ellipsoidal, obpyriform, obovoid, pyriform, sphaero- pedunculate	1	1(–3), (1–)3, (1–)3(–6)	Orange to red-brown	Brownish- yellow, red, yellow	8		1	1(–3), 3	Heterothallic or homothallic	Africa, Europe, North America
6. <i>Calonectria</i> <i>kyotensis</i> species complex	Sphaero- pedunculate	Globose, pyriform	1	1(–3), (1–)3, 3	Orange to red-brown	Orange- brown, red, reddish brown	8		1	1(–3), 2–3	Heterothallic or homothallic	Africa, Asia, Europe, North and South America
11. Calonectria spathiphylli species complex	Sphaero- pedunculate	Globose, ovoid, ellipsoidal, obpyriform	1	1(–3)	Orange to red-brown	Red	8	2–8	1	1(-3)	Heterothallic or homothallic	North and South America
4. Calonectria cylindrospora species complex	Clavate, ellipsoidal, ellipsoidal with papillate apex, fusiform, obpyriform, ovoid, pyriform, sphaero- pedunculate	•	1	(1–)3(–4)	Orange to red-brown	Orange- brown, red, yellow	8	(2–)8	1	1(–3)	Heterothallic or homothallic	Africa, Asia, Europe, North and South America
9. Calonectria pteridis species complex	Clavate or ovate	Fusiform, narrowly clavate, ellipsoidal	1	1(–3)	Orange to red-brown		8		1	1(–3), 1–3(–7)	Heterothallic	North and South America

Table 2. Morphological characteristics, thallism and area of occurrence of the 11 Calonectria species complexes.

¹ Typical vesicle shape for each species complex were marked in different colour: clavate or narrowly clavate vesicle/light green, naviculate vesicle/green, ellipsoidal to obpyriform vesicle/dark green, ellipsoidal vesicle with papillate apex/yellow, sphaeropedunculate vesicle/orange; species complexes with varied vesice shapes were not marked in any colour.

² Typical macroconidial septation number for each species complex were marked in different colour: 1-septate/light green, 3-septate/green, > 3-septate/dark green.

³ Typical perithecial colour for each species complex were marked in different colour: orange to red-brown perithecia/light green, yellow perithecia/green.

⁴ Typical ascospores number produced in the ascus for each species complex were marked in different colour: 4-spored asci/light green, 8-spored asci/green, not 4-spored or 8-spored asci were not

marked in any colour.

⁵ Typical ascospores septation number for each species complex were marked in different colour: 1-septate/light green, 3-septate/green, varied number of ascospores septation were not mark in any colour. ⁶ Different mating system for each species complex were marked in different colour; heterothallic/light green, homothallic/green, heterothallic/ ark green. species complex) all produce obpyriform vesicles, and 1-septate macroconidia with overlapping dimensions (Supplementary Table S4). Some species in the same species complex shared a similar morphology; for example, *Ca. pseudobrassicae* and *Ca. paraensis* (both in the *Ca. brassicae* species complex) both produce clavate vesicles, and 1-septate macroconidia with overlapping dimensions (Supplementary Table S4).

Species in the *Ca. naviculata* and *Ca. pteridis* species complexes are heterothallic, while those in the *Ca. gracilipes* species complex are homothallic. *Calonectria* species in the remaining eight complexes include both heterothallic and homothallic mating systems (Table 2, Supplementary Table S4).

A summary of species distribution globally, showed that species in the *Ca. candelabrum* and *Ca. naviculata* species complexes occur on all the continents other than Antarctica. In contrast, species in the *Ca. gracilipes*, *Ca. pteridis* and *Ca. spathiphylli* species complexes were from North and South America and those in the *Ca. reteaudii* species complex were from Asia and Oceania. Species in other species complexes occurred on between three and five continents (Table 2, Supplementary Table S4).

Species reduced to synonymy

Based on the criteria decided upon for species delimitation, 51 previously identified species were found to represent synonyms of other known species (Supplementary Tables S1 and S2). Justification for reducing these 51 previously accepted taxa to synonymy with earlier names is provided in the taxonomy section.

Novel taxa

Based on phylogenetic placement in the individual gene phylogenies as well as in the multi-gene phylogenetic trees (Fig. 1, Supplementary Figs S1-8), two isolates (CMW 30602 and CMW 30980) formed two distinct lineages. These lineages were clearly distinct from those representing any of the other described species and they are recognised here as two novel taxa described in the Taxonomy section. In the Ca. brassicae species complex, a single isolate (CMW 30980), treated as Ca. ecuadorae in the earlier studies (Crous et al. 2006), formed a distinct lineage in the rpb2, tef1, tub2 and in the combined gene tree. This fungus clustered close to but separate from Ca. ecuadorae (ex-type CMW 23677, CBS 111706, and CBS 114164) and Ca. octoramosa (ex-type CBS 111423) (Fig. 1, Supplementary Figs S6-8). Isolate CMW 30980 is thus considered to represent a novel species. Isolate CMW 30602 in the Ca. reteaudii species complex was identified as Ca. terrae-reginae by Lombard et al. (2010c), and formed a distinct lineage in the ITS, tef1 and tub2 analyses as well as in the combined phylogenetic tree (Fig. 1, Supplementary Figs S4, S7, S8). This isolate represents an undescribed species closely related to but separate from Ca. queenslandica (ex-type CMW 30604, CMW 30601, and CMW 30603) (Fig. 1, Supplementary Figs S4, S7).

Calonectria lauri (Vanderw.) Lechat & Crous was proposed as the sexual morph of *Cylindrocladium ilicicola* by Lechat in 2010. The basionym *Tetracytum lauri* is invalid and thus the name *Ca. lauri* is invalid. The results of the present study have shown that *Ca. lauri* represents a well-defined species and its name is consequently validated in the taxonomy section.

Taxonomy (Species listed in alphabetical order)

Following the results of the multi-gene phylogenetic analyses and consideration of the morphological characteristics of the 169 described *Calonectria* spp. (codes A1 to A169 in Supplementary Tables S1 and S2), 51 species are reduced to synonymy and three novel *Calonectria* species (*Calonectria lauri* was validated and it is treated as a valid species in the current study) are recognised. This results in 120 *Calonectria* spp. now accepted and these are listed in Table 1 (codes B1 to B120 in Supplementary Tables S1 and S2). Morphological characteristics of the *Calonectria* spp. identified in this study and their closest relatives are summarised (Supplementary Table S4). The 120 accepted *Calonectria* species emerging from this study and their synonymies are presented below.

acaciicola Calonectria N.Q. Pham et al., Mycologia 111: 88. 2019.

In: Calonectria reteaudii species complex.

Typus: PREM 62105 holotype.

Ex-type culture: CBS 143557 = CMW 47173. *Type locality*: **Vietnam**, Nghe An, Do Luong.

Type substrate: Soil in Acacia auriculiformis plantation.

Barcodes: act = MT334933; cmdA = MT335160; his3 = MT335399; rpb2 = MT412474; tef1 = MT412690; tub2 = MT412930 (alternative markers: ITS = MT359620; LSU = MT359380).

Notes: Calonectria acaciicola is phylogenetically closely related to *Ca. pseudoreteaudii* and *Ca. reteaudii*. The sequences of *cmdA*, *his3*, *rpb2*, *tef1* and *tub2* gene regions can differentiate *Ca. acaciicola* from these two species. The macroconidia of *Ca. acaciicola* [(av. 94 × 7 µm); Pham *et al.* 2019] are smaller than those of *Ca. pseudoreteaudii* [(av. 104 × 8 µm); Lombard *et al.* 2010c] but larger than those of *Ca. reteaudii* [(av. 84 × 6.5 µm); Kang *et al.* 2001a] (Supplementary Table S4).

acicola Calonectria Gadgil & M.A. Dick, N.Z. JI For. Sci. 34: 316. 2004.

Synonym: Cylindrocladium acicola Gadgil & M.A. Dick, N.Z. Jl For. Sci. 34: 316. 2004.

In: Calonectria reteaudii species complex.

Typus: NZFRI-M 5213 holotype.

Ex-type culture: CMW 30996.

Type locality: New Zealand, Northland.

Type substrate: Phoenix canariensis.

Barcodes: act = MT334935; cmdA = MT335162; his3 = MT335401; rpb2 = MT412476; tef1 = MT412692; tub2 = MT412932 (alternative markers: ITS = MT359622; LSU = MT359382).

Notes: Calonectria acicola is phylogenetically closely related to *Ca. multiseptata*. They can be distinguished from each other by the formation of megaconidiophores and megaconidia, a feature not observed in *Ca. acicola* but typical in *Ca. multiseptata* (Crous 2002, Gadgil & Dick 2004). *Calonectria acicola* is homothallic (Gadgil & Dick 2004) (Supplementary Table S4).

aciculata Calonectria J.Q. Li et al., IMA Fungus 8: 273. 2017.

In: Calonectria colhounii species complex.

Typus: PREM 61941 holotype.

Ex-type culture: CBS 142883 = CMW 47645 = CERC 5342.

Type locality: China, YunNan Province.

Type substrate: Eucalyptus urophylla × E. grandis. Barcodes: act = MT334937; cmdA = MT335164; his3 = MT335403; rpb2 = MT412478; tef1 = MT412694; tub2 = MT412934 (alternative markers: ITS = MT359624; LSU = MT359384).

Notes: Calonectria aciculata is closely related to *Ca. colhounii* and *Ca. honghensis*, but can be distinguished from these two species by its macroconidial dimensions. The macroconidia of *Ca. aciculata* [(av. 69 × 5.5 µm); Li *et al.* 2017] are longer than those of *Ca. colhounii* [(av. 65 × 5 µm); Peerally 1973] and *Ca. honghensis* [(av. 54 × 5.5 µm); Li *et al.* 2017]. *Calonectria aciculata* is homothallic (Li *et al.* 2020) (Supplementary Table S4).

aconidialis Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 162. 2015.

Synonyms: Calonectria arbusta L. Lombard *et al.*, Stud. Mycol. 80: 162. 2015.

Calonectria expansa L. Lombard et al., Stud. Mycol. 80: 167. 2015.

Calonectria guangxiensis L. Lombard et al., Stud. Mycol. 80: 169. 2015.

Calonectria hainanensis L. Lombard *et al.*, Stud. Mycol. 80: 170. 2015.

Calonectria magnispora L. Lombard et al., Stud. Mycol. 80: 174. 2015.

Calonectria parakyotensis L. Lombard et al., Stud. Mycol. 80: 176. 2015.

Calonectria pluriramosa L. Lombard et al., Stud. Mycol. 80: 178. 2015.

Calonectria pseudokyotensis L. Lombard *et al.*, Stud. Mycol. 80: 178. 2015.

Calonectria sphaeropedunculata L. Lombard *et al.*, Stud. Mycol. 80: 180. 2015.

In: Calonectria kyotensis species complex.

Typus: CBS H-21481 holotype.

Ex-type culture: CBS 136086 = CMW 35174 = CERC 1850. *Type locality*: **China**, HaiNan Province.

Type substrate: Soil in *Eucalyptus* plantation.

Barcodes: *act* = MT334938; *cmdA* = MT335165; *his3* = MT335404; *rpb2* = MT412479; *tef1* = MT412695 (alternative markers: ITS = MT359625; LSU = MT359385).

Notes: Calonectria aconidialis is phylogenetically closely related to *Ca. pacifica* and can be differentiated from that species by the sequences of *act*, *cmdA*, *his3*, *rpb2*, ITS, LSU and *tef1* gene regions. The asexual structures of *Ca. aconidialis* failed to develop (Lombard *et al.* 2015a). This species is homothallic (Lombard *et al.* 2015a) (Supplementary Table S4).

aeknauliensis Calonectria N.Q. Pham & M.J. Wingf., Mycologia 111: 93. 2019.

In: Calonectria kyotensis species complex.

Typus: PREM 62107 holotype.Ex-type culture: CBS 143559 = CMW 48253.Type locality: Indonesia, Northern Sumatra, Aek Nauli.Type substrate: Soil in Eucalyptus plantation.Barcodes: act = MT334953; cmdA = MT335180;his3 = MT335419; rpb2 = MT412486; tef1 = MT412710; (alternative markers: ITS = MT359640; LSU = MT359400).

Notes: Calonectria aeknauliensis is closely related to *Ca. curvispora* and *Ca. ilicicola*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. aeknauliensis* [(av. 47 × 5 µm); Pham *et al.* 2019] are shorter than those of *Ca. curvispora* [(av. 60 × 5 µm); Victor *et al.* 1997] and smaller than those of *Ca. ilicicola* [(av. 62 × 6 µm); Boedijn & Reitsma 1950] (Supplementary Table S4).

amazonica Calonectria L. Lombard & Crous, Stud. Mycol. 85: 171. 2016.

Synonyms: Calonectria amazoniensis L. Lombard & Crous, Stud. Mycol. 85: 173. 2016.

Calonectria tropicalis L. Lombard & Crous, Stud. Mycol. 85: 192. 2016.

Calonectria longiramosa L. Lombard & Crous, Stud. Mycol. 86: 114. 2017.

In: Calonectria pteridis species complex.

Typus: CBS H-22750 holotype.

Ex-type culture: CBS 116250 = CMW 51234 = CPC 3534.

Type locality: Brazil, Amazon.

Type substrate: Eucalyptus tereticornis.

Barcodes: act = MT334955; cmdA = MT335182; his3 = MT335421; rpb2 = MT412488; tef1 = MT412712; tub2 = MT412935 (alternative markers: ITS = MT359642; LSU = MT359402).

Notes: Calonectria amazonica is closely related to *Ca. pteridis* and *Ca. pseudopteridis*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. amazonica* [(av. 79 × 5 μ m); Lombard *et al.* 2016] are smaller than those of *Ca. pteridis* [(av. 82 × 5.5 μ m); Crous *et al.* 1993c] and *Ca. pseudopteridis* [(av. 87.5 × 5.7 μ m); Sobers 1968, Alfenas *et al.* 2015]. *Calonectria amazonica* is heterothallic (Li *et al.* 2020) (Supplementary Table S4).

amazoniensis Calonectria L. Lombard & Crous, Stud. Mycol. 85: 173. 2016.

(see Calonectria amazonica)

In: Calonectria pteridis species complex.

Typus: CBS H-22751 holotype.

Ex-type culture: CBS 115440 = CMW 51222 = CPC 3885.

Type locality: Brazil, Amazon.

Type substrate: Eucalyptus tereticornis.

Barcodes: *act* = MT334957; *cmdA* = MT335184; *his3* = MT335423; *tef1* = MT412714; *tub2* = MT412937 (alternative markers: ITS = MT359644; LSU = MT359404).

Notes: Calonectria amazoniensis was treated as a synonym of *Ca. amazonica* in this study. In comparisons of DNA sequences for seven available gene regions, there were only three base differences in the *tub2* gene sequences between ex-type isolate of *Ca. amazoniensis* (CBS 115440) and the ex-type isolate of *Ca. amazonica* (CBS 116250). Both species produce clavate vesicles of similar dimensions (*Ca. amazoniensis*: 5–7 µm; *Ca. amazonica*: 5–6 µm) and 1-septate macroconidia. The macroconidia of *Ca. amazonica* (av. 79 × 5 µm) (Lombard *et al.* 2016), which was considered to represent intraspecific variation (Supplementary Table S4).

angustata Calonectria (Crous & El-Gholl) L. Lombard et al., Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium angustatum Crous & El-Gholl, Mycoscience 41: 522. 2000.

In: Calonectria gracilipes species complex.

Typus: PREM 56546 holotype.

Ex-type culture: CBS 114544 = CMW 30990 = CPC 2347 = P99-0454.

Type locality: USA, Florida, Sarasota nursery.

Type substrate: Tillandsia capitata.

Barcodes: act = MT334963; his3 = MT335429; rpb2 = MT412493; tef1 = MT412720; tub2 = MT412943 (alternative markers: ITS = MT359650; LSU = MT359410).

Notes: Calonectria angustata is phylogenetically closely related to *Ca. hurae* and *Ca. leguminum*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. angustata* [(av. 110 × 10 µm); Crous *et al.* 2000] are shorter than those of *Ca. hurae* [(av. 120 × 7.5 µm); Crous 2002] but larger than those of *Ca. leguminum* [(av. 60 × 5 µm); Figueiredo & Namekata 1967, Crous 2002] (Supplementary Table S4).

arbusta Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 162. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21482 holotype.

Ex-type culture: CBS 136079 = CMW 31370 = CERC 1705.

Type locality: China, GuangXi Province.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: *act* = MT334940; *cmdA* = MT335167; *his3* = MT335406; *rpb2* = MT412480; *tef1* = MT412697 (alternative markers: ITS = MT359627; LSU = MT359387).

Notes: Calonectria arbusta was treated as a synonym of *Ca.* aconidialis in this study. In comparisons of DNA sequences for seven available gene regions, the only differences between the ex-type isolate of *Ca.* arbusta (CMW 31370) and the ex-type isolate of *Ca.* aconidialis (CMW 35174) was in the *his3* and *tef1* sequences, where there were two base differences in the *his3* and one base difference in the *tef1* sequences. Both species are homothallic and produce orange to orange-brown perithecia, 8-spored asci and 1-septate ascospores, and share the similar ascospores dimensions (*Ca.* arbusta: av. 38 × 7 µm; *Ca.* aconidialis: av. 36 × 6 µm) (Lombard *et al.* 2015a, Li *et al.* 2020; Supplementary Table S4).

asiatica Calonectria Crous & Hywel-Jones, Stud. Mycol. 50: 419. 2004.

Synonym: Cylindrocladium asiaticum Crous & Hywel-Jones, Stud. Mycol. 50: 419. 2004.

In: Calonectria kyotensis species complex.

Typus: CBS 9889 holotype.

Ex-type culture: CBS 114073 = CMW 23782 = CPC 3900.

Type locality: **Thailand**, Prathet Thai. *Type substrate*: Leaf litter.

Barcodes: act = GQ280428; *cmdA* = AY725741; *his3* = AY725658; *tef1* = AY725705; *tub2* = AY725616 (alternative markers: ITS = GQ280550; LSU = GQ280672).

Notes: Calonectria asiatica is closely related to Ca. yunnanensis, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of Ca. asiatica [(av. 53 × 5 μ m); Crous *et al.* 2004] are larger than those of Ca.

yunnanensis [(av. 43 × 4.5 μ m); Li *et al.* 2017], and the vesicles of *Ca. asiatica* (12–17 μ m) are wider than those of *Ca. yunnanensis* (2–4.5 μ m). *Calonectria asiatica* is homothallic (Crous *et al.* 2004) (Supplementary Table S4).

auriculiformis Calonectria N.Q. Pham *et al.*, Mycologia 111: 85. 2019.

In: Calonectria cylindrospora species complex.

Typus: PREM 62109 holotype.

Ex-type culture: CBS 143561 = CMW 47178.

Type locality: **Vietnam**, Thanh Hoa, Hau Loc.

Type substrate: Soil in Acacia auriculiformis plantation. Barcodes: act = MT334964; cmdA = MT335190; his3 = MT335430; rpb2 = MT412494; tef1 = MT412721; tub2 = MT412944 (alternative markers: ITS = MT359651; LSU = MT359411).

Notes: Calonectria auriculiformis is closely related to *Ca. lage-niformis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. auriculiformis* (av. 43 × 4 μ m) are longer than those of *Ca. lageniformis* (av. 40 × 5 μ m). Furthermore, *Ca. auriculiformis* has five tiers of branches in its conidiogenous apparatus in comparison to three in *Ca. lageniformis* (Lombard *et al.* 2016, Pham *et al.* 2019).

australiensis Calonectria (Crous & K.D. Hyde) L. Lombard et al., Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium australiense Crous & K.D. Hyde, Stud. Mycol. 55: 221. 2006.

In: Calonectria reteaudii species complex.

Typus: CBS H-17872 holotype.

Ex-type culture: CBS 112954 = CMW 23669 = CPC 4714. *Type locality*: **Australia**, Queensland.

Type substrate: Ficus pleurocarpa.

Barcodes: act = MT334965; cmdA = MT335192; his3 = MT335432; rpb2 = MT412496; tef1 = MT412723; tub2 = MT412946 (alternative markers: ITS = MT359653; LSU = MT359413).

Notes: Phylogenetically, *Ca. australiensis* forms a distinct lineage separate from other species in this species complex.

avesiculata Calonectria T.S. Schubert et al., Canad. J. Bot. 67: 2415. 1989.

Synonym: Cylindrocladium avesiculatum D.L. Gill et al., Phytopathology 61: 60. 1971.

In: Calonectria mexicana species complex.

Typus: FLAS F55193 (holotype of *Ca. avesiculata*; Schubert *et al.* 1989), BPI 414546 (isosyntype of *Cy. avesiculatum*; Gill *et al.* 1971).

Ex-type culture: CBS 313.92 = CMW 23670 = CPC 2373 = ATCC 38226 (Lombard *et al.* 2010a).

Type locality: USA, Georgia, Cairo.

Type substrate: llex vomitoria.

Barcodes: *act* = GQ280431; *cmdA* = GQ267364; *his3* = DQ190620; *tef1* = GQ267294; *tub2* = AF333392 (alternative markers: ITS = GQ280553; LSU = GQ280675).

Notes: Calonectria avesiculata is closely related to *Ca. mexicana*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. avesiculata* [(av. 64 × 5 μ m); Schubert *et al.* 1989] are larger

than those of *Ca. mexicana* [(av. 45 × 4 μ m); Schoch *et al.* 1999], and the vesicles of *Ca. avesiculata* (1–4 μ m) are narrower than those of *Ca. mexicana* (7–12 μ m). Furthermore, *Ca. avesiculata* is characterised by producing a thick-walled stipe extension (Crous 2002), a feature not observed for *Ca. mexicana. Calonectria avesiculata* is heterothallic (Schubert *et al.* 1989) (Supplementary Table S4).

baviensis Calonectria N.Q. Pham *et al.*, Mycologia 111: 90. 2019. (see *Calonectria reteaudii*)

In: Calonectria reteaudii species complex.

Typus: PREM 62111 holotype.

Ex-type culture: CBS 143563 = CMW 47410.

Type locality: Vietnam, Hanoi, Bavi.

Type substrate: Eucalyptus urophylla.

Barcodes: *act* = MT334966; *cmdA* = MT335193; *his3* = MT335433; *rpb2* = MT412497; *tef1* = MT412724; (alternative markers: ITS = MT359654; LSU = MT359414).

Notes: Calonectria baviensis was treated as a synonym of *Ca.* reteaudii in this study. In comparisons of DNA sequences for the seven available gene regions, a single base difference in each of the *cmdA*, *rpb2* and *tef1* sequences was found between the extype isolate of *Ca. baviensis* (CMW 47410) and the ex-type isolate of *Ca. reteaudii* (CMW 30984). Both species produce clavate vesicles with similar dimensions (*Ca. baviensis*: $3-6 \mu m$; *Ca. reteaudii*: $3-6 \mu m$) and 5-septate macroconidia. Macroconidia of *Ca. baviensis* (av. $96 \times 6.5 \mu m$) are longer than those of *Ca. reteaudii* (av. $84 \times 6.5 \mu m$) (Kang *et al.* 2001a, Pham *et al.* 2019), which was considered to represent intraspecific variation (Supplementary Table S4).

blephiliae Calonectria Crous & Hodges, Persoonia 31: 225. 2013.

(see Calonectria cylindrospora)

In: Calonectria cylindrospora species complex.

Typus: CBS H-21434 holotype.

Ex-type culture: CBS 136425 = CMW 51321 = CPC 21859. *Type locality*: **USA**, North Carolina, Ellerbe.

Type substrate: Blephilia ciliata.

Barcodes: act = MT335005; cmdA = MT335235; his3 = MT335475; rpb2 = MT412539; tef1 = MT412766; tub2 = MT412984 (alternative markers: ITS = MT359696; LSU = MT359456).

Notes: Calonectria blephiliae was treated as a synonym of Ca. cylindrospora in this study. In comparisons of DNA sequences for eight gene regions, all sequences for the ex-type isolate of Ca. blephiliae (CBS 136425) were 100 % identical to those for the isolate of Ca. cylindrospora (CMW 30978); the only differences between the ex-type isolate of Ca. blephiliae (CBS 136425) and the isolate of Ca. cylindrospora (CBS 119670) was found in the act gene sequences where only one base difference was observed. Calonectria cylindrospora and Ca. blephiliae both produce clavate to ellipsoidal vesicles with overlapping dimensions (Ca. blephiliae: 7-10 µm; Ca. cylindrospora: 6-8 µm) and 1-septate macroconidia. The macroconidia of Ca. blephiliae (av. 50 × 4.5 µm) are larger than those of Ca. cylindrospora (av. 45 × 4 µm) (Crous 2002, Crous et al. 2013, Lombard et al. 2015b), which was considered to represent intraspecific variation (Supplementary Table S4).

brachiatica Calonectria L. Lombard *et al.*, Persoonia 23: 44. 2009.

In: Calonectria brassicae species complex.

Typus: PREM 60197 holotype.

Ex-type culture: CBS 123700 = CMW 25298.

Type locality: Colombia, Buga.

Type substrate: Pinus maximinoi.

Barcodes: cmdA = MT335195; his3 = MT335435; rpb2 = MT412499; tef1 = MT412726; tub2 = MT412948 (alternative markers: ITS = MT359656; LSU = MT359416).

Notes: Calonectria brachiatica is closely related to *Ca. parvispora*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. brachiatica* [(av. 44 × 5 μ m); Lombard *et al.* 2009] are larger than those of *Ca. parvispora* [(av. 29 × 4 μ m); Marin-Felix *et al.* 2017] (Supplementary Table S4).

brasiliana Calonectria L. Lombard & Crous, Stud. Mycol. 85: 174. 2016.

In: Calonectria candelabrum species complex.

Typus: CBS H-22752 holotype.

Ex-type culture: CBS 111484 = CMW 51187 = CPC 1924.

Type locality: Brazil.

Type substrate: Soil.

Barcodes: act = MT334968; cmdA = MT335198; his3 = MT335438; rpb2 = MT412502; tef1 = MT412729; tub2 = MT412951 (alternative markers: ITS = MT359659; LSU = MT359419).

Notes: Calonectria brasiliana is closely related to *Ca. metrosideri*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. brasiliana* [(av. 53 × 4 μ m); Lombard *et al.* 2016] are longer than those of *Ca. metrosideri* [(av. 45 × 4 μ m); Alfenas *et al.* 2013a] (Supplementary Table S4).

brasiliensis Calonectria (Bat. & Cif.) L. Lombard *et al.*, Stud. Mycol. 66: 19. 2010.

Basionym: Cylindrocladium scoparium var. *brasiliensis* Bat. & Cif., (as *brasiliense*) Boletim de SA.I.C. Pernambuco 18: 188. 1952.

Synonyms: Cylindrocladium brasiliense (Bat. & Cif.) Peerally, (as braziliensis) CMI Descriptions of Pathogenic Fungi and Bacteria 427. 1974.

Calonectria hodgesii R.F Alfenas *et al.*, Trop. Plant. Pathol. 38: 517. 2013.

Calonectria pseudohodgesii R.F. Alfenas *et al.*, Stud. Mycol. 80: 118. 2015.

In: Calonectria cylindrospora species complex.

Typus: IMI 43688 holotype.

Ex-type culture: CBS 230.51 = IMI 299576.

Type locality: Brazil, Ceara State.

Type substrate: Eucalyptus spp.

Barcodes: *act* = MT334970; *cmdA* = MT335200; *his3* = MT335440; *rpb2* = MT412504; *tef1* = MT412731; *tub2* = MT412953 (alternative markers: ITS = MT359661; LSU = MT359421).

Notes: Calonectria brasiliensis is closely related to Ca. maranhensis, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. bra*siliensis [(av. $38 \times 3.5 \mu$ m); Batista 1951] are smaller than those of *Ca. maranhensis* [(av. $57 \times 5 \mu$ m); Alfenas *et al.* 2015] (Supplementary Table S4).

brassiana Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 100. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS H-21376 holotype.

Ex-type culture: CBS 134855 = LPF378.

Type locality: Brazil, Piauí state, Teresina.

Type substrate: Soil in Eucalyptus brassiana plantation.

Barcodes: *cmdA* = KM396056; *his3* = KM396139; *tef1* = KM395882; *tub2* = KM395969.

Notes: Calonectria brassiana is closely related to *Ca. glaebicola*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. brassiana* (av. 53 × 4 μ m) are longer than those of *Ca. glaebicola* (av. 50 × 4 μ m) (Alfenas *et al.* 2015) (Supplementary Table S4).

brassicae Calonectria (Pamwar & Bohra) L. Lombard *et al.*, Persoonia 23: 45. 2009.

Basionym: Cylindrocladium brassicae Panwar & Bohra, Indian Phytopathol. 27: 425. 1974.

Synonyms: Cylindrocarpon gracile Bugnic., Encycl. Mycologique 11: 162. 1939.

Cylindrocladium gracile (Bugnic.) Boesew., Trans. Brit. Mycol. Soc. 78: 554. 1982.

Cylindrocladium clavatum Hodges & L.C. May, Phytopathology 62: 900. 1972.

In: Calonectria brassicae species complex.

Typus: PREM 51032 holotype.

Ex-type culture: CBS 111869 = CPC 2409. *Type locality*: **Indonesia**.

Type substrate: Argyreia splendens.

Barcodes: act = MT334972; cmdA = MT335202; his3 = MT335442; rpb2 = MT412506; tef1 = MT412733; tub2 = MT412955 (alternative markers: ITS = MT359663; LSU = MT359423).

Notes: Calonectria brassicae is closely related to *Ca. brachiatica* and *Ca. parvispora*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. brassicae* [(av. 53 × 4.5 µm); Crous 2002] are longer than those of *Ca. brachiatica* [(av. 44 × 5 µm); Lombard *et al.* 2009] and *Ca. parvispora* [(av. 29 × 4 µm); Marin-Felix *et al.* 2017] (Supplementary Table S4).

brassicicola Calonectria L. Lombard & Crous, Stud. Mycol. 85: 174. 2016.

In: Calonectria kyotensis species complex.

Typus: CBS H-22753 holotype. *Ex-type culture*: CBS 112841 = CMW 51206 = CPC 4552. *Type locality*: **Indonesia**.

Type substrate: Soil under Brassica sp.

Barcodes: *cmdA* = KX784561; *tef1* = KX784689; *tub2* = KX784619.

Notes: Calonectria brassicicola is closely related to *Ca. suma-trensis*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. brassicicola* [(av. 42 × 5 µm); Lombard *et al.* 2016] are

shorter than those of *Ca. sumatrensis* [(av. 58 × 5 μ m); Crous *et al.* 2004], and the vesicles of *Ca. brassicicola* (3–5 μ m) are narrower than those of *Ca. sumatrensis* (8–13 μ m) (Crous *et al.* 2004, Lombard *et al.* 2016) (Supplementary Table S4).

brevistipitata Calonectria L. Lombard & Crous, Stud. Mycol. 85: 175. 2016.

In: Calonectria candelabrum species complex.

Typus: CBS H-22754 holotype.

Ex-type culture: CBS 115671 = CMW 51226 = CPC 949. *Type locality*: **Mexico**.

Type substrate: Soil.

Barcodes: act = MT334973; cmdA = MT335203; his3 = MT335443; rpb2 = MT412507; tef1 = MT412734; tub2 = MT412956 (alternative markers: ITS = MT359664; LSU = MT359424).

Notes: Calonectria brevistipitata is closely related to *Ca. nemoricola*, *Ca. pauciramosa* and *Ca. silvicola*, and can be distinguished from these three species by the dimensions of its macroconidia. The macroconidia of *Ca. brevistipitata* [(av. 31 × 3.5 µm); Lombard *et al.* 2016] are smaller than those of *Ca. nemoricola* [(av. 45 × 4 µm); Alfenas *et al.* 2015], *Ca. pauciramosa* [(av. 50 × 4.5 µm); Crous 2002] and *Ca. silvicola* [(av. 41 × 4.5 µm); Alfenas *et al.* 2015]. *Calonectria brevistipitata* is heterothallic (Li *et al.* 2020) (Supplementary Table S4).

bumicola Calonectria N.Q. Pham & M.J. Wingf., Mycologia 111: 94. 2019.

In: Calonectria kyotensis species complex.

Typus: PREM 62123 holotype.

Ex-type culture: CBS 143575 = CMW 48257.

Type locality: Indonesia, Northern Sumatra, Aek Nauli.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: *act* = MT334975; *cmdA* = MT335205; *his3* = MT335445; *rpb2* = MT412509; *tef1* = MT412736 (alternative markers: ITS = MT359666; LSU = MT359426).

Notes: Calonectria bumicola is phylogenetically closely related to *Ca. lantauensis* and can be differentiated from that species by the sequences of *act, cmdA, his3, rpb2* and *tef1* gene regions. The asexual and sexual morphs of *Ca. bumicola* could not be induced by Pham *et al.* (2019). This species was shown to be homothallic by Li *et al.* (2020).

canadiana Calonectria (J.C. Kang *et al.*) L. Lombard *et al.*, IMA Fungus 1: 106. 2010.

Basionym: Cylindrocladium canadense J.C. Kang et al., Syst. Appl. Microbiol. 24: 210. 2001.

Synonyms: Calonectria canadensis (J.C. Kang et al.) L. Lombard et al., Stud. Mycol. 66: 56. 2010. Nom. inval., Art. 53.1.

Calonectria montana Q.L. Liu & S.F. Chen, Mycokeys 26: 48. 2017.

In: Calonectria kyotensis species complex.

Typus: PREM 57195 holotype.

Ex-type culture: CBS 110817 = CMW 23673 = STE-U 499. *Type locality*: **Canada**.

Type substrate: Picea sp.

Barcodes: act = MT334976; cmdA = MT335206; his3 = MT335446; rpb2 = MT412510; tef1 = MT412737; tub2 = MT412958 (alternative markers: ITS = MT359667; LSU = MT359427). *Notes*: Phylogenetically, *Ca. canadiana* forms a distinct lineage separate from other species in this species complex.

candelabrum Calonectria (Viégas) Rossman *et al.*, (as *candelabra*), Stud. Mycol. 80: 210. 2015.

Basionym: Cylindrocladium candelabrum Viégas, Bragantia 6: 370. 1946.

Synonyms: Calonectria scoparia Ribeiro & Matsuoka, In: Ribeiro, M.Sc. Thesis, Heterotalismo em *C. scoparium* Morgan: 28. 1978 (nom. inval., Art. 29).

Calonectria scoparia Peerally, Mycotaxon 40: 341. 1991.

Calonectria pseudoscoparia L. Lombard *et al.*, Stud. Mycol. 66: 53. 2010.

In: Calonectria candelabrum species complex.

Typus: PREM 51044 (neotype of *Cy. candelabrum*; Crous 2002). *Ex-type culture*: Not available.

Key cultures: CMW 31000 = CPC 1675 = UFV 117, CMW 31001 = STE-U 1679 = UFV 126 (Alfenas *et al.* 2015).

Key culture locality: **Brazil**, Amazonas (locality of CMW 31000 and CMW 31001; Alfenas *et al.* 2015).

Key culture substrate: Eucalyptus sp. (substrate of CMW 31000 and CMW 31001; Alfenas *et al.* 2015).

Barcodes: Culture CMW 31000: act = MT334977; cmdA = MT335207; his3 = MT335447; rpb2 = MT412511; tef1 = MT412738; tub2 = MT412959 (alternative markers: ITS = MT359668; LSU = MT359428); culture CMW 31001: act = MT334978; cmdA = MT335208; his3 = MT335448; rpb2 = MT412512; tef1 = MT412739; tub2 = MT412960 (alternative markers: ITS = MT359669; LSU = MT359429)

Notes: Calonectria candelabrum is closely related to *Ca. euca-lypticola* and *Ca. venezuelana*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. candelabrum* [(av. 60 × 4.5 µm); Crous 2002] are longer than those of *Ca. eucalypticola* [(av. 50 × 4 µm); Alfenas *et al.* 2015] and *Ca. venezuelana* [(av. 58 × 5 µm); Lombard *et al.* 2016]. *Calonectria candelabrum* is heterothallic (Crous 2002, Li *et al.* 2020) (Supplementary Table S4).

cerciana Calonectria L. Lombard *et al.*, Persoonia 24: 7. 2010. *Synonyms: Calonectria papillata* L. Lombard *et al.*, Stud. Mycol. 80: 175. 2015.

Calonectria terrestris L. Lombard et al., Stud. Mycol. 80: 182. 2015.

In: Calonectria cylindrospora species complex.

Typus: PREM 60241 holotype.

Ex-type culture: CBS 123693 = CMW 25309.

Type locality: China, GuangDong, CERC nursery.

Type substrate: E. urophylla × *E. grandis* hybrid cutting.

Barcodes: act = MT334981; cmdA = MT335211; his3 = MT335451; rpb2 = MT412515; tef1 = MT412742; tub2 = MT412963 (alternative markers: ITS = MT359672; LSU = MT359432).

Notes: Calonectria cerciana is closely related to *Ca. tonkinensis*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. cerciana* (av. 44 × 5 µm) are larger than those of *Ca. tonkinensis* (av. 41.5 × 4 µm), and the vesicles of *Ca. cerciana* (8–13 µm) are wider than those of *Ca. tonkinensis* (3–7 µm) (Lombard *et al.* 2010c, Pham *et al.* 2019) (Supplementary Table S4).

chinensis Calonectria (Crous) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium chinense Crous, Stud. Mycol. 50: 420. 2004.

Synonym: Calonectria multistipitata N.Q. Pham *et al.*, Mycologia 111: 98. 2019.

In: Calonectria kyotensis species complex.

Typus: PREM 62118 holotype.

Ex-type culture: CBS 114827 = CMW 23674 = CPC 4101. *Type locality*: **China**, Hong Kong. *Type substrate*: Soil.

Barcodes: act = MT334990; cmdA = MT335220; his3 = MT335460; rpb2 = MT412524; tef1 = MT412751; tub2 = MT412972 (alternative markers: ITS = MT359681; LSU = MT359441).

Notes: Calonectria chinensis is phylogenetically closely related to *Ca. cochinchinensis* and *Ca. heveicola*, it can be distinguished from these two species by the sequences of *cmdA*, *his3*, *rpb2*, *tef1* and *tub2* gene regions.

citri Calonectria (H.S. Fawc. & Klotz) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Candelospora citri H.S. Fawc. & Klotz, Mycologia 29: 213. 1937.

Synonym: Cylindrocladium citri (H.S. Fawc. & Klotz) Boedijn & Reitsma, Reinwardtia 1: 57. 1950.

In: Calonectria mexicana species complex.

Typus: K (isotype; Crous 2002).

Ex-type culture: CBS 186.36 = CMW 23675 (Lombard *et al.* 2010a).

Type locality: USA, Florida.

Type substrate: Citrus sinensis.

Barcodes: act = MT334992; cmdA = MT335222; his3 = MT335462; rpb2 = MT412526; tef1 = MT412753; tub2 = MT412974 (alternative markers: ITS = MT359683; LSU = MT359443).

Notes: Calonectria citri is closely related to *Ca. lauri*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. citri* [(av. $58 \times 4 \mu m$); Crous 2002] are smaller than those of *Ca. lauri* [(av. $60 \times 5.5 \mu m$); Lechat *et al.* 2010] (Supplementary Table S4).

clavata Calonectria Alfieri et al., Mycotaxon 48: 206. 1993.

Synonym: Cylindrocladium flexuosum Crous, Syst. Appl. Microbiol. 18: 248. 1995.

In: Calonectria brassicae species complex.

Typus: FLAS F55430 [holotype of *Ca. clavata*; El-Gholl *et al.* 1993b], PREM 51721 (holotype of *Cy. flexuosum*; Crous *et al.* 1995).

Ex-type culture: CBS 114557 = CMW 23690 = CPC 2536 = P078-1543 = ATCC 66389 (Crous 2002, Lombard *et al.* 2010a).

Type locality: USA, Florida, Lake Placid.

Type substrate: Callistemon viminalis.

Barcodes: act = MT334993; cmdA = MT335223; his3 = MT335463; rpb2 = MT412527; tef1 = MT412754; tub2 = MT412975 (alternative markers: ITS = MT359684; LSU = MT359444). *Notes*: Phylogenetically, *Ca. clavata* forms a distinct lineage separate from other species in this species complex. *Calonectria clavata* is heterothallic (El-Gholl *et al.* 1993b, Li *et al.* 2020).

cliffordiicola Calonectria L. Lombard & Crous, Stud. Mycol. 85: 177. 2016.

(see Calonectria pauciramosa)

In: Calonectria candelabrum species complex.

Typus: CBS H-22755 holotype.

Ex-type culture: CBS 111812 = CMW 51190 = CPC 2631.

Type locality: **South Africa**, Western Cape Province, George. *Type substrate*: *Cliffordia feruginea*.

Barcodes: act = MT335084; cmdA = MT335316; his3 = MT335556; rpb2 = MT412609; tef1 = MT412847; tub2 = MT413059 (alternative markers: ITS = MT359777; LSU = MT359537).

Notes: Calonectria cliffordiicola was treated as a synonym of *Ca.* pauciramosa in this study. In comparisons of DNA sequences for eight gene regions, all the sequences of the isolates of *Ca.* cliffordiicola (ex-type CBS 111812, CBS 111814, and CBS 111819) were 100 % identical to those of the isolates of *Ca.* pauciramosa (ex-type CBS 138824, CMW 2151, CMW 7592, CMW 9151, CMW 30823, and CMW 30875). Both species produce obpyriform to ellipsoidal vesicles with overlapping dimensions (*Ca.* cliffordiicola: $7-9 \mu m$; *Ca.* pauciramosa: $5-11 \mu m$) and 1-septate macroconidia, the macroconidia of *Ca.* pauciramosa (av. $40 \times 4 \mu m$) are smaller than those of *Ca.* pauciramosa (av. $50 \times 4.5 \mu m$) (Crous 2002, Lombard *et al.* 2016), which was considered to represent intraspecific variation (Supplementary Table S4).

cochinchinensis Calonectria N.Q. Pham *et al.*, Mycologia 111: 95. 2019.

In: Calonectria kyotensis species complex.

Typus: PREM 62115 holotype.

Ex-type culture: CBS 143567 = CMW 49915. *Type locality*: **Vietnam**, Tay Ninh, Duong Minh Chau. *Type substrate*: Soil in *Hevea brasiliensis* plantation. *Barcodes*: *act* = MT334995; *cmdA* = MT335225; *his3* = MT335465; *rpb2* = MT412529; *tef1* = MT412756; *tub2* = MT412977 (alternative markers: ITS = MT359686;

LSU = MT359446). *Notes: Calonectria cochinchinensis* is phylogenetically closely related to *Ca. heveicola* and can be differentiated from *Ca. heveicola* by sequence data of *act, cmdA, his3,* ITS, *tef1* and *tub2* gene regions. In addition, *Ca. cochinchinensis* produces longer stipe extensions [(147–208 µm); Pham *et al.* 2019] than those of *Ca. heveicola* [(138–189 µm); Pham *et al.* 2019] (Supplementary Table S4).

colhounii Calonectria Peerally, Mycol. Res. 61: 92. 1973. *Synonym: Cylindrocladium colhounii* Peerally, Mycol. Res. 61: 92. 1973.

In: Calonectria colhounii species complex.

Typus: IMI 167581 holotype. *Ex-type culture*: CBS 293.79 = CMW 30999. *Type locality*: **Mauritius**. *Type substrate*: *Camellia sinensis*. Barcodes: act = GQ280443; cmdA = GQ267373; his3 = DQ190639; rpb2 = KY653376; tef1 = GQ267301; tub2 = DQ190564 (alternative markers: ITS = GQ280565; LSU = GQ280687).

Notes: Calonectria colhounii is phylogenetically closely related to *Ca. aciculata* and *Ca. honghensis*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. colhounii* [(av. 65 × 5 µm); Peerally 1973] are smaller than those of *Ca. aciculata* [(av. 69 × 5.5 µm); Li *et al.* 2017], and longer than those of *Ca. honghensis* [(av. 54 × 5.5 µm); Li *et al.* 2017]. In addition, the ascospores of *Ca. colhounii* (av. 55 × 6 µm) are longer than those of *Ca. honghensis* (av. 49 × 6 µm) (Peerally 1973, Li *et al.* 2017). *Calonectria colhounii* is homothallic (Peerally 1973) (Supplementary Table S4).

colombiana Calonectria L. Lombard *et al.*, Stud. Mycol. 66: 23. 2010.

In: Calonectria candelabrum species complex.

Typus: PREM 60295 holotype.

Ex-type culture: CBS 115127 = CMW 30871 = CPC 1160. *Type locality*: **Colombia**, La Selva.

Type substrate: Soil.

Barcodes: *act* = GQ280538; *cmdA* = GQ267455; *his3* = FJ972442; *tef1* = FJ972492; *tub2* = FJ972423 (alternative markers: ITS = GQ280660; LSU = GQ280782).

Notes: Calonectria colombiana is closely related to *Ca. brevistipitata*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. colombiana* (av. 37 × 3 µm) are longer than those of *Ca. brevistipitata* (av. 31 × 3.5 µm), and the vesicles of *Ca. colombiana* (8–12 µm) are wider than those of *Ca. brevistipitata* (5–8 µm) (Lombard *et al.* 2010b, 2016). *Calonectria colombiana* is characterised as being homothallic, while *Ca. brevistipitata* is heterothallic (Lombard *et al.* 2010b, Li *et al.* 2020) (Supplementary Table S4).

colombiensis Calonectria Crous, Stud. Mycol. 50: 421. 2004. *Synonym: Cylindrocladium colombiense* Crous, Stud. Mycol. 50: 421. 2004.

In: Calonectria kyotensis species complex.

Typus: CBS 9890 holotype.

Ex-type culture: CBS 112220 = CMW 23676 = CPC 723. Type locality: **Colombia**, La Selva. Type substrate: Soil under Eucalyptus grandis. Barcodes: act = MT334998; cmdA = MT335228; his3 = MT335468; rpb2 = MT412532; tef1 = MT412759;

tub2 = MT412980 (alternative markers: ITS = MT359689; LSU = MT359449).

Notes: Phylogenetically, *Ca. colombiensis* forms a distinct lineage separate from other species in this species complex. *Ca. colombiensis* is homothallic (Li *et al.* 2020).

crousiana Calonectria S.F. Chen et al., Persoonia 26: 6. 2011.

In: Calonectria reteaudii species complex.

Typus: PREM 60453 holotype. *Ex-type culture*: CBS 127198 = CMW 27249. *Type locality*: **China**, FuJian Province.

Type substrate: Eucalyptus grandis.

Barcodes: act = MT335000; cmdA = MT335230; his3 = MT335470; rpb2 = MT412534; tef1 = MT412761; tub2 = MT412982 (alternative markers: ITS = MT359691; LSU = MT359451).

Notes: Phylogenetically, *Ca. crousiana* forms a distinct lineage separate from other species in this species complex. *Calonectria crousiana* is homothallic (Chen *et al.* 2011, Li *et al.* 2020).

curvispora Calonectria (Crous & D. Victor) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium curvisporum Crous & D. Victor, Syst. Appl. Microbiol. 20: 283. 1997.

Synonym: Calonectria vegrandis N.Q. Pham & M.J. Wingfield, Mycologia 111: 99. 2019.

In: Calonectria kyotensis species complex.

Typus: PREM 51751 holotype.

Ex-type culture: CBS 116159 = CMW 23693 = CPC 765. *Type locality*: **Madagascar**, Tamatave.

Type substrate: Soil.

Barcodes: *act* = MT335002; *cmdA* = MT335232; *his3* = MT335472; *rpb2* = MT412536; *tef1* = MT412763 (alternative markers: ITS = MT359693; LSU = MT359453).

Notes: Calonectria curvispora is closely related to *Ca. aeknauliensis* and *Ca. ilicicola*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. curvispora* [(av. 60 × 5 µm); Victor *et al.* 1997] are smaller than those of *Ca. ilicicola* [(av. 62 × 6 µm); Boedijn & Reitsma 1950] but longer than those of *Ca. aeknauliensis* [(av. 47 × 5 µm); Pham *et al.* 2019] (Supplementary Table S4).

cylindrospora Calonectria (Ellis & Everh.) Rossman et al., Stud. Mycol. 80: 210. 2015.

Basionym: Diplocladium cylindrosporum Ellis & Everh., Bull. Torrey Bot. Club 27: 58. 1900.

Synonyms: Cylindrocladium scoparium Morgan, Bot. Gaz. 17: 191. 1892.

Cylindrocladium pithecolobii Petch, Ann. Roy. Bot. Gard. (Per-adeniya) 6: 244. 1917.

Cylindrocladium ellipticum Alfieri *et al.*, Phytopathology 60: 1213. 1970.

Calonectria morganii Crous *et al.*, Mycol. Res. 97: 706. 1993. *Calonectria blephiliae* Crous & Hodges, Persoonia 31: 225. 2013.

In: Calonectria cylindrospora species complex.

Typus: PREM 51042 (holotype of *Ca. morganii*; Crous *et al.* 1993a), BPI 414576 (neotype of *Cy. scoparium*; Crous *et al.* 1993a).

Ex-type culture: Not available.

Key cultures: CBS 119670 = CMW 51310 = CPC 12766, CBS 110666 = CMW 30978 = STE-U 497 = P90.1479 (Crous 2002, Lombard *et al.* 2015a).

Key culture locality: **Italy** (locality of CBS 119670; Lombard *et al.* 2015a), **USA**, Florida (locality of CBS 110666; Lombard *et al.* 2015a).

Key culture substrate: Pistacia lentiscus (substrate of CBS 119670; Lombard *et al.* 2015a), *Ilex vomitoria* (substrate of CBS 110666; Lombard *et al.* 2015a).

Barcodes: Culture CBS 119670: *act* = MT335006; *cmdA* = MT335236; *his3* = MT335476; *rpb2* = MT412540; *tef1* = MT412767; *tub2* = MT412985 (alternative markers: ITS = MT359697; LSU = MT359457); culture CBS 110666: act = MT335007; cmdA = MT335237; his3 = MT335477; rpb2 = MT412541; tef1 = MT412768; tub2 = MT412986 (alternative markers: ITS = MT359698; LSU = MT359458).

Notes: Calonectria cylindrospora is phylogenetically closely related to *Ca. variabilis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. cylindrospora* [(av. 45 × 4 µm); Crous *et al.* 1993a, Lombard *et al.* 2015b] are smaller than those of *Ca. variabilis* [(av. 73 × 5 µm); Crous *et al.* 1993b], *Ca. variabilis* readily produces a microconidial morph in culture on CLA (Crous *et al.* 1993b), which is not observed in *Ca. cylindrospora* (Crous 2002). *Calonectria cylindrospora* is characterised as being heterothallic, while *Ca. variabilis* is homothallic (Crous *et al.* 1993b).

densa Calonectria L. Lombard et al., Stud. Mycol. 66: 46. 2010.

In: Calonectria spathiphylli species complex.

Typus: PREM 60302 holotype.

Ex-type culture: CBS 125261 = CMW 31182.

Type locality: **Ecuador**, Pichincha Province, Las Golondrinas. *Type substrate*: Soil.

Barcodes: act = MT335008; cmdA = MT335238; his3 = MT335478; tef1 = MT412769; tub2 = MT412987 (alternative markers: ITS = MT359699; LSU = MT359459).

Notes: Calonectria densa is closely related to Ca. humicola and it can be distinguished from that species by the formation of lateral stipe extensions, a characteristic not known for Ca. humicola. The macroconidia of Ca. densa [(av. 54 × 6 μ m); Lombard *et al.* 2010a] are larger than those of Ca. humicola [(av. 51 × 5 μ m); Lombard *et al.* 2010a] (Supplementary Table S4).

duoramosa Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 100. 2015.

In: Calonectria brassicae species complex.

Typus: CBS H-21380 holotype.

Ex-type culture: CBS 134656 = LPF434.

Type locality: Brazil, Pará state, Monte Dourado.

Type substrate: Soil.

Barcodes: cmdA = KM396027; his3 = KM396110; tef1 = KM395853; tub2 = KM395940.

Notes: Calonectria duoramosa forms a single lineage closely related to *Ca. octoramosa*, and the smaller numbers (-2) of fertile branches in its conidiogenous apparatus can be distinguished from *Ca. octoramosa* (-8). Furthermore, the macroconidia of *Ca. duoramosa* [(av. 46 × 4 µm); Alfenas *et al.* 2015] are longer than those of *Ca. octoramosa* [(av. 36 × 4 µm); Marin-Felix *et al.* 2017] (Supplementary Table S4).

ecuadorae Calonectria (Crous & M.J. Wingf.) L. Lombard et al., Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium ecuadorae Crous & M.J. Wingf. (as ecuadoriae), Stud. Mycol. 55: 222. 2006.

Synonym: Calonectria ecuadorensis L. Lombard & Crous, Stud. Mycol. 86: 112. 2017.

In: Calonectria brassicae species complex.

Typus: CBS H-17871 holotype. *Ex-type culture*: CBS 111406 = CMW 23677 = CPC 1635. *Type locality*: **Ecuador**. *Type substrate*: Soil. Barcodes: act = MT335012; cmdA = MT335242; his3 = MT335482; rpb2 = MT412544; tef1 = MT412773; tub2 = MT412991 (alternative markers: ITS = MT359703; LSU = MT359463).

Notes: Calonectria ecuadorae is closely related to *Ca. octor*amosa and *Ca. pauciphialidica*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. ecuadorae* [(av. 51 × 4.5 µm); Crous *et al.* 2006] are larger than those of *Ca. octoramosa* [(av. 36 × 4 µm); Marin-Felix *et al.* 2017] and *Ca. pauciphialidica* (av. 29.5 × 3 µm) (Supplementary Table S4).

ecuadorensis Calonectria L. Lombard & Crous, Stud. Mycol. 86: 112. 2017

(see Calonectria ecuadorae)

In: Calonectria brassicae species complex.

Typus: CBS H-23134 holotype.

Ex-type culture: CBS 111706 = CMW 51821 = CPC 1636. *Type locality*: **Ecuador**.

Type substrate: Soil.

Barcodes: act = MT335010; cmdA = MT335240; his3 = MT335480; rpb2 = MT412542; tef1 = MT412771; tub2 = MT412989 (alternative markers: ITS = MT359701; LSU = MT359461).

Notes: Calonectria ecuadorensis was treated as a synonym of *Ca. ecuadorae* in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca. ecuadorensis* (CBS 111706) and the ex-type isolate of *Ca. ecuadorae* (CMW 23677) was in the *act*, *cmdA* and *rpb2* sequences, where there was one base difference in the *act*, two base differences in the *cmdA* and one base difference in the *rpb2* sequences. Both species produce clavate vesicles of similar dimensions (*Ca. ecuadorensis*: $4-6 \mu m$; *Ca. ecuadorae*: $3-5 \mu m$). The macroconidia of *Ca. ecuadorensis* (av. $37 \times 4 \mu m$) are smaller than those of *Ca. ecuadorae* (av. $51 \times 4.5 \mu m$) (Crous *et al.* 2006, Marin-Felix *et al.* 2017), which was considered to represent intraspecific variation (Supplementary Table S4).

ericae Calonectria L. Lombard & Crous, Stud. Mycol. 85: 178. 2016.

(see Calonectria pauciramosa)

In: Calonectria candelabrum species complex.

Typus: CBS H-22756 holotype.

Ex-type culture: CBS 114458 = CMW 51211 = CPC 2019.

Type locality: USA, California.

Type substrate: Erica capensis.

Barcodes: act = MT335087; cmdA = MT335319; his3 = MT335559; rpb2 = MT412612; tef1 = MT412850; tub2 = MT413062 (alternative markers: ITS = MT359780; LSU = MT359540).

Notes: Calonectria ericae was treated as a synonym of *Ca.* pauciramosa in this study. In comparisons of DNA sequences for eight gene regions, all the sequences of the isolates of *Ca. ericae* (ex-type CBS 114458, CBS 114456, and CBS 114457) were 100 % identical to those of the isolates of *Ca. pauciramosa* (ex-type CBS 138824, CMW 2151, CMW 7592, CMW 9151, CMW 30823, and CMW 30875). Both species produce obpyriform to ellipsoidal vesicles with similar dimensions (*Ca. ericae*: $6-10 \mu$ m; *Ca. pauciramosa*: $5-11 \mu$ m) and 1-septate macroconidia. The macroconidia of *Ca. ericae* (av. $37 \times 4 \mu$ m) are smaller than those of *Ca. pauciramosa* (av. $50 \times 4.5 \mu$ m) (Crous

2002, Lombard *et al.* 2016), which was considered to represent intraspecific variation (Supplementary Table S4).

eucalypti Calonectria L. Lombard *et al.*, Stud. Mycol. 66: 47. 2010.

Synonym: Calonectria pseudocolhounii S.F. Chen et al., Persoonia 26: 7. 2011.

In: Calonectria colhounii species complex.

Typus: PREM 60298 holotype.

Ex-type culture: CBS 125275 = CMW 18444.

Type locality: **Indonesia**, Sumatra Utara, Aek Nauli. *Type substrate: Eucalyptus grandis.*

Barcodes: *act* = MT335013; *cmdA* = MT335243; *his3* = MT335483; *rpb2* = MT412545; *tef1* = MT412774; *tub2* = MT412992 (alternative markers: ITS = MT359704; LSU = MT359464).

Notes: Calonectria eucalypti is closely related to *Ca. aciculata* and *Ca. honghensis*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. eucalypti* [(av. 72 × 6 μ m); Lombard *et al.* 2010a] are larger than those of *Ca. aciculata* [(av. 69 × 5.5 μ m); Li *et al.* 2017] and *Ca. honghensis* [(av. 54 × 5.5 μ m); Li *et al.* 2017]. *Calonectria eucalypti* is homothallic (Li *et al.* 2020) (Supplementary Table S4).

eucalypticola Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 105. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS H-21359 holotype.

Ex-type culture: CBS 134847 = LPF124.

Type locality: Brazil, Minas Gerais state, Santa Barbara.

Type substrate: Eucalyptus seedling.

Barcodes: *cmdA* = KM396051; *his3* = KM396134; *tef1* = KM395877; *tub2* = KM395964.

Notes: Calonectria eucalypticola is closely related to *Ca. candelabrum* and *Ca. venezuelana*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. eucalypticola* [(av. 50 × 4 μ m); Alfenas *et al.* 2015] are smaller than those of *Ca. candelabrum* [(av. 60 × 4.5 μ m); Crous 2002] and *Ca. venezuelana* [(av. 58 × 5 μ m); Lombard *et al.* 2016] (Supplementary Table S4).

expansa Calonectria L. Lombard et al., Stud. Mycol. 80: 167. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21483 holotype.

Ex-type culture: CBS 136247 = CMW 31392 = CERC 1727. *Type locality*: **China**, GuangXi Province.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: act = MT334942; cmdA = MT335169; *his3* = MT335408; rpb2 = MT412481; tef1 = MT412699 (alternative markers: ITS = MT359629; LSU = MT359389).

Notes: Calonectria expansa was treated as a synonym of *Ca. aconidialis* in this study. In comparisons of DNA sequences for seven available gene regions, only a single base difference in the *tef1* gene sequence was found between the ex-type isolate of *Ca. expansa* (CMW 31392) and the ex-type isolate of *Ca. aconidialis* (CMW 35174). Both species are homothallic and produce orange to orange-brown perithecia, 8-spored asci and 1-septate

ascospores, and share the similar ascospores dimensions (*Ca. expansa*: av. $39 \times 6 \mu$ m; *Ca. aconidialis*: av. $36 \times 6 \mu$ m) (Lombard *et al.* 2015a, Li *et al.* 2020; Supplementary Table S4).

floridana Calonectria Sobers, Phytopathology 59: 366. 1969. (see **Calonectria kyotensis**)

In: Calonectria kyotensis species complex.

Typus: BPI 414553 holotype.

Ex-type culture: CBS 114692 = CMW 51826 = ATCC 18882. *Type locality*: **USA**, Georgia.

Type substrate: Prunus persica.

Barcodes: act = MT335015; cmdA = MT335245; his3 = MT335485; rpb2 = MT412547; tef1 = MT412776; tub2 = MT412994 (alternative markers: ITS = MT359706; LSU = MT359466).

Notes: Calonectria floridana was treated as a synonym of *Ca. kyotensis* in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca. floridana* (CBS 114692) and the ex-type isolate of *Ca. kyotensis* (CBS 114525) was in the *cmdA*, *his3* and LSU sequences, where there was one base difference in the *cmdA*, two base differences in the *his3* and one base difference in the LSU sequences. Both species are homothallic and produce globose vesicles of similar dimensions (*Ca. floridana*: $8.3-17.9 \mu$ m; *Ca. kyotensis*: $8.8-19 \mu$ m) and 1-septate macroconidia. The macroconidia of *Ca. floridana* (av. 46 × 4.3 µm) are longer than those of *Ca. kyotensis* (av. 41 × 4 µm) (Terashita 1968, Sobers 1969, Crous 2002), which was considered to represent intraspecific variation (Supplementary Table S4).

foliicola Calonectria L. Lombard et al., Stud. Mycol. 80: 167. 2015.

(see Calonectria hawksworthii)

In: Calonectria cylindrospora species complex.

Typus: CBS H-21472 holotype.

Ex-type culture: CBS 136641 = CMW 31393.

Type locality: China, GuangXi Province.

Type substrate: Eucalyptus urophylla × E. grandis clone leaf. Barcodes: act = MT335017; cmdA = MT335247; his3 = MT335487; rpb2 = MT412549; tef1 = MT412778; tub2 = MT412996 (alternative markers: ITS = MT359708; LSU = MT359468).

Notes: Calonectria foliicola was treated as a synonym of *Ca.* hawksworthiii in this study. In comparisons of DNA sequences for eight gene regions, the only differences between the ex-type isolate *Ca.* foliicola (CMW 31393) and the ex-type isolate *Ca.* hawksworthii (ex-type CBS 111870) was in the act, his3 and tub2 sequences, where there was one base difference in the act, three base differences in the his3, and three base differences in the *tub2* sequences. Both species produce ellipsoidal vesicles with overlapping dimensions (*Ca.* foliicola: $6-13 \mu m$; *Ca.* hawksworthii: $6-9 \mu m$) and 1-septate macroconidia. The macroconidia of *Ca.* foliicola (av. $47 \times 5 \mu m$) are shorter than those of *Ca.* hawksworthii (av. $56 \times 4 \mu m$) (Crous 2002, Lombard et al. 2015a), which was considered to represent intraspecific variation (Supplementary Table S4).

fragariae Calonectria R.F. Alfenas *et al.*, Australas. Plant. Pathol. 47: 6. 2017.

In: Calonectria candelabrum species complex.

Typus: VIC 42833 holotype.

Ex-type culture: CBS 133607 = LPP040.

Type locality: **Brazil**, Espírito Santo State, Santa Maria do Jetibá. *Type substrate*: *Fragaria* × *ananassa*.

Barcodes: *cmdA* = KM998966; *his3* = KM998964; *tef1* = KM998963; *tub2* = KM998965.

Notes: Calonectria fragariae is closely related to *Ca. pseudo-spathulata*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. fra-gariae* [(av. $39 \times 4 \mu m$); Lopes *et al.* 2017] are shorter than those of *Ca. pseudospathulata* [(av. $43 \times 4 \mu m$); Alfenas *et al.* 2015] (Supplementary Table S4).

fujianensis Calonectria S.F. Chen *et al.*, Persoonia 26: 8. 2011. *Synonym: Calonectria nymphaeae* Yong Wang bis *et al.*, Mycotaxon 122: 181. 2013.

In: Calonectria colhounii species complex.

Typus: PREM 60460 holotype.

Ex-type culture: CBS 127201 = CMW 27257.

Type locality: China, FuJian Province.

Type substrate: Eucalyptus grandis.

Barcodes: act = MT335019; cmdA = MT335249; his3 = MT335489; rpb2 = MT412551; tef1 = MT412780; tub2 = MT412998 (alternative markers: ITS = MT359710; LSU = MT359470).

Notes: Calonectria fujianensis is phylogenetically closely related to *Ca. lichi*. The sequences of ITS, *tef1* and *tub2* gene regions can differentiate *Ca. fujianensis* from that species. The macroconidia of *Ca. fujianensis* [(av. 52.5 × 4 µm); Chen *et al.* 2011] are smaller than those of *Ca. lichi* [(av. 65.7 × 6 µm); Liu & Chen 2017]. *Calonectria fujianensis* is homothallic (Chen *et al.* 2011) (Supplementary Table S4).

glaebicola Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 106. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS H-21378 holotype.

Ex-type culture: CBS 134852 = LPF406.

Type locality: Brazil, Minas Gerais state, Martinho Campos.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: cmdA = KM396053; his3 = KM396136; tef1 = KM395879; tub2 = KM395966.

Notes: Calonectria glaebicola is closely related to *Ca. brassiana*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. glaebicola* (av. $50 \times 4 \mu m$) are shorter than those of *Ca. brassiana* (av. $53 \times 4 \mu m$) (Alfenas *et al.* 2015) (Supplementary Table S4).

gordoniae Calonectria (Leahy et al.) L. Lombard et al., Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium gordoniae Leahy *et al.*, Mycotaxon 76: 80. 2000.

In: Calonectria pteridis species complex.

Typus: FLAS F56790 holotype.Ex-type culture: CBS 112142 = CMW 23694 = STE-U3136 = ATCC 201837 = P97-2567.Type locality: USA, Florida.Type substrate: Gordonia lasianthus.Barcodes: act = MT335021; cmdA = MT335251;his3 = MT335491; rpb2 = MT412553; tef1 = MT412782;

tub2 = MT413000 (alternative markers: ITS = MT359712; LSU = MT359472).

Notes: Calonectria gordoniae is closely related to *Ca. ovata*, *Ca. pseudovata* and *Ca. terricola*, and can be distinguished from these three species by the dimensions of its macroconidia. The macroconidia of *Ca. gordoniae* [(av. 50 × 4.5 µm); Leahy *et al.* 2000] are smaller than those of *Ca. ovata* [(av. 70 × 5 µm); El-Gholl *et al.* 1993a] and *Ca. pseudovata* [(av. 69 × 5 µm); Alfenas *et al.* 2015], but longer than those of *Ca. terricola* [(av. 46 × 4.5 µm); Lombard *et al.* 2016] (Supplementary Table S4).

gracilipes Calonectria Crous & Mchau, Mycologia 89: 654. 1997.

Synonym: Cylindrocladium graciloideum Crous & Mchau, Mycologia 89: 654. 1997.

In: Calonectria gracilipes species complex.

Typus: PREM 54417 (holotype of *Ca. gracilipes*; Crous *et al.* 1997a), PREM 55299 (holotype of *Cy. graciloideum*; Crous *et al.* 1997a).

Ex-type culture: CBS 115674 = CMW 51227 = STE-U 1153 (Crous 2002, Crous *et al.* 2006).

Type locality: Colombia, La Selva.

Type substrate: Soil.

Barcodes: act = MT335022; cmdA = MT335252; his3 = MT335492; rpb2 = MT412554; tef1 = MT412783; tub2 = MT413001 (alternative markers: ITS = MT359713; LSU = MT359473).

Notes: Calonectria gracilipes is closely related to *Ca. angustata*, *Ca. hurae*, *Ca. leguminum* and *Ca. rumohrae*, and can be distinguished from these four species by the dimensions of its macroconidia. The macroconidia of *Ca. gracilipes* [(av. $45 \times 4.5 \mu$ m); Crous *et al.* 1997a] are smaller than those of *Ca. angustata* [(av. 110 × 10 µm); Crous *et al.* 2000], *Ca. hurae* [(av. $120 \times 7.5 \mu$ m); Crous 2002], *Ca. leguminum* [(av. 60 × 5 µm); Figueiredo & Namekata 1967, Crous 2002] and *Ca. rumohrae* [(av. 110 × 9 µm); El-Gholl *et al.* 1997]. *Calonectria gracilipes* is homothallic (Crous *et al.* 1997a) (Supplementary Table S4).

gracilis Calonectria Crous *et al.*, Mycotaxon 46: 224. 1993. *Synonym: Cylindrocladium pseudogracile* Crous, Mycol. Res. 101: 213. 1997.

In: Calonectria brassicae species complex.

Typus: PREM 51031a (holotype of *Ca. gracilis*; Crous *et al.* 1993c), PREM 51031b (holotype of *Cy. pseudogracile*; Crous *et al.* 1997b).

Ex-type culture: CBS 111807 = CMW 51189 = STE-U 2634 = AR2677 = PPRI 4176. (Crous 2002, Lombard *et al.* 2016) *Type locality*: **Brazil**, Pará state.

Type substrate: Manilkara zapota.

Barcodes: act = GQ280488; cmdA = GQ267407; his3 = DQ190646; rpb2 = KY653390; tef1 = GQ267323; tub2 = AF232858 (alternative markers: ITS = GQ280610; LSU = GQ280732).

Notes: Calonectria gracilis is closely related to *Ca. quinqueramosa*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. gracilis* (av. 56 × 4.5 µm) are smaller than those of *Ca. quinqueramosa* (av. 59 × 5 µm), while the vesicles of *Ca. gracilis* [(2–11 µm); Crous *et al.* 1993c] are wider than those of *Ca. quinqueramosa* [(3–5 µm); Alfenas *et al.* 2015]. *Calonectria gracilis* is homothallic (Li *et al.* 2020) (Supplementary Table S4).

guangxiensis Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 169. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21484 holotype.

Ex-type culture: CBS 136092 = CMW 35409 = CERC 1900. *Type locality*: **China**, GuangXi Province. *Type substrate*: Soil in *Eucalyptus* plantation.

Barcodes: act = MT334944; cmdA = MT335171; his3 = MT335410; tef1 = MT412701 (alternative markers: ITS = MT359631; LSU = MT359391).

Notes: Calonectria guangxiensis was treated as a synonym of *Ca. aconidialis* in this study. In comparisons of DNA sequences for six gene regions (*rpb2* and *tub2* are not available for *Ca. guangxiensis*, *tub2* not available for *Ca. aconidialis*), all six gene sequences for isolates of *Ca. guangxiensis* (ex-type isolate CMW 35409, and CMW 35411) were 100 % identical to the ex-type isolate of *Ca. aconidialis* (CMW 35174). Both species are homothallic and produce orange to orange-brown perithecia, 8-spored asci and 1-septate ascospores, and share the similar ascospores dimensions (*Ca. guangxiensis*: av. 36 × 6 µm; *Ca. aconidialis*: av. 36 × 6 µm) (Lombard *et al.* 2015a, Li *et al.* 2020; Supplementary Table S4).

hainanensis Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 170. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21480 holotype.

Ex-type culture: CBS 136248 = CMW 35187 = CERC 1863. *Type locality*: **China**, HaiNan Province.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: act = MT334946; cmdA = MT335173; his3 = MT335412; tef1 = MT412703 (alternative markers: ITS = MT359633; LSU = MT359393).

Notes: Calonectria hainanensis was treated as a synonym of *Ca. aconidialis* in this study. In comparisons of DNA sequences for six available gene regions (*rpb2* and *tub2* are not available for *Ca. hainanensis*, *tub2* not available for *Ca. aconidialis*), all six gene sequences for the ex-type isolate of *Ca. hainanensis* (CMW 35187) were 100 % identical to the ex-type isolate of *Ca. aconidialis* (CMW 35174). Both species are homothallic and produce orange to orange-brown perithecia, 8-spored asci and 1-septate ascospores, and share the similar ascospores dimensions (*Ca. hainanensis*: av. 34 × 6 µm; *Ca. aconidialis*: av. 36 × 6 µm) (Lombard *et al.* 2015a; Supplementary Table S4).

hawksworthii Calonectria (Peerally) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium hawksworthii Peerally, Mycotaxon 40: 375. 1991.

Synonyms: Calonectria sulawesiensis L. Lombard et al., Stud. Mycol. 66: 53. 2010.

Calonectria foliicola L. Lombard et al., Stud. Mycol. 80: 167. 2015.

In: Calonectria cylindrospora species complex.

Typus: MUCL 30866 holotype.

Ex-type culture: CBS 111870 = CMW 51194 = CPC 2405. *Type locality*: **Mauritius**, Pamplemousses garden. *Type substrate*: Leaves of *Nelumbo nucifera*. Barcodes: act = MT335024; cmdA = MT335254; his3 = MT335494; rpb2 = MT412556; tef1 = MT412785; tub2 = MT413003 (alternative markers: ITS = MT359715; LSU = MT359475).

Notes: Calonectria hawksworthii is closely related to *Ca. brasiliensis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. hawksworthii* [(av. 56 × 4 μ m); Crous 2002] are larger than those of *Ca. brasiliensis* [(av. 38 × 3.5 μ m); Batista 1951] (Supplementary Table S4).

henricotiae Calonectria Gehesquière *et al.*, Pl. Pathol. 65: 47. 2015.

In: Calonectria naviculata species complex.

Typus: BPI 892910 holotype.

Ex-type culture: CBS 138102 = CB045.

Type locality: Belgium, East Flanders, Lokeren.

Type substrate: Buxus sempervirens.

Barcodes: *cmdA* = KF815157; *his3* = KF815185; *tub2* = JX535308 (alternative markers: ITS = JX535322).

Notes: Calonectria henricotiae is closely related to *Ca. pseudonaviculata*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. henricotiae* [(av. 56 × 5.6 µm); Gehesquiere *et al.* 2015] are shorter than those of *Ca. pseudonaviculata* [(av. 60 × 5 µm); Crous *et al.* 2002]. *Calonectria henricotiae* is heterothallic (Li *et al.* 2020) (Supplementary Table S4).

heveicola Calonectria N.Q. Pham et al., Mycologia 111: 95. 2019.

In: Calonectria kyotensis species complex.

Typus: PREM 62118 holotype.

Ex-type culture: CBS 143570 = CMW 49913.

Type locality: Vietnam, Binh Duong, Bau Bang.

Type substrate: Soil in Hevea brasiliensis plantation.

Barcodes: *act* = MT335025; *cmdA* = MT335255; *his3* = MT335495; *tef1* = MT412786; *tub2* = MT413004 (alternative markers: ITS = MT359716; LSU = MT359476).

Notes: Calonectria heveicola is phylogenetically closely related to *Ca. cochinchinensis* and can be differentiated from that species by sequences of *act, cmdA, his3*, ITS, *tef1* and *tub2* gene regions. In addition, *Ca. heveicola* [(138–189 µm); Pham *et al.* 2019] produces shorter stipe extensions than those of *Ca. cochinchinensis* [(147–208 µm); Pham *et al.* 2019]. *Calonectria heveicola* is heterothallic (Li *et al.* 2020) (Supplementary Table S4).

hodgesii Calonectria R.F Alfenas *et al.*, Trop. Plant. Pathol. 38: 517. 2013.

(see Calonectria brasiliensis)

In: Calonectria cylindrospora species complex.

Typus: CBS H-21147 holotype. Ex-type culture: CBS 133609 = LPF245. Type locality: **Brazil**, Minas Gerais state, Viçosa. Type substrate: Anadenanthera peregrina. Barcodes: cmdA = KC491222; tef1 = KC491225; tub2 = KC491228.

Notes: Calonectria hodgesii was treated as a synonym of *Ca. brasiliensis* in this study. In comparisons of DNA sequences for three available gene regions, the only difference between the ex-

type isolate of *Ca. hodgesii* (CBS 133609) and the ex-type isolate of *Ca. brasiliensis* (CBS 230.51) was in the *cmdA*, *tef1* and *tub2* sequences, where there were three base differences in the *cmdA*, one base difference in the *tef1* and one base difference in the *tub2* sequences. Both species produce ellipsoidal vesicles of similar dimensions (*Ca. hodgesii*: 6–11 µm; *Ca. brasiliensis*: 7–11 µm) and 1-septate macroconidia. The macroconidia of *Ca. hodgesii* (av. 50 × 4.5 µm) are larger than those of *Ca. brasiliensis* (av. 38 × 3.5 µm) (Batista 1951, Lombard *et al.* 2010b, Alfenas *et al.* 2013b), which was considered to represent intraspecific variation (Supplementary Table S4).

honghensis Calonectria J.Q. Li *et al.*, IMA Fungus 8: 273. 2017.

In: Calonectria colhounii species complex.

Typus: PREM 61943 holotype.

Ex-type culture: CBS 142885 = CMW 47669 = CERC 5572. *Type locality*: **China**, YunNan Province, HongHe Region. *Type substrate*: Soil in a *Eucalyptus* plantation. *Barcodes*: *act* = MT335026; *cmdA* = MT335256

Barcodes: act = MT335026; cmdA = MT335256; his3 = MT335496; rpb2 = MT412557; tef1 = MT412787; tub2 = MT413005 (alternative markers: ITS = MT359717; LSU = MT359477).

Notes: Calonectria honghensis is closely related to *Ca. aciculata* and *Ca. colhounii*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. honghensis* [(av. $54 \times 5.5 \mu m$); Li *et al.* 2017] are shorter than those of *Ca. aciculata* [(av. $69 \times 5.5 \mu m$); Li *et al.* 2017] and *Ca. colhounii* [(av. $65 \times 5 \mu m$); Peerally 1973]. In addition, the ascospores of *Ca. honghensis* (av. $49 \times 6 \mu m$) are shorter than those of *Ca. colhounii* (av. $55 \times 6 \mu m$) (Peerally 1973, Li *et al.* 2017). *Calonectria honghensis* is homothallic (Li *et al.* 2020) (Supplementary Table S4).

hongkongensis Calonectria Crous, Stud. Mycol. 50: 422. 2004.

Synonym: Cylindrocladium hongkongense Crous, Stud. Mycol. 50: 422. 2004.

In: Calonectria kyotensis species complex.

Typus: CBS 9886 holotype.

Ex-type culture: CBS 114828 = CMW 51217 = CPC 4670. Type locality: **China**, Hong Kong. Type substrate: Soil. Barcodes: act = MT335028; cmdA = MT335258; his3 = MT335498; rpb2 = MT412559; tef1 = MT412789;

tub2 = MT413007 (alternative markers: ITS = MT359719; LSU = MT359479).

Notes: *Calonectria hongkongensis* is closely related to *Ca. kyotensis*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. hongkongensis* [(av. 46.5 × 4 µm); Crous *et al.* 2004] are longer than those of *Ca. kyotensis* [(av. 41 × 4 µm); Terashita 1968], whereas the vesicles of *Ca. hongkongensis* (8–14 µm) are narrower than those of *Ca. kyotensis* (8.8–19 µm) (Sobers 1972, Crous *et al.* 2004). *Calonectria hongkongensis* is homothallic (Crous *et al.* 2004) (Supplementary Table S4).

humicola Calonectria L. Lombard *et al.*, Stud. Mycol. 66: 49. 2010

In: Calonectria spathiphylli species complex.

Typus: PREM 60369 holotype.

Ex-type culture: CBS 125251 = CMW 31183.

Type locality: **Ecuador**, Pichincha Province, Las Golondrinas. *Type substrate*: Soil.

Barcodes: *act* = MT335032; *cmdA* = MT335262; *his3* = MT335502; *tef1* = MT412793; *tub2* = MT413011 (alternative markers: ITS = MT359723; LSU = MT359483).

Notes: Calonectria humicola is phylogenetically closely related to *Ca. densa*, and can be distinguished from that species by its lack of lateral stipe extensions, a feature that is common in *Ca. densa*. The macroconidia of *Ca. humicola* [(av. 51 × 5 μ m); Lombard *et al.* 2010a] are smaller than those of *Ca. densa* [(av. 54 × 6 μ m); Lombard *et al.* 2010a] (Supplementary Table S4).

hurae Calonectria (Linder & Whetzel) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cercosporella hurae Linder & Whetzel, Mycologia 29: 656. 1937.

Synonyms: *Cylindrocladiopsis hurae* (Linder & Whetzel) U. Braun, Mycotaxon 51: 40. 1994.

Cylindrocladium hurae (Linder & Whetzel) Crous, In: Taxonomy and pathology of *Cylindrocladium* (*Calonectria*) and allied genera: 185. 2002.

Cylindrocladium heptaseptatum Sobers et al., Phytopathology 65: 333. 1975.

Cylindrocladiopsis lagerstroemiae J.M. Yen, Mycotaxon 8: 236. 1979.

In: Calonectria gracilipes species complex.

Typus: Chardon No. 363 (lectotype, Crous 2002).

Ex-type culture: Not available.

Key culture: CBS 114182 = CMW 51823 = CPC 1714 = UFV 216 (Lombard *et al.* 2016).

Key culture locality: Brazil (Lombard et al. 2016).

Key culture substrate: Rumohra adiantiformis (Lombard et al. 2016).

Barcodes: Culture CBS 114182: *act* = MT335035; *cmdA* = MT335265; *his3* = MT335505; *rpb2* = MT412563; *tef1* = MT412796; *tub2* = MT413014 (alternative markers: ITS = MT359726; LSU = MT359486).

Notes: Calonectria hurae is phylogenetically closely related to *Ca. angustata* and *Ca. rumohrae*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. hurae* [(av. $120 \times 7.5 \mu m$); Crous 2002] are longer and narrower than those of *Ca. angustata* [(av. $110 \times 10 \mu m$); Crous *et al.* 2000] and *Ca. rumohrae* [(av. $110 \times 9 \mu m$); El-Gholl *et al.* 1997] (Supplementary Table S4).

ilicicola Calonectria Boedijn & Reitsma, Reinwardtia 1: 58. 1950.

Synonyms: Calonectria theae var. *crotalariae* Loos, Trans. Brit. Mycol. Soc. 33: 18. 1950.

Calonectria crotalariae (Loos) D.K. Bell & Sobers, Phytopa-thology 56: 1364. 1966.

Cylindrocladium crotalariae (Loos) D.K. Bell & Sobers, Phytopathology 56: 1364. 1966. (nom. inval.!, Art.36)

Cylindrocladium parasiticum Crous, M.J. Wingf. & Alfenas, Mycol. Res. 97: 892. 1993.

In: Calonectria kyotensis species complex.

Typus: IMI 264540 holotype.

Ex-type culture: CBS 190.50 = CMW 30998 = STE-U 2482 = IMI 299389.

Type locality: Indonesia, Java, Bogor.

Type substrate: Solanum tuberosum.

Barcodes: *act* = MT335036; *cmdA* = MT335266; *his3* = MT335506; *rpb2* = MT412564; *tef1* = MT412797 (alternative markers: ITS = MT359727; LSU = MT359487).

Notes: Calonectria ilicicola is closely related to Ca. aeknauliensis and Ca. curvispora, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of Ca. ilicicola [(av. $62 \times 6 \mu$ m); Boedijn & Reitsma 1950] are larger than those of Ca. aeknauliensis [(av. $47 \times 5 \mu$ m); Pham et al. 2019] and Ca. curvispora [(av. $60 \times 5 \mu$ m); Victor et al. 1997]. Calonectria ilicicola is homothallic (Li et al. 2020) (Supplementary Table S4).

indonesiae Calonectria (Crous) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium indonesiae Crous, Stud. Mycol. 50: 424. 2004.

In: Calonectria kyotensis species complex.

Typus: CBS 9891 holotype.

Ex-type culture: CBS 112823 = CMW 23683 = CPC 4508. *Type locality*: **Indonesia**, Warambunga.

Type substrate: Soil.

Barcodes: act = MT335037; cmdA = MT335267; his3 = MT335507; rpb2 = MT412565; tef1 = MT412798; tub2 = MT413015 (alternative markers: ITS = MT359728; LSU = MT359488).

Notes: Calonectria indonesiae is phylogenetically closely related to *Ca. chinensis*, *Ca. cochinchinensis* and *Ca. heveicola*, and can be distinguished from these three species by the dimensions of its macroconidia. The macroconidia of *Ca. indonesiae* [(av. $50.5 \times 4 \mu m$); Crous *et al.* 2004] are longer than those of *Ca. chinensis* [(av. $45 \times 4 \mu m$); Crous *et al.* 2004], *Ca. cochinchinensis* [(av. $46 \times 4 \mu m$); Pham *et al.* 2019] and *Ca. heveicola* [(av. $44.5 \times 4 \mu m$); Pham *et al.* 2019] (Supplementary Table S4).

indonesiana Calonectria L. Lombard & Crous, Stud. Mycol. 85: 179. 2016.

(see Calonectria sumatrensis)

In: Calonectria kyotensis species complex.

Typus: CBS H-22757 holotype.

Ex-type culture: CBS 112936 = CMW 51207 = CPC 4504.

Type locality: Indonesia, Northern Sumatra.

Type substrate: Soil.

Barcodes: act = MT335143; *cmdA* = MT335380; *his3* = MT335620; *rpb2* = MT412672; *tef1* = MT412911 (alternative markers: ITS = MT359841; LSU = MT359601).

Notes: Calonectria indonesiana was treated as a synonym of *Ca.* sumatrensis in this study. In comparisons of DNA sequences for seven available gene regions, the only differences between the ex-type isolate of *Ca. indonesiana* (CBS 112936) and the ex-type isolate of *Ca. sumatrensis* (CMW 23698) were two base differences in the *his3* gene region. Both species produce sphaer-opedunculate vesicles with overlapping dimensions (*Ca. indonesiana*: 8–10 µm; *Ca. sumatrensis*: 8–13 µm) and 1-septate macroconidia. Macroconidia of *Ca. indonesiana* (av. 43 × 5 µm) are shorter than those of *Ca. sumatrensis* (av. 58 × 5 µm), which was considered to represent intraspecific variation (Crous *et al.* 2004, Lombard *et al.* 2016) (Supplementary Table S4).

indusiata Calonectria (Seaver) Crous, Taxonomy and pathology of *Cylindrocladium* (*Calonectria*) and allied genera: 94. 2002. *Basionym: Nectria indusiata* Seaver, Mycologia 20: 58. 1928.

Synonyms: Cercosporella theae Petch, Ann. Roy. Bot. Gard. Peradeniya. 6: 246. 1917.

Candelospora theae (Petch) Wakef. ex Gadd, Monographs on Tea Production in Ceylon: 59. 1949.

Cylindrocladium theae (Petch) Subram., In: Subramnian, *Hyphomycetes*, an account of Indian species, except *Cercosporae*: 731. 1971.

Cylindrocladium theae (Petch) Alfieri & sobers, Phytopathology 62: 650. 1972 (homonym).

Calonectria theae Loos, Trans. Brit. Mycol. Soc. 33: 17. 1950.

In: Calonectria colhounii species complex.

Typus: No. 3176 holotype.

Ex-type culture: CBS 144.36 = CMW 23699.

Type locality: Sri Lanka.

Type substrate: Camellia sinensis.

Barcodes: act = GQ280536; cmdA = GQ267453; his3 = GQ267262; rpb2 = KY653396; tef1 = GQ267332; tub2 = GQ267239 (alternative markers: ITS = GQ280658; LSU = GQ280780).

Notes: Phylogenetically, *Ca. indusiata* forms a distinct lineage separate from other species in the *Ca. colhounii* species complex. The macroconidia of *Ca. indusiata* (av. 81 × 6 µm) are smaller than those of *Ca. macroconidialis* (av. 90 × 6.5 µm), and longer than other species in the *Ca. colhounii* species complex (Supplementary Table S4).

insularis Calonectria C.L. Schoch & Crous, Mycologia 91: 293. 1999.

Synonym: Cylindrocladium insulare C.L. Schoch & Crous, Mycologia 91: 293. 1999.

In: Calonectria cylindrospora species complex.

Typus: PREM 55760 [holotype of *Ca. insularis*; Schoch *et al.* 1999], PREM 55758 (holotype of *Cy. insulare*; Schoch *et al.* 1999).

Ex-type culture: CBS 114558 = CMW 30991 = CPC 768 (Crous 2002, Lombard *et al.* 2015a)

Type locality: Madagascar, Tamatave.

Type substrate: Soil.

Barcodes: cmdA = MT335269; his3 = MT335509; rpb2 = MT412567; tef1 = MT412800; tub2 = MT413017 (alternative markers: ITS = MT359730; LSU = MT359490).

Notes: Calonectria insularis is closely related to *Ca. cylindrospora* and *Ca. variabilis*, and can be distinguished from these two species by the dimensions of its ascospores and macroconidia. The ascospores of *Ca. insularis* [(av. 33 × 6 µm); Schoch *et al.* 1999] are shorter than those of *Ca. cylindrospora* [(av. 37 × 6 µm); Crous *et al.* 1993a, Lombard *et al.* 2015b] and *Ca. variabilis* [(av. 42 × 5 µm); Crous *et al.* 1993b]. The macroconidia of *Ca. insularis* [(av. 45 × 4 µm); Schoch *et al.* 1999] are smaller than those of *Ca. variabilis* [(av. 73 × 5 µm); Crous *et al.* 1993b]. *Calonectria insularis* and *Ca. cylindrospora* are characterised as being heterothallic, while *Ca. variabilis* is homothallic (Crous *et al.* 1993b). Schoch *et al.* 1999).

kyotensis Calonectria Terash., Trans. Mycol. Soc. Japan. 8: 124. 1968.

Synonyms: Calonectria floridana Sobers, Phytopathology 59: 366. 1969.

Calonectria turangicola L. Lombard *et al.*, Stud. Mycol. 80: 184. 2015.

Calonectria pseudoturangicola J.Q. Li et al., IMA Fungus 8: 279. 2017.

In: Calonectria kyotensis species complex.

Typus: IFO No. 11597 holotype. *Ex-type culture*: CBS 114525 = CMW 51824 = CPC 2367 = ATCC 18834. *Type locality*: **Japan**.

Type substrate: Robinia pseudoacacia.

Barcodes: act = MT335039; cmdA = MT335271; his3 = MT335511; rpb2 = MT412569; tef1 = MT412802; tub2 = MT413019 (alternative markers: ITS = MT359732; LSU = MT359492).

Notes: *Calonectria kyotensis* is closely related to *Ca. hon-gkongensis*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. kyotensis* [(av. 41 × 4 µm); Terashita 1968] are shorter than those of *Ca. hongkongensis* [(av. 46.5 × 4 µm); Crous *et al.* 2004], whereas the vesicles of *Ca. kyotensis* (8.8–19 µm) are wider than those of *Ca. hongkongensis* (8–14 µm) (Sobers 1972, Crous *et al.* 2004). *Calonectria kyotensis* is homothallic (Terashita 1968) (Supplementary Table S4).

lageniformis Calonectria L. Lombard & Crous, Stud. Mycol. 85: 181. 2016.

In: Calonectria cylindrospora species complex.

Typus: CBS H-22758 holotype.

Ex-type culture: CBS 111324 = CMW 51177 = CPC 1473. *Type locality*: **Mauritius**, Rivière Noire.

Type substrate: Eucalyptus sp.

Barcodes: cmdA = KX784574; rpb2 = KY653400; tef1 = KX784702; tub2 = KX784632 (alternative markers: ITS = KY653256; LSU = KY653312).

Notes: Calonectria lageniformis is closely related to *Ca. auric-uliformis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. lageniformis* (av. 40 × 5 μ m) are shorter than those of *Ca. auriculiformis* (av. 43 × 4 μ m). *Calonectria lageniformis* only produces up to three branches per conidiophore, whereas *Ca. auriculiformis* can have up to five branches per conidiophore (Lombard *et al.* 2016, Pham *et al.* 2019).

lantauensis Calonectria J.Q. Li et al., IMA Fungus 8: 277. 2017.

In: Calonectria kyotensis species complex.

Typus: PREM 61946 holotype.

Ex-type culture: CBS 142888 = CMW 47252 = CERC 3302.

Type locality: China, Hong Kong Region, LiDao Distict.

Type substrate: Soil.

Barcodes: *act* = MT335040; *cmdA* = MT335272; *his*3 = MT335512; *rpb2* = MT412570; *tef1* = MT412803 (alternative markers: ITS = MT359733; LSU = MT359493).

Notes: Calonectria lantauensis is phylogenetically closely related to *Ca. bumicola*. This species can be differentiated from *Ca. bumicola* by the sequences of *act*, *cmdA*, *his3*, *rpb2* and *tef1* gene regions.

lateralis Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 173. 2015.

In: Calonectria kyotensis species complex.

Typus: CBS H-21469 holotype.

Ex-type culture: CBS 136629 = CMW 31412.

Type locality: China, GuangXi Province.

Type substrate: Soil in a Eucalyptus plantation.

Barcodes: act = MT335042;cmdA = MT335274; his3 = MT335514; rpb2 = MT412571; tef1 = MT412805; tub2 = MT413020 (alternative markers: ITS = MT359735; LSU = MT359495).

Notes: Calonectria lateralis is closely related to Ca. hongkongensis and Ca. kyotensis, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of Ca. lateralis [(av. 39 × 4 µm); Lombard et al. 2015a] are shorter than those of Ca. hongkongensis [(av. 46.5 × 4 µm); Crous et al. 2004] and Ca. kyotensis [(av. 41 × 4 µm); Terashita 1968]. Calonectria lateralis is homothallic (Lombard et al. 2015a) (Supplementary Table S4).

lauri Calonectria Lechat & Crous, sp. nov. MycoBank MB836241.

Synonyms: Candelospora ilicicola Hawley, Proc. Roy. Irish Acad. 31: 11. 1912.

Cylindrocladium ilicicola (Hawley) Boedijn & Reitsma, Reinwardtia 1: 57. 1950.

Tetracytum lauri Vanderw., Parasitica 1: 145. 1945. (as laurii). Nom. inval., Arts 35.1, 39.1 (Melbourne)

Calonectria lauri (Vanderw.) Lechat & Crous, IMA Fungus 1: 103. 2010. Nom. inval., Art. 39.1 (Melbourne)

In: Calonectria mexicana species complex.

Description and illustrations: Lechat et al. (2010).

Typus: Netherlands, South-East Limburg, Vijlenerbos, Vijlen, Ilex aquifolium, Aug. 1970, H.A van der Aa (holotype CBS H-15110, ex-type culture CBS 749.70 = CMW 23682).

act = MT335043; cmdA = Barcodes: MT335275: his3 = MT335515; rpb2 = MT412572; tef1 = MT412806; tub2 = MT413021 (alternative markers: ITS = MT359736; LSU = MT359496).

Notes: The original description of Ca. lauri (Lechat et al. 2010) is invalid, as its basionym Tetracytum lauri is invalid. This issue is now addressed, and the name Ca. lauri validated here. Calonectria lauri is closely related to Ca. citri, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of Ca. lauri [(av. 60 × 5.5 µm); Lechat et al. 2010] are larger than those of Ca. citri [(av. 58 × 4 µm); Crous 2002]. Calonectria lauri is homothallic (Li et al. 2020) (Supplementary Table S4).

leguminum Calonectria (Rehm) Crous, Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera: 107. 2002.

Basionym: Nectria leguminum Rehm, Hedwigia 39: 221. 1900. Synonyms: Calonectria guingueseptata Figueiredo & Namek., Arch. Inst. Biol. (São Paulo). 34: 91. 1967.

Cylindrocladium leguminum Crous, Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera: 107. 2002.

In: Calonectria gracilipes species complex.

Typus: Ule 2282 (holotype of Nectria leguminum; Crous 2002), PREM 57208 (holotype of Cy. leguminum; Crous 2002). Ex-type culture: CBS 728.68 = CMW 23684 (Crous 2002, Lombard et al. 2010a).

Type locality: Brazil, Sao Paulo.

Type substrate: Annona squamosa.

Barcodes: act = MT335044;cmdA MT335276: = his3 = MT335516; rpb2 = MT412573; tef1 = MT412807; tub2 = MT413022 (alternative markers: ITS = MT359737; LSU = MT359497).

Notes: Calonectria leguminum is phylogenetically closely related to Ca. angustata, Ca. gracilipes, Ca. hurae and Ca. rumohrae, and can be distinguished from these four species by the dimensions of its macroconidia. The macroconidia of Ca. leguminum [(av. 60 × 5 µm); Figueiredo & Namekata 1967, Crous 2002] are smaller than those of Ca. angustata [(av. 110 × 10 μm); Crous et al. 2000], Ca. hurae [(av. 120 × 7.5 μm); Crous 2002] and Ca. rumohrae [(av. 110 × 9 µm); El-Gholl et al. 1997], larger than those of Ca. gracilizes [(av. 45 \times 4.5 μ m); Crous et al. 1997a]. Calonectria leguminum is homothallic (Crous 2002) (Supplementary Table S4).

leucothoes Calonectria (El-Gholl et al.) L. Lombard et al. (as leucothoës), Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium leucothoes El-Gholl et al., Canad. J. Bot. 67: 2530. 1989.

Synonym: Cylindrocladium perseae T.S. Schub. et al., Mycotaxon 73: 474. 1999.

In: Calonectria mexicana species complex.

Typus: FLAS F55387 holotype.

Ex-type culture: CBS 109166 = CMW 30977 = CPC2385 = ATCC 64824 = P88-490.

Type locality: USA, Florida.

Type substrate: Leucothoe axillaris.

Barcodes: act = MT335045; cmdA = MT335277; his3 = MT335517; rpb2 = MT412574; tef1 = MT412808 (alternative markers: ITS = MT359738; LSU = MT359498).

Notes: Calonectria leucothoes is closely related to Ca. citri and Ca. lauri, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of Ca. leucothoes [(av. 73 × 5 µm); El-Gholl et al. 1989] are larger than those of Ca. citri [(av. 58 × 4 µm); Crous 2002] and longer than those of Ca. lauri [(av. 60 × 5.5 µm); Lechat et al. 2010]. Calonectria leucothoes is characterised as being heterothallic, while Ca. lauri is homothallic (Li et al. 2020) (Supplementary Table S4).

lichi Calonectria Q.L. Liu & S.F. Chen, Mycokeys 26: 45. 2017.

In: Calonectria colhounii species complex.

Typus: CSFF 2019 holotype. Ex-type culture: CERC 8866. Type locality: China, HeNan Province. Type substrate: Soil. Barcodes: act = MT335046; cmdA his3 = MT335518; rpb2 = MT412575; tef1 = MT412809; tub2 = MT413023 (alternative markers: ITS = MT359739;

LSU = MT359499). Notes: Calonectria lichi is phylogenetically closely related to Ca. fujianensis. The sequences of the ITS, tef1 and tub2 gene regions can differentiate Ca. lichi from that species. The macroconidia of Ca. lichi [(av. 65.7 × 6 µm); Liu & Chen 2017] are larger than those of Ca. fujianensis [(av. 52.5 × 4 µm); Chen et al. 2011]. Calonectria lichi is homothallic (Li et al. 2020) (Supplementary Table S4).

=

MT335278;

Iombardiana Calonectria Q.L. Liu & S.F. Chen, sp. nov. MycoBank MB835285. Fig. 2.

Fig. 2. Calonectria lombardiana. A-C. Macroconidiophore. D-G. Narrowly clavate vesicles. H, I. Conidiogenous apparatus with conidiophore branches and cylindrical to allantiod phialides. J, K. Macroconidia. Scale bars: A-C = 50 µm, D-I = 10 µm, J, K = 20 µm.

In: Calonectria reteaudii species complex.

Etymology: Named for Dr Lorenzo Lombard, recognising his significant contribution to the taxonomy of *Calonectria*.

Sexual morph unknown. Macroconidiophores consisting of a stipe, a suite of penicillate arranged fertile branches, a stipe extension, and a terminal vesicle; stipe septate, hyaline, smooth,

43–139 × 4–7 µm; stipe extensions septate, straight to flexuous 158–216 µm long, 2–5 µm wide at the apical septum, terminating in a narrowly clavate vesicle, 2–4 µm diam; lateral stipe extensions (90° to main axis) absent. *Conidiogenous apparatus* 34–80 µm wide, and 35–76 µm long; primary branches aseptate, 13–29 × 3–7 µm; secondary branches aseptate, 11–21 × 3–5 µm; tertiary branches aseptate, 9–19 × 2–4 µm,

each terminal branch producing 3–4 phialides; phialides cylindrical to allantoid, hyaline, aseptate, 9–20 × 2–5 µm, apex with minute periclinal thickening and inconspicuous collarette. *Macroconidia* cylindrical, rounded at both ends, straight, (64–) 74–86(–98) × (5–)5.5–6.5(–7.5) µm, (av. 80 × 6 µm), 5-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies forming abundant white aerial mycelium at 25 °C on MEA, moderate sporulation; reverse cinnamon after 7 d. Chlamydospores extensive throughout the medium, forming microsclerotia. Optimal growth temperature 25 °C, no growth at 5 °C and 35 °C, after 7 d, colonies at 10 °C, 15 °C, 20 °C, 25 °C and 30 °C reached 11.1 mm, 20.4 mm, 41.2 mm, 59.5 mm and 55.3 mm, respectively.

Typus: **Australia**, Victoria, on *Xanthorrhoea australis*, T. Baigent (**holotype** HMAS 255718, ex-type culture CBS 112634 = CMW 30602 = CPC 4233 = Lynfield 417).

Barcodes: act = MT335156; cmdA = MT335395; his3 = MT335635; rpb2 = MT412686; tef1 = MT412926; tub2 = MT413133 (alternative markers: ITS = MT359856; LSU = MT359616).

Notes: Calonectria lombardiana is a new species in the *Ca. reteaudii* species complex, closely related to *Ca. queenslandica* (Fig. 1). The sequences of ITS, *tef1* and *tub2* gene regions can differentiate *Ca. lombardiana* from that species. In addition, the macroconidia of *Ca. lombardiana* (av. 80 × 6 µm) are longer than those of *Ca. queenslandica* [(av. 69 × 6 µm); Lombard *et al.* 2010c] (Supplementary Table S4).

longiramosa Calonectria L. Lombard & Crous, Stud. Mycol. 86: 114. 2017.

(see Calonectria amazonica)

In: Calonectria pteridis species complex.

Typus: CBS H-22759 holotype. *Ex-type culture*: CBS 116319 = CMW 51832 = CPC 3761.

Type locality: Brazil, Amazon.

Type substrate: Eucalyptus sp.

Barcodes: act = MT334960; cmdA = MT335187; his3 = MT335426; rpb2 = MT412490; tef1 = MT412717; tub2 = MT412940 (alternative markers: ITS = MT359647; LSU = MT359407).

Notes: Calonectria longiramosa was treated as a synonym of *Ca. amazonica* in this study. In comparisons of DNA sequences for eight gene regions, the ex-type isolate of *Ca. longiramosa* (CBS 116319) were 100 % identical to the ex-type isolate of *Ca. amazonica* (CBS 116250). Both of the species produce clavate vesicles with overlapping dimensions (*Ca. longiramosa*: 5–8 µm; *Ca. amazonica*: 5–6 µm) and 1-septate macroconidia. The macroconidia of *Ca. longiramosa* (av. 71 × 5 µm) are shorter than those of *Ca. amazonica* (av. 79 × 5 µm) (Lombard *et al.* 2016), which was considered to represent intraspecific variation (Supplementary Table S4).

machaerinae Calonectria L. Lombard & Crous, Stud. Mycol. 85: 181. 2016.

(see Calonectria pauciramosa)

In: Calonectria candelabrum species complex.

Typus: CBS H-22760 holotype.

Ex-type culture: CBS 123183 = CMW 51311 = CPC 15378. *Type locality*: **New Zealand**, Auckland, Auckland University Campus.

Type substrate: Foliar lesion of Machaerina sinclairii.

Barcodes: act = MT335090; cmdA = MT335322; his3 = MT335562; rpb2 = MT412615; tef1 = MT412853; tub2 = MT413065 (alternative markers: ITS = MT359783; LSU = MT359543).

Notes: Calonectria machaerinae was treated as a synonym of *Ca. pauciramosa* in this study. In comparisons of DNA sequences for eight gene regions, all the sequences of *Ca. machaerinae* (ex-type CBS 123183) were 100 % identical to those of *Ca. pauciramosa* (ex-type CBS 138824, CMW 2151, CMW 7592, CMW 9151, CMW 30823, and CMW 30875). Both species produce obpyriform to ellipsoidal vesicles with overlapping dimensions (*Ca. machaerinae*: 6–9 µm; *Ca. pauciramosa*: 5–11 µm) and 1-septate macroconidia. The macroconidia of *Ca. machaerinae* (av. 38 × 4 µm) are smaller than those of *Ca. pauciramosa* (av. 50 × 4.5 µm) (Crous 2002, Lombard *et al.* 2016), which was considered to represent intraspecific variation (Supplementary Table S4).

macroconidialis Calonectria (Crous *et al.*) Crous, Canad. J. Bot. 77: 1818. 1999.

Basionym: Calonectria colhounii var. macroconidialis Crous et al., Mycotaxon 46: 222. 1993.

Synonyms: Cylindrocladium colhounii var. macroconidiale Crous et al., Mycotaxon 46: 222. 1993.

Cylindrocladium macroconidiale (Crous et al.) Crous, Canad. J. Bot. 77: 1818. 1999.

Calonectria parva L. Lombard & Crous, Stud. Mycol. 85: 183. 2016.

In: Calonectria colhounii species complex.

Typus: PREM 51036 (holotype of *Ca. macroconidialis*; Crous *et al.* 1999), PREM 51035 (holotype of *Cy. macroconidiale*; Crous *et al.* 1999).

Ex-type culture: CBS 114880 = CMW 51219 = CPC 307 = PPRI 4000 (Crous 2002, Crous *et al.* 2006).

Type locality: **South Africa**, Mpumalanga, Sabie. *Type substrate: Eucalyptus grandis.*

Barcodes: act = MT335050; cmdA = MT335282; his3 = MT335522; rpb2 = MT412579; tef1 = MT412813; tub2 = MT413027 (alternative markers: ITS = MT359743; LSU = MT359503).

Notes: Calonectria macroconidialis is closely related to Ca. madagascariensis, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of Ca. macroconidialis [(av. $90 \times 6.5 \mu$ m); Crous *et al.* 1999] are larger than those of Ca. madagascariensis [(av. $55 \times 4.5 \mu$ m); Crous 2002]. Furthermore, Ca. macroconidialis is characterised as being heterothallic, while Ca. madagascariensis is homothallic (Crous *et al.* 1999, Crous 2002) (Supplementary Table S4).

madagascariensis Calonectria Crous, Taxonomy and pathology of *Cylindrocladium (Calonectria)* and allied genera: 112. 2002.

Synonym: Cylindrocladium madagascariense Crous, Taxonomy and pathology of *Cylindrocladium (Calonectria)* and allied genera: 112. 2002.

In: Calonectria colhounii species complex.

Typus: PREM 57198 (holotype of *Ca. madagascariensis*; Crous 2002), PREM 57199 (holotype of *Cy. madagascariense*; Crous 2002).

Ex-type culture: CBS 114572 = CMW 23686 = CPC 2252 (Crous *et al.* 2006).

Type locality: Madagascar, Rona.

Type substrate: Soil.

Barcodes: act = MT335052; cmdA = MT335284; his3 = MT335524; rpb2 = MT412581; tef1 = MT412815; tub2 = MT413029 (alternative markers: ITS = MT359745; LSU = MT359505).

Notes: Calonectria madagascariensis is closely related to Ca. macroconidialis, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of Ca. madagascariensis [(av. $55 \times 4.5 \mu$ m); Crous 2002] are smaller than those of Ca. macroconidialis [(av. $90 \times 6.5 \mu$ m); Crous et al. 1999]. Calonectria madagascariensis is homothallic (Crous 2002) (Supplementary Table S4).

magnispora Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 174. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21471 holotype.

Ex-type culture: CBS 136249 = CMW 35184 = CERC 1860.

Type locality: **China**, GuangXi Province.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: act = MT334947; cmdA = MT335174; his3 = MT335413; tef1 = MT412704 (alternative markers: ITS = MT359634; LSU = MT359394).

Notes: Calonectria magnispora was treated as a synonym of *Ca.* aconidialis in this study. In comparisons of DNA sequences for six available gene regions, one base difference in each of the *cmdA*, LSU and *tef1* sequences was found between the ex-type isolate of *Ca.* magnispora (CMW 35184) and the ex-type isolate of *Ca.* aconidialis (CMW 35174). Both species are homothallic and produce orange to orange-brown perithecia, 8-spored asci and 1-septate ascospores, the ascospores of *Ca.* magnispora (av. 40 × 6 µm) are longer than those of *Ca.* aconidialis (av. 36 × 6 µm) (Lombard *et al.* 2015a), which was considered to represent intraspecific variation (Supplementary Table S4).

malesiana Calonectria (Crous) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium malesianum Crous, Stud. Mycol. 50: 425. 2004.

In: Calonectria kyotensis species complex.

Typus: CBS 9885 holotype.

Ex-type culture: CBS 112752 = CMW 23687 = CPC 4223. *Type locality*: **Indonesia**, Northern Sumatra. *Type substrate*: Soil.

Barcodes: act = MT335054; cmdA = MT335286; his3 = MT335526; rpb2 = MT412583; tef1 = MT412817; tub2 = MT413031 (alternative markers: ITS = MT359747; LSU = MT359507). *Notes: Calonectria malesiana* is closely related to *Ca. lateralis*, and can be distinguished by dimensions of its macroconidia. The macroconidia of *Ca. malesiana* [(av. 47.5 × 4 μ m); Crous *et al.* 2004] are longer than those of *Ca. lateralis* [(av. 39 × 4 μ m); Lombard *et al.* 2015a] (Supplementary Table S4).

maranhensis Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 107. 2015.

In: Calonectria cylindrospora species complex.

Typus: CBS H-21360 holotype.

Ex-type culture: CBS 134811 = LPF142.

Type locality: Brazil, Maranhao state, Açailandia.

Type substrate: Eucalyptus leaf. Barcodes: cmdA = KM396035; his3 = KM396118; tef1 = KM395861; tub2 = KM395948.

Notes: Calonectria maranhensis is closely related to *Ca. brasiliensis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. maranhensis* [(av. 57 × 5 μ m); Alfenas *et al.* 2015] are larger than those of *Ca. brasiliensis* [(av. 38 × 3.5 μ m); Batista 1951] (Supplementary Table S4).

metrosideri Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 108. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS H-21146 holotype.

Ex-type culture: CBS 133603 = LPF101.

Type locality: Brazil, Minas Gerais state, Viçosa.

Type substrate: Metrosideros polymorpha.

Barcodes: cmdA = KC294304; his3 = KC294307; tef1 = KC294310; tub2 = KC294313.

Notes: *Calonectria metrosideri* is closely related to *Ca. brasiliana*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. metrosideri* [(av. 45 × 4 μ m); Alfenas *et al.* 2013a] are shorter than those of *Ca. brasiliana* [(av. 53 × 4 μ m); Lombard *et al.* 2016] (Supplementary Table S4).

mexicana Calonectria C.L. Schoch & Crous, Mycologia 91: 294. 1999.

Synonym: Cylindrocladium mexicanum C.L. Schoch & Crous, Mycologia 91: 294. 1999.

In: Calonectria mexicana species complex.

Typus: PREM 55763 (holotype of *Ca. mexicana*; Schoch *et al.* 1999); PREM 55761 (holotype of *Cy. mexicanum*; Schoch *et al.* 1999).

Ex-type culture: CBS 110918 = CMW 9055 = STE-U 927 (Lombard *et al.* 2016).

Type locality: Mexico, Yucatan, Uxmal.

Type substrate: Soil.

Barcodes: act = GQ280474; cmdA = GQ267396; his3 = FJ972460; rpb2 = KY653412; tef1 = FJ972526; tub2 = AF210863 (alternative markers: ITS = GQ280596; LSU = GQ280718).

Notes: Calonectria mexicana is closely related to *Ca. avesiculata*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. mexicana* [(av. 45 × 4 μ m); Schoch *et al.* 1999] are smaller than those of *Ca. avesiculata* [(av. 64 × 5 μ m); Schubert *et al.* 1989], and the vesicles of *Ca. mexicana* $(7-12 \mu m)$ are wider than those of *Ca. avesiculata* $(1-4 \mu m)$. *Calonectria mexicana* is heterothallic (Schoch *et al.* 1999) (Supplementary Table S4).

microconidialis Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 175. 2015.

(see Calonectria pseudoreteaudii)

In: Calonectria reteaudii species complex.

Typus: CBS H-21473 holotype.

Ex-type culture: CBS 136638 = CMW 31487 = CERC 1822.

Type locality: China, GuangDong Province, ZhanJiang.

Type substrate: Eucalyptus urophylla × grandis clone seedling. Barcodes: act = MT335113; cmdA = MT335348; his3 = MT335588; rpb2 = MT412641; tef1 = MT412879; tub2 = MT413090 (alternative markers: ITS = MT359809; LSU = MT359569).

Notes: Calonectria microconidialis was treated as a synonym of *Ca. pseudoreteaudii* in this study. In comparisons of DNA sequences, all eight gene sequences for the isolates of *Ca. microconidialis* (ex-type CMW 31487, CMW 31473, CMW 31475, and CMW 31492) were 100 % identical to the isolates of *Ca. pseudoreteaudii* (ex-type CMW 25310, and CMW 25292). Both species produce narrowly clavate vesicles with overlapping dimensions (*Ca. microconidialis*: $3-7 \mu m$; *Ca. pseudoreteaudii*: $3-5 \mu m$), they also produce multiple-septate (> 3) macroconidia and 1-3-septate microconidia. The macroconidia of *Ca. microconidialis* (av. 88 × 8 μm) are shorter than those of *Ca. pseudoreteaudii* (av. 104 × 8 μm) (Lombard *et al.* 2010c, 2015a), which was considered to represent intraspecific variation (Supplementary Table S4).

montana Calonectria Q.L. Liu & S.F. Chen, Mycokeys 26: 48. 2017.

(see Calonectria canadiana)

In: Calonectria kyotensis species complex.

Typus: CSFF 2022 holotype.

Ex-type culture: CERC 8952.

Type locality: China, HeNan.

Type substrate: Soil under natural forest. Barcodes: act = MT335058; cmdA = MT335290; his3 = MT335530; rpb2 = MT412587; tef1 = MT412821; tub2 = MT413035 (alternative markers: ITS = MT359751; LSU = MT359511).

Notes: Calonectria montana was treated as a synonym of *Ca.* canadiana in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca.* montana (CERC 8952) and the ex-type isolate of *Ca.* canadiana (CMW 23673) was in the ITS, *rpb2* and *tub2* sequences, where there was one base difference in the ITS, one base difference in the *rpb2* and seven base differences in the *tub2* sequences. Both species produce pyriform to sphaer-opedunculate vesicles with overlapping dimensions (*Ca.* montana: $4-12.5 \mu$ m; Liu & Chen 2017, *Ca.* canadiana: $6-10 \mu$ m; Kang *et al.* 2001b) and 1-septate macroconidia. The macroconidia of *Ca.* montana [(av. $43.2 \times 4.6 \mu$ m); Liu & Chen 2017] are shorter than those of *Ca.* canadiana [(av. $50 \times 4 \mu$ m); Kang *et al.* 2001b], which was considered to represent intraspecific variation (Supplementary Table S4).

monticola Calonectria L. Lombard & Crous, Persoonia 35: 293. 2015.

In: Calonectria colhounii species complex.

Typus: CBS H-22376 holotype. *Ex-type culture*: CBS 140645 = CPC 28835. *Type locality*: **Thailand**, Chiang Mai.

Type substrate: Soil.

Barcodes: *cmdA* = KT964771; *tef1* = KT964773; *tub2* = KT964769 (alternative markers: ITS = KT964775; LSU = KT983443).

Notes: Calonectria monticola is closely related to *Ca. hon-ghensis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. monticola* [(av. 49 × 5 μ m); Crous *et al.* 2015] are smaller than those of *Ca. honghensis* [(av. 54 × 5.5 μ m); Li *et al.* 2017] (Supplementary Table S4).

mossambicensis Calonectria S. Maússe-Sitoe et al., Persoonia 31: 291. 2013.

(see Calonectria pauciramosa)

In: Calonectria candelabrum species complex.

Typus: PREM 60821 holotype.

Ex-type culture: CBS 137243 = CMW 36327.

Type locality: Mozambique, Manica, Bandula.

Type substrate: Cutting clones of Eucalyptus grandis × E. camaldulensis. Barcodes: act = MT335091; cmdA = MT335323;

barcodes: act - M1333091, chidA - M133323, his3 = MT335563; rpb2 = MT412616; tef1 = MT412854; tub2 = MT413066 (alternative markers: ITS = MT359784; LSU = MT359544).

Notes: Calonectria mossambicensis was treated as a synonym of *Ca. pauciramosa* in this study. In comparisons of DNA sequences for eight gene regions, all the sequences of the isolates of *Ca. mossambicensis* (ex-type CBS 137243, and CMW 36329) were 100 % identical to those of the isolates of *Ca. pauciramosa* (ex-type CBS 138824, CMW 2151, CMW 7592, CMW 9151, CMW 30823, and CMW 30875). Both species produce obpyriform to ellipsoidal vesicles with overlapping dimensions (*Ca. mossambicensis*: $2-8 \mu$ m; *Ca. pauciramosa*: $5-11 \mu$ m) and 1-septate macroconidia. The macroconidia of *Ca. mossambicensis* (av. $42 \times 4 \mu$ m) are smaller than those of *Ca. pauciramosa* (av. $50 \times 4.5 \mu$ m) (Crous 2002, Crous *et al.* 2013), which was considered to represent intraspecific variation (Supplementary Table S4).

multilateralis Calonectria L. Lombard *et al.*, Stud. Mycol. 85: 182. 2016.

In: Calonectria naviculata species complex.

Typus: CBS H-22762 holotype.

Ex-type culture: CBS 110932 = CMW 51171 = CPC 957. *Type locality*: **Mexico**, Uxmal.

Type substrate: Soil.

Barcodes: act = MT335060; cmdA = MT335292; his3 = MT335532; rpb2 = MT412589; tef1 = MT412823; tub2 = MT413037 (alternative markers: ITS = MT359753; LSU = MT359513).

Notes: Calonectria multilateralis is closely related to Ca. multinaviculata and Ca. naviculata, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of Ca. multilateralis [(av. $33 \times 3 \mu$ m); Lombard et al. 2016] are shorter than those of Ca. multinaviculata [(av. 46 × 3.5 μ m); Alfenas *et al.* 2015] and *Ca. naviculata* [(av. 45 × 3 μ m); Crous *et al.* 1997a] (Supplementary Table S4).

multinaviculata Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 108. 2015.

In: Calonectria naviculata species complex.

Typus: CBS 134858 holotype.

Ex-type culture: CBS 134858 = LPF233. *Type locality*: **Brazil**, Bahia state, Mucuri. *Type substrate*: Soil in *Eucalyptus* plantation. *Barcodes*: *cmdA* = KM396072; *his3* = KM396155; *tef1* = KM395898; *tub2* = KM395985.

Notes: Calonectria multinaviculata is phylogenetically closely related to *Ca. naviculata*, *Ca. multinaviculata* can be distinguished from *Ca. naviculata* by its lateral stipe extensions, a feature not observed for the *Ca. naviculata* (Crous *et al.* 1997a, Alfenas *et al.* 2015) (Supplementary Table S4).

multiphialidica Calonectria (Crous *et al.*) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium multiphialidicum Crous *et al.*, Stud. Mycol. 50: 425. 2004.

In: Calonectria naviculata species complex.

Typus: CBS 9887 holotype.

Ex-type culture: CBS 112678 = CMW 23688 = Cam 13. *Type locality*: **Cameroon**.

Type substrate: Soil surrounding roots of Musa sp.

Barcodes: act = MT335066; cmdA = MT335298; his3 = MT335538; rpb2 = MT412595; tef1 = MT412829; tub2 = MT413043 (alternative markers: ITS = MT359759; LSU = MT359519).

Notes: Calonectria multiphialidica is closely related to Ca. henricotiae and Ca. pseudonaviculata, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of Ca. multiphialidica [(av. 53 × 4.5 µm); Crous et al. 2004] are smaller than those of Ca. henricotiae [(av. 56 × 5.6 µm); Gehesquiere et al. 2015] and Ca. pseudonaviculata [(av. 60 × 5 µm); Crous et al. 2002] (Supplementary Table S4). Furthermore, Ca. multiphialidica has eight tiers of branches in its conidiogenous apparatus in comparison to the two in Ca. henricotiae and four in Ca. pseudonaviculata (Crous et al. 2002, 2004, Gehesquiere et al. 2015).

multiseptata Calonectria Crous & M.J. Wingfield, Mycol. Res. 102: 530. 1998.

Synonym: Cylindrocladium multiseptatum Crous & M.J. Wingf., Mycol. Res. 102: 530. 1998.

In: Calonectria reteaudii species complex.

Typus: PREM 55343 (holotype of *Ca. multiseptata*; Crous *et al.* 1998), PREM 55344 (holotype of *Cy. multiseptatum*; Crous *et al.* 1998)

Ex-type culture: CBS 112682 = CMW 23692 = CPC 1589 (Crous 2002, Crous *et al.* 2006).

Type locality: Indonesia, North Sumatra.

Type substrate: Eucalyptus grandis.

Barcodes: act = MT335067; cmdA = MT335299; his3 = MT335539; rpb2 = MT412596; tef1 = MT412830; tub2 = MT413044 (alternative markers: ITS = MT359760; LSU = MT359520). Notes: Calonectria multiseptata is phylogenetically closely related to *Ca. acicola*. The ability of *Ca. multiseptata* to produce megaconidiophores and megaconidia in culture distinguishes it from *Ca. acicola* (Crous 2002, Gadgil & Dick 2004). *Calonectria multiseptata* is homothallic (Crous 2002) (Supplementary Table S4).

multistipitata Calonectria N.Q. Pham *et al.*, Mycologia 111: 98. 2019.

(see Calonectria chinensis)

In: Calonectria kyotensis species complex.

Typus: PREM 62121 holotype.

Ex-type culture: CBS 143573 = CMW 47192.

Type locality: Vietnam, Tuyen Quang.

Type substrate: Soil in Acacia hybrid plantation.

Barcodes: act = MT335068; cmdA = MT335300; his3 = MT335540; rpb2 = MT412597; tef1 = MT412831; tub2 = MT413045 (alternative markers: ITS = MT359761; LSU = MT359521).

Notes: Calonectria multistipitata was treated as a synonym of *Ca.* chinensis in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca. multistipitata* (CMW 47192) and the ex-type isolate of *Ca. chinensis* (CMW 23674) was in the his3, ITS, tef1 and tub2 sequences, where there was one base difference in the his3, one base difference in the ITS, one base difference in the tef1 and four base differences in the tub2 sequences. Both species produce sphaeropedunculate vesicles with overlapping dimensions (*Ca. multistipitata*: 5–10 µm; *Ca. chinensis*: 6–9 µm) and 1-septate macroconidia. The macroconidia of *Ca. multistipitata* (av. 32 × 3.5 µm) are smaller than those of *Ca. chinensis* (av. 45 × 4 µm) (Crous et al. 2004, Pham et al. 2019), which was considered to represent intraspecific variation (Supplementary Table S4).

naviculata Calonectria Crous & M.J. Wingf., Mycologia 89: 654. 1997.

Synonym: Cylindrocladium naviculatum Crous & M.J. Wingf., Mycotaxon 50: 443. 1994.

In: Calonectria naviculata species complex.

Typus: PREM 54418 (holotype of *Ca. naviculata*; Crous *et al.* 1997a), PREM 51542 (holotype of *Cy. naviculatum*; Crous *et al.* 1994).

Ex-type culture: CBS 101121 = CMW 30974 (Lombard *et al.* 2010a).

Type locality: Brazil, Joao Pessoa.

Type substrate: Leaf litter.

Barcodes: act = GQ280478; cmdA = GQ267399; his3 = GQ267252; rpb2 = KM232309; tef1 = GQ267317; tub2 = GQ267211 (alternative markers: ITS = GQ280600; LSU = GQ280722).

Notes: Calonectria naviculata is phylogenetically closely related to *Ca. multinaviculata*, it can be distinguished from *Ca. multinaviculata* by its lack of lateral stipe extensions, a feature that is common in *Ca. multinaviculata* (Crous *et al.* 1997a, Alfenas *et al.* 2015). *Calonectria naviculata* is heterothallic (Crous *et al.* 1997a) (Supplementary Table S4).

nemoralis Calonectria L. Lombard & Crous, Stud. Mycol. 86: 114. 2017.

(see Calonectria ovata)

In: Calonectria pteridis species complex.

Typus: CBS H-23135 holotype. *Ex-type culture*: CBS 116249 = CMW 51829 = CPC 3533. *Type locality*: **Brazil**.

Type substrate: Soil in *Eucalyptus* plantation.

Barcodes: act = MT335074; cmdA = MT335306; his3 = MT335546; rpb2 = MT412603; tef1 = MT412837; tub2 = MT413051 (alternative markers: ITS = MT359767; LSU = MT359527).

Notes: Calonectria nemoralis was treated as a synonym of *Ca. ovata* in this study. In comparisons of DNA sequences for seven available gene regions, the only difference between the ex-type isolate of *Ca. nemoralis* (CBS 116249) and the ex-type isolate of *Ca. ovata* (CMW 16724) was found in the *tub2* gene sequences where one base difference occurred. Both of the species produce ovoid vesicles and 1-septate macroconidia. The macroconidia of *Ca. nemoralis* [(av. 53 × 4 µm); Marin-Felix *et al.* 2017] are smaller than those of *Ca. ovata* [(av. 70 × 5 µm); Victor *et al.* 1997], which was considered to represent intraspecific variation (Supplementary Table S4).

nemoricola Calonectria R.F. Alfenas *et al.*, (as *nemuricola*) Stud. Mycol. 80: 109. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS H-21358 holotype.

Ex-type culture: CBS 134837 = LPF085.

Type locality: Brazil, Minas Gerais state, Araponga.

Type substrate: Soil in tropical rainforest.

Barcodes: *cmdA* = KM396066; *his3* = KM396149; *tef1* = KM395892; *tub2* = KM395979.

Notes: Calonectria nemoricola is closely related to *Ca. silvicola*, and can be distinguished from *Ca. silvicola* by the dimensions of its macroconidia. The macroconidia of *Ca. nemoricola* [(av. 45 × 4 µm); Alfenas *et al.* 2015] are longer than those of *Ca. silvicola* [(av. 41 × 4.5 µm); Alfenas *et al.* 2015] (Supplementary Table S4).

nymphaeae Calonectria Yong Wang bis *et al.*, Mycotaxon 122: 181. 2013.

(see Calonectria fujianensis)

In: Calonectria colhounii species complex.

Typus: HGUPd100003 holotype.

Ex-type culture: CBS 131802 = CMW 51317 = HGUP 100003. *Type locality*: **China**, Guizhou, Guiyang.

Type substrate: Nymphaea tetragona.

Barcodes: act = MT335070; cmdA = MT335302; his3 = MT335542; rpb2 = MT412599; tef1 = MT412833; tub2 = MT413047 (alternative markers: ITS = MT359763; LSU = MT359523).

Notes: Calonectria nymphaeae was treated as a synonym of *Ca. fujianensis* in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca. nymphaeae* (CBS 131802) and the ex-type isolate of *Ca. fujianensis* (CMW 27257) was in the ITS, *tef1* and *tub2* sequences, where there was one base difference in the ITS, three base differences in the *tef1* and three base differences in the *tub2* sequences. Both species are homothallic and

produce clavate vesicles with similar dimensions (*Ca. nym-phaeae*: $3-5 \mu$ m; *Ca. fujianensis*: $3-5 \mu$ m). The macroconidia of *Ca. nymphaeae* (av. 61 × 5.9 µm) are larger than those of *Ca. fujianensis* (av. 52.5 × 4 µm) (Chen *et al.* 2011, Xu *et al.* 2012, Li *et al.* 2020), which was considered to represent intraspecific variation (Supplementary Table S4).

octoramosa Calonectria L. Lombard & Crous, Stud. Mycol. 86: 120. 2017.

In: Calonectria brassicae species complex.

Typus: CBS H-23136 holotype.

Ex-type culture: CBS 111423 = CMW 51819 = CPC 1650. *Type locality*: **Ecuador**.

Type substrate: Soil.

Barcodes: *act* = MT335071; *cmdA* = MT335303; *his3* = MT335543; *rpb2* = MT412600; *tef1* = MT412834; *tub2* = MT413048 (alternative markers: ITS = MT359764; LSU = MT359524).

Notes: Calonectria octoramosa is closely related to *Ca. ecuadorae*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. octoramosa* [(av. 36 × 4 μ m); Marin-Felix *et al.* 2017] are smaller than those of *Ca. ecuadorae* [(av. 51 × 4.5 μ m); Crous *et al.* 2006] (Supplementary Table S4).

orientalis Calonectria L. Lombard et al., Stud. Mycol. 66: 49. 2010.

In: Calonectria brassicae species complex.

Typus: PREM 60303 holotype.

Ex-type culture: CBS 125260 = CMW 20291.

Type locality: Indonesia, Langam.

Type substrate: Soil.

Barcodes: act = MT335072; cmdA = MT335304; his3 = MT335544; rpb2 = MT412601; tef1 = MT412835; tub2 = MT413049 (alternative markers: ITS = MT359765; LSU = MT359525).

Notes: Calonectria orientalis is closely related to *Ca. pini*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. orientalis* (av. 48 × 4 μ m) are longer than those of *Ca. pini* (av. 44 × 5 μ m) (Lombard *et al.* 2010a) (Supplementary Table S4). Furthermore, *Ca. orientalis* produces five tiers of branches in its conidiogenous apparatus in comparison to the three in *Ca. pini* (Lombard *et al.* 2010a).

ovata Calonectria D. Victor & Crous, Syst. Appl. Microbiol. 20: 282. 1997

Synonyms: Cylindrocladium ovatum El-Gholl et al., Canad. J. Bot. 71: 469. 1993.

Calonectria tereticornis L. Lombard & Crous, Stud. Mycol. 85: 190. 2016.

Calonectria nemoralis L. Lombard & Crous, Stud. Mycol. 86: 114. 2017.

Calonectria tucuruiensis L. Lombard & Crous, Stud. Mycol. 86: 123. 2017.

In: Calonectria pteridis species complex.

Typus: PREM 51726 (holotype of *Ca. ovata*; Victor *et al.* 1997), FLAS F55638 (holotype of *Cy. ovatum*; El-Gholl *et al.* 1993a). *Ex-type culture*: CBS 111299 = CMW 16724 = ATCC 76225 = UFV 89 (Lombard *et al.* 2010a). Type locality: **Brazil**, Pará, Monte Dourado. Type substrate: Eucalyptus urophylla.

Barcodes: act = MT335075; *cmdA* = MT335307; *his3* = MT335547; *tef1* = MT412838; *tub2* = MT413052 (alternative markers: ITS = MT359768; LSU = MT359528).

Notes: Calonectria ovata is phylogenetically closely related to *Ca. pseudovata* and *Ca. terricola*. The macroconidia of *Ca. ovata* [(av. 70 × 5 μ m); Victor *et al.* 1997] are larger than those of *Ca. terricola* [(av. 46 × 4.5 μ m); Lombard *et al.* 2016]. Furthermore, the ability of *Ca. ovata* to produce miconidiophores and microconidia in culture distinguishes it from *Ca. terricola* (Victor *et al.* 1997, Lombard *et al.* 2016). Morphologically, *Ca. ovata* shows some overlap with *Ca. pseudovata*, while the sequences of *cmdA*, *his3*, *tef1* and *tub2* gene regions can differentiate *Ca. ovata* from *Ca. pseudovata* (Victor *et al.* 1997, Alfenas *et al.* 2015). *Calonectria ovata* is heterothallic (Li *et al.* 2020).

pacifica Calonectria (J.C. Kang *et al.*) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium pacificum J.C. Kang et al., Syst. Appl. Microbiol. 24: 213. 2001.

In: Calonectria kyotensis species complex.

Typus: PREM 57209 holotype.

Ex-type culture: CBS 109063 = CMW 16726 = IMI 354528 = STE-U 2534 = A1568.

Type locality: USA, Hawaii.

Type substrate: Araucaria heterophylla.

Barcodes: act = MT335079; *cmdA* = MT335311; *his3* = MT335551; *rpb2* = MT412604; *tef1* = MT412842 (alternative markers: ITS = MT359772; LSU = MT359532).

Notes: Calonectria pacifica is phylogenetically closely related to *Ca. aconidialis* and can be differentiated from that species by the sequences of *act*, *cmdA*, *his3*, *rpb2*, ITS, LSU and *tef1* gene regions.

papillata Calonectria L. Lombard et al., Stud. Mycol. 80: 175. 2015.

(see Calonectria cerciana)

In: Calonectria cylindrospora species complex.

Typus: CBS H-21487 holotype.

Ex-type culture: CBS 136097 = CMW 37976 = CPC 23517 = CERC 1939.

Type locality: China, GuangDong.

Type substrate: Soil in a Eucalyptus plantation.

Barcodes: act = MT334983; cmdA = MT335213; his3 = MT335453; rpb2 = MT412517; tef1 = MT412744; tub2 = MT412965 (alternative markers: ITS = MT359674; LSU = MT359434).

Notes: Calonectria papillata was treated as a synonym of *Ca.* cerciana in this study. In comparisons of DNA sequences for eight gene regions, there were differences between the ex-type isolate of *Ca. papillata* (CMW 37976) and the ex-type isolate of *Ca. cerciana* (CMW 25309) in the ITS, *rpb2* and *tub2* sequences. These included one base difference in the ITS sequences one base difference in the *rpb2* and two base differences in the *tub2* sequences. Both species produce obpyriform vesicles and 1-septate macroconidia, and have similar vesicle dimensions (*Ca. papillata*: 8–14 µm; *Ca. cerciana*: 8–13 µm) and macroconidia (*Ca. papillata*: av. 45 × 4 µm; *Ca. cerciana*: av. 44 × 5 µm) (Lombard *et al.* 2010c, 2015a) (Supplementary Table S4).

paracolhounii Calonectria L. Lombard & Crous, Stud. Mycol. 85: 183. 2016.

In: Calonectria colhounii species complex.

Typus: CBS H-22763 holotype.

Ex-type culture: CBS 114679 = CMW 51212 = CPC 2445. *Type locality*: **USA**.

Type substrate: Unknown.

Barcodes: *cmdA* = KX784582; *rpb2* = KY653423; *tef1* = KX784714; *tub2* = KX784644 (alternative markers: ITS = KY653268; LSU = KY653324).

Notes: Calonectria paracolhounii is closely related to *Ca. colhounii*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. colhounii* [(av. 65 × 5 μ m); Peerally 1973] are longer than those of *Ca. paracolhounii* [(av. 41 × 5 μ m); Lombard *et al.* 2016] (Supplementary Table S4).

paraensis Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 111. 2015.

Synonym: Calonectria telluricola R.F. Alfenas *et al.*, Stud. Mycol. 80: 125. 2015.

In: Calonectria brassicae species complex.

Typus: CBS H-21379 holotype. *Ex-type culture*: CBS 134669 = LPF430. *Type locality*: **Brazil**, Pará state, Monte Dourado. *Type substrate*: Soil in *Eucalyptus* plantation. *Barcodes*: *cmdA* = KM396011; *his3* = KM396094; *tef1* = KM395837; *tub2* = KM395924.

Notes: Calonectria paraensis is closely related to *Ca. orientalis*, *Ca. pini* and *Ca. pseudobrassicae*. The macroconidia of *Ca. paraensis* [(av. 42 × 5 μ m); Alfenas *et al.* 2015] are shorter than those of *Ca. orientalis* [(av. 48 × 4 μ m); Lombard *et al.* 2010a] and *Ca. pini* [(av. 44 × 5 μ m); Lombard *et al.* 2010a]. *Calonectria paraensis* has two tiers of branches in its conidiogenous apparatus in comparison to the five in *Ca. orientalis*, three in *Ca. pini* and *Ca. pseudobrassicae* (Lombard *et al.* 2010a, Alfenas *et al.* 2015) (Supplementary Table S4).

parakyotensis Calonectria L. Lombard et al., Stud. Mycol. 80: 176. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21470 holotype.

Ex-type culture: CBS 136085 = CMW 35169 = CERC 1845. *Type locality*: **China**, GuangDong Province.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: act = MT334948; cmdA = MT335175; his3 = MT335414; rpb2 = MT412483; tef1 = MT412705 (alternative markers: ITS = MT359635; LSU = MT359395).

Notes: Calonectria parakyotensis was treated as a synonym of *Ca. aconidialis* in this study. In comparisons of DNA sequences for seven available gene regions, all seven gene sequences for the isolates of *Ca. parakyotensis* (ex-type CMW 35169, and CMW 35413) were 100 % identical to those of the ex-type isolate of *Ca. aconidialis* (CMW 35174). Both species are homothallic but no sexual morph was observed for *Ca. parakyotensis* (Lombard *et al.* 2015a, Li *et al.* 2020; Supplementary Table S4).

parva Calonectria L. Lombard & Crous, Stud. Mycol. 85: 183. 2016.

Fig. 3. Calonectria pauciphialidica. A-C. Macroconidiophore. D-G. Macroconidia. Scale bars: A-C = 20 µm, D-G = 10 µm.

(see Calonectria macroconidialis)

In: Calonectria colhounii species complex.

Typus: CBS H-22764 holotype.

Ex-type culture: CBS 110798 = CMW 51817 = CPC 410.

Type locality: South Africa, Mpumalanga, Sabie.

Type substrate: Eucalyptus grandis (roots).

Barcodes: act = MT335051; cmdA = MT335283; his3 = MT335523; rpb2 = MT412580; tef1 = MT412814; tub2 = MT413028 (alternative markers: ITS = MT359744; LSU = MT359504).

Notes: Calonectria parva was treated as a synonym of *Ca.* macroconidialis in this study. In comparisons of DNA sequences for eight gene regions, the only differences between the ex-type isolate of *Ca.* parva (CBS 110798) and the ex-type isolate of *Ca.* macroconidialis (CBS 114880) was found in the *tef1* gene sequences. Both species produce clavate vesicles of similar dimensions (*Ca.* parva: $3-5 \mu m$; *Ca.* macroconidialis: $3-5 \mu m$) and 3-septate macroconidia (Crous *et al.* 1999, Lombard *et al.* 2016). The macroconidia of *Ca.* parva (av. $72 \times 6 \mu m$) are smaller than those of *Ca.* macroconidialis (av. $90 \times 6.5 \mu m$) (Crous *et al.* 1999, Lombard *et al.* 2016), which was considered to represent intraspecific variation (Supplementary Table S4).

parvispora Calonectria L. Lombard & Crous, Stud. Mycol. 86: 120. 2017.

In: Calonectria brassicae species complex.

Typus: CBS H-22765 holotype. *Ex-type culture*: CBS 111465 = CPC 1902. Type locality: Brazil.

Type substrate: Soil.

Barcodes: act = MT335082; cmdA = MT335314; his3 = MT335554; rpb2 = MT412607; tef1 = MT412845; tub2 = MT413057 (alternative markers: ITS = MT359775; LSU = MT359535).

Notes: Calonectria parvispora is closely related to *Ca. brachiatica*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. parvispora* [(av. 29 × 4 μ m); Marin-Felix *et al.* 2017] are smaller than those of *Ca. brachiatica* [(av. 44 × 5 μ m); Lombard *et al.* 2009] (Supplementary Table S4).

pauciphialidica Calonectria Q.L. Liu & S.F. Chen, *sp. nov.* MycoBank MB835284. Fig. 3.

In: Calonectria brassicae species complex.

Etymology: Name refers to the macroconidiophores that produce few phialides.

Sexual morph unknown. Macroconidiophores consisting of a stipe bearing a penicillate arrangement of fertile branches, stipe extension and vesicle not observed; stipe septate, hyaline, smooth, $40-80 \times 3-4 \mu$ m; Conidiogenous apparatus 8.6–20 µm wide, and 14.3–25 µm long; primary branches aseptate, 11–18 × 2–3 µm, each terminal produces two to four phialides, phialides doliiform to reniform, hyaline, aseptate, 6–9 × 2–3 µm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (25–)27–32(–36) × (2–)2.5–3.5(–4) µm, (av. 29.5 × 3 µm), 1-septate, lacking a visible abscission scar, held in parallel

cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies white on the surface and buff in reverse after 7 d at 25 °C on MEA; abundant wooly aerial mycelium with moderate sporulation on the medium surface; chlamydospores not observed. Optimal growth temperature 25 °C, no growth at 5 °C and 35 °C, after 7 d, colonies at 10 °C, 15 °C, 20 °C, 25 °C and 30 °C reached 15.1 mm, 21.4 mm, 45.1 mm, 58.2 mm and 42.1 mm, respectively.

Typus: **Ecuador**, soil, 20 Jun. 1997, M.J. Wingfield (**holotype** HMAS 255717, ex-type culture CBS 111394 = CMW 30980 = CPC 1628).

Barcodes: act = MT335083; cmdA = MT335315; his3 = MT335555; rpb2 = MT412608; tef1 = MT412846; tub2 = MT413058 (alternative markers: ITS = MT359776; LSU = MT359536).

Notes: Calonectria pauciphialidica is a novel species in the Ca. brassicae species complex, closely related to Ca. ecuadorae (Fig. 1, Supplementary Table S4). The sequences of cmdA, his3, rpb2, tef1 and tub2 gene regions can differentiate Ca. pauciphialidica from that species. The smaller number of branches and phialides of Ca. pauciphialidica distinguish it from Ca. ecuadorae; in addition, macroconidia of Ca. pauciphialidica (av. 29.5 × 3 µm) are smaller than those of Ca. ecuadorae [(av. 51 × 4.5 µm); Crous et al. 2006] (Supplementary Table S4).

pauciramosa Calonectria C.L. Schoch & Crous, Mycologia 91: 289. 1999.

Synonyms: Cylindrocladium pauciramosum C.L. Schoch & Crous, Mycologia 91: 289. 1999.

Calonectria polizzii L. Lombard *et al.*, Stud. Mycol. 66: 25. 2010. *Calonectria zuluensis* L. Lombard & Crous, Stud. Mycol. 66: 25. 2010.

Calonectria mossambicensis S. Maússe-Sitoe et al., Persoonia 31: 291. 2013.

Calonectria seminaria L. Lombard et al., Stud. Mycol. 80: 179. 2015.

Calonectria tetraramosa L. Lombard et al., Stud. Mycol. 80: 183. 2015.

Calonectria cliffordiicola L. Lombard & Crous, Stud. Mycol. 85: 177. 2016.

Calonectria ericae L. Lombard & Crous, Stud. Mycol. 85: 178. 2016.

Calonectria machaerinae L. Lombard & Crous, Stud. Mycol. 85: 181. 2016.

In: Calonectria candelabrum species complex.

Typus: PREM 55754 [holotype of *Ca. pauciramosa*; Schoch *et al.* 1999], PREM 55752 (holotype of *Cy. pauciramosum*; Schoch *et al.* 1999).

Ex-type culture: CBS 138824 = CMW 5683 = CPC 971 (Crous 2002, Lombard *et al.* 2010a).

Type locality: **South Africa**, Knysna.

Type substrate: Soil/Eucalyptus grandis (Crous 2002, Lombard et al. 2015a)

Barcodes: act = MT335093; cmdA = MT335325; his3 = MT335565; rpb2 = MT412618; tef1 = MT412856; tub2 = MT413068 (alternative markers: ITS = MT359786; LSU = MT359546). Notes: Calonectria pauciramosa is closely related to Ca. nemoricola and Ca. silvicola, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of Ca. pauciramosa [(av. 50 × 4.5 µm); Crous 2002] are longer than those of Ca. nemoricola [(av. 45 × 4 µm); Alfenas et al. 2015] and Ca. silvicola [(av. 41 × 4.5 µm); Alfenas et al. 2015] (Supplementary Table S4). Calonectria pauciramosa is heterothallic (Crous 2002, Li et al. 2020). Calonectria pauciramosa is an important plant pathogen that has been reported as the dominant species in many countries such as Australia, Brazil. Italy, South Africa and the USA (Koike et al. 1999, Polizzi & Crous 1999, Schoch et al. 1999, Crous 2002), while Lombard et al. (2010c) and Chen et al. (2011) also confirmed its occurrence in China. In this study, the eight species reduced to synonymy with Ca. pauciramosa were originally collected in different climatic zones on five continents (Africa, Asia, Europe, North America and Oceania), supporting the view that Ca. pauciramosa is a cosmopolitan species with the ability to exist in areas with a range of climatic conditions.

penicilloides Calonectria (Tubaki) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Candelospora penicilloides Tubaki, Nogaoa 2: 58. 1952.

Synonym: Cylindrocladium penicilloides (Tubaki) Tubaki, J. Hattori Bot. Lab. 20: 154. 1958.

In: Calonectria kyotensis species complex.

Typus: type specimen lost (Tubaki 1958).

Ex-type culture: CBS 174.55 = CMW 23696 = STE-U 2388. *Type locality*: **Japan**, Hatizyo Island.

Type substrate: Prunus sp.

Barcodes: act = MT335106; cmdA = MT335338; his3 = MT335578; rpb2 = MT412631; tef1 = MT412869; tub2 = MT413081 (alternative markers: ITS = MT359799; LSU = MT359559).

Notes: Phylogenetically, *Ca. penicilloides* forms a distinct lineage separate from other species in this species complex.

pentaseptata Calonectria L. Lombard *et al.*, Persoonia 29: 157. 2012.

(see Calonectria pseudoreteaudii)

In: Calonectria reteaudii species complex.

Typus: CBS H-21062 holotype.Ex-type culture: CBS 133349 = CMW 51318.Type locality: Vietnam, Bavi, Hanoi.Type substrate: Eucalyptus hybrid.Barcodes: act = MT335117; cmdA = MT335352;his3 = MT335592; rpb2 = MT412645; tef1 = MT412883;tub2 = MT413094 (alternative markers: ITS = MT359813;

LSU = MT359573). *Notes: Calonectria pentaseptata* was treated as a synonym of *Ca. pseudoreteaudii* in this study. In comparison of DNA sequences, all eight gene sequences for the isolates of *Ca. pentaseptata* (ex-type CBS 133349, and CBS 133351) were 100 % identical to the isolates of *Ca. pseudoreteaudii* (ex-type CMW 25310, and CMW 25292). Both species produce narrowly clavate vesicles with similar dimensions (*Ca. pentaseptata*: 2–6 µm; *Ca. pseudoreteaudii*: 3–5 µm) and multiple-septate (> 3) macroconidia. The macroconidia of *Ca. pentaseptata* (av. $98 \times 7 \mu$ m) are smaller than those of *Ca. pseudoreteaudii* (av. 104 × 8 µm) (Lombard *et al.* 2010c, Crous *et al.* 2012), which was considered to represent intraspecific variation (Supplementary Table S4).

piauiensis Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 112. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS H-21375 holotype. Ex-type culture: CBS 134850 = LPF377. Type locality: **Brazil**, Piauí state, Teresina. Type substrate: Soil in Eucalyptus brassiana plantation. Barcodes: cmdA = KM396060; his3 = KM396143; tef1 = KM395886; tub2 = KM395973. Notes: Phylogenetically, Ca. piauiensis forms a distinct lineage separate from other species in this species complex.

pini Calonectria L. Lombard et al., Stud. Mycol. 66: 52. 2010.

In: Calonectria brassicae species complex.

Typus: PREM 60304 holotype.

Ex-type culture: CBS 123698 = CMW 31209. *Type locality*: **Colombia**, Valle del Cauca, Buga.

Type substrate: Pinus patula.

Barcodes: act = MT335107; cmdA = MT335339; his3 = MT335579; rpb2 = MT412632; tef1 = MT412870; tub2 = MT413082 (alternative markers: ITS = MT359800; LSU = MT359560).

Notes: Calonectria pini is closely related to *Ca. orientalis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. pini* [(av. 44 × 5 µm); Lombard *et al.* 2010a] are shorter than those of *Ca. orientalis* [(av. 48 × 4 µm); Lombard *et al.* 2010a] (Supplementary Table S4). Furthermore, the small number of branches (-3) in the conidiogenous apparatus also distinguishes it from *Ca. orientalis* (-5) (Lombard *et al.* 2010a).

plurilateralis Calonectria L. Lombard & Crous, Stud. Mycol. 85: 184. 2016.

In: Calonectria cylindrospora species complex.

Typus: CBS H-22766 holotype.

Ex-type culture: CBS 111401 = CMW 51178 = CPC 1637.

Type locality: Ecuador.

Type substrate: Soil.

Barcodes: cmdA = MT335340; his3 = MT335580; rpb2 = MT412633; tef1 = MT412871; tub2 = MT413083 (alternative markers: ITS = MT359801; LSU = MT359561).

Notes: Calonectria plurilateralis is phylogenetically closely related to *Ca. brasiliensis*, *Ca. hawksworthii* and *Ca. maranhensis*, and can be distinguished from these species by the dimensions of its macroconidia. The macroconidia of *Ca. plurilateralis* [(av. 34 × 4 µm); Lombard *et al.* 2016] are shorter than those of *Ca. brasiliensis* [(av. 38 × 3.5 µm); Batista 1951], *Ca. hawksworthii* [(av. 56 × 4 µm); Lombard *et al.* 2010a] and *Ca. maranhensis* [(av. 57 × 5 µm); Alfenas *et al.* 2015] (Supplementary Table S4).

pluriramosa Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 178. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21485 holotype.

Ex-type culture: CBS 136976 = CMW 31440 = CERC 1775. *Type locality*: **China**, GuangXi Province.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: *act* = MT334950; *cmdA* = MT335177; *his3* = MT335416; *tef1* = MT412707 (alternative markers: ITS = MT359637; LSU = MT359397).

Notes: Calonectria pluriramosa was treated as a synonym of *Ca. aconidialis* in this study. In comparisons of DNA sequences for six available gene regions (*rpb2* and *tub2* are not available for *Ca. pluriramosa, tub2* not available for *Ca. aconidialis*), all six gene sequences for the ex-type isolates of *Ca. pluriramosa* were 100 % identical to the ex-type isolate of *Ca. aconidialis* (CMW 35174). No sexual morph has been observed for *Ca. pluriramosa* (Lombard *et al.* 2015a, Supplementary Table S4).

polizzii Calonectria L. Lombard *et al.*, Stud. Mycol. 66: 25. 2010. (see *Calonectria pauciramosa*)

In: Calonectria candelabrum species complex.

Typus: PREM 60297 holotype. *Ex-type culture*: CBS 123402 = CMW 30872. *Type locality*: **Italy**, Sicily, Carrubba. *Type substrate*: *Arbutus unedo*.

Barcodes: act = MT335099; cmdA = MT335331; his3 = MT335571; rpb2 = MT412624; tef1 = MT412862; tub2 = MT413074 (alternative markers: ITS = MT359792; LSU = MT359552).

Notes: Calonectria polizzii was treated as a synonym of *Ca.* pauciramosa in this study. In comparisons of DNA sequences for eight gene regions, the only differences between the ex-type isolate of *Ca. polizzii* (CBS 123402) and the ex-type isolate of *Ca. pauciramosa* (CBS 138824) were five base differences in the *tub2* sequence. Both species are heterothallic and produce obpyriform to ellipsoidal vesicles with overlapping dimensions (*Ca. polizzii*: $6-9 \mu$ m; *Ca. pauciramosa*: $5-11 \mu$ m) and 1-septate macroconidia. The macroconidia of *Ca. polizzii* (av. $37 \times 4 \mu$ m) are shorter than those of *Ca. pauciramosa* (av. $50 \times 4.5 \mu$ m) (Crous 2002, Lombard *et al.* 2010b, Li *et al.* 2020), which was considered to represent intraspecific variation (Supplementary Table S4).

propaginicola Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 115. 2015.

Synonym: Calonectria pseudocerciana R.F. Alfenas et al., Stud. Mycol. 80: 117. 2015.

In: Calonectria cylindrospora species complex.

Typus: CBS H-21366 holotype.

Ex-type culture: CBS 134815 = LPF220.

Type locality: Brazil, Pará state, Santana.

Type substrate: Eucalyptus seedling.

Barcodes: cmdA = KM396040; his3 = KM396123; tef1 = KM395866; tub2 = KM395953.

Notes: Calonectria propaginicola is closely related to *Ca. cerciana* and *Ca. tonkinensis*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. propaginicola* [(av. 49 × 4 μ m); Alfenas *et al.* 2015] are longer than those of *Ca. cerciana* [(av. 44 × 5 μ m);

Lombard *et al.* 2010c] and *Ca. tonkinensis* [(av. 41.5 × 4 μ m); Pham *et al.* 2019] (Supplementary Table S4).

pseudobrassicae Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 116. 2015.

In: Calonectria brassicae species complex.

Typus: CBS H-21371 holotype.

Ex-type culture: CBS 134662 = LPF280.

Type locality: Brazil, Pará state, Santana.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: *cmdA* = KM396023; *his3* = KM396106; *tef1* = KM395849; *tub2* = KM395936.

Notes: Calonectria pseudobrassicae is closely related to *Ca.* orientalis, *Ca.* paraensis and *Ca.* pini. The macroconidia of *Ca.* pseudobrassicae [(av. 41 × 5 µm); Alfenas *et al.* 2015] are shorter than those of *Ca.* orientalis [(av. 48 × 4 µm); Lombard *et al.* 2010a] and *Ca.* pini [(av. 44 × 5 µm); Lombard *et al.* 2010a]. Calonectria pseudobrassicae has three tiers of branches in its conidiogenous apparatus in comparison to the two in *Ca.* paraensis (Alfenas *et al.* 2015) (Supplementary Table S4).

pseudocerciana Calonectria R.F. Alfenas et al., Stud. Mycol. 80: 117. 2015.

(see Calonectria propaginicola)

In: Calonectria cylindrospora species complex.

Typus: CBS H-21366 holotype.

Ex-type culture: CBS 134824 = LPF367.

Type locality: Brazil, Pará state, Santana.

Type substrate: Eucalyptus seedling.

Barcodes: *cmdA* = KM396049; *his3* = KM396132; *tef1* = KM395875; *tub2* = KM395962.

Notes: Calonectria pseudocerciana was treated as a synonym of *Ca. propaginicola* in this study. In comparisons of DNA sequences for four available gene regions, the only differences between the ex-type isolate of *Ca. pseudocerciana* (CBS 134824) and the ex-type isolate of *Ca. propaginicola* (CBS 134815) was in the *cmdA*, *his3* and *tub2* sequences, where there were eight base differences in the *cmdA*, one base difference in the *his3* and one base difference in the *tub2* sequences. Both species produce obpyriform to sphaeropedunculate vesicles with similar dimensions (*Ca. pseudocerciana*: 7–12 µm; *Ca. propaginicola*: 5–12 µm) and 1-septate macroconidia, the macroconidia of *Ca. pseudocerciana* (av. 45 × 4 µm) are shorter than those of *Ca. propaginicola* (av. 49 × 4 µm) (Alfenas *et al.* 2015), which was considered to represent intraspecific variation (Supplementary Table S4).

pseudocolhounii Calonectria S.F. Chen et al., Persoonia 26: 7. 2011.

(see Calonectria eucalypti)

In: Calonectria colhounii species complex.

Typus: PREM 60456 holotype. *Ex-type culture*: CBS 127195 = CMW 27209. *Type locality*: **China**, FuJian Province. *Type substrate*: *Eucalyptus dunnii*. *Barcodes*: *act* = MT335108; *cmdA* = MT335341; *his3* = MT335581; *rpb2* = MT412634; *tef1* = MT412872; tub2 = MT413084 (alternative markers: ITS = MT359802; LSU = MT359562).

Notes: Calonectria pseudocolhounii was treated as a synonym of *Ca. eucalypti* in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca. pseudocolhounii* (CMW 27209) and the ex-type isolate of *Ca. eucalypti* (CMW 18444) was in the *his3*, ITS and *tub2* sequences, where there were three base differences in the *his3*, one base difference in the ITS and four base differences in the *tub2* sequences. Both species are homothallic and produce clavate vesicles with similar dimensions (*Ca. pseudocolhounii*: $3.5-6 \mu m$; *Ca. eucalypti*: $4-6 \mu m$) and 3-septate macroconidia (Lombard *et al.* 2010a, Chen *et al.* 2011, Li *et al.* 2020). The macroconidia of *Ca. pseudocolhounii* (av. $60 \times 4.5 \mu m$) are smaller than those of *Ca. eucalypti* (av. $72 \times 6 \mu m$) (Lombard *et al.* 2010a, Chen *et al.* 2011), which was considered to represent intraspecific variation (Supplementary Table S4).

pseudoecuadoriae Calonectria L. Lombard & Crous, Stud. Mycol. 85: 185. 2016.

In: Calonectria brassicae species complex.

Typus: CBS H-22768 holotype.

Ex-type culture: CBS 111402 = CMW 51179 = CPC 1639.

Type locality: Ecuador.

Type substrate: Soil.

Barcodes: *cmdA* = KX784589; *rpb2* = KY653432; *tef1* = KX784723; *tub2* = KX784652 (alternative markers: ITS = KY653273; LSU = KY653329).

Notes: Calonectria pseudoecuadoriae forms a single lineage closely related to *Ca. robigophila*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. pseudoecuadoriae* [(av. $38 \times 3.5\mu$ m); Lombard et al. 2016] are smaller than those of *Ca. robigophila* [(av. $50 \times 4 \mu$ m); Alfenas et al. 2015] (Supplementary Table S4).

pseudohodgesii Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 118. 2015.

(see Calonectria brasiliensis)

In: Calonectria cylindrospora species complex.

Typus: CBS H-21368 holotype.

Ex-type culture: CBS 134818 = LPF262.

Type locality: Brazil, Minas Gerais state, Viçosa.

Type substrate: Leaf of rooted Azadirachta indica cutting.

Barcodes: cmdA = KM395991; his3 = KM396079; tef1 = KM395817; tub2 = KM395905.

Notes: Calonectria pseudohodgesii was treated as a synonym of *Ca. brasiliensis* in this study. In comparisons of DNA sequences for four available gene regions, the only difference between the ex-type isolate of *Ca. pseudohodgesii* (CBS 134818) and the ex-type isolate of *Ca. brasiliensis* (CBS 230.51) was in the *cmdA*, *his3, tef1* and *tub2* sequences, where there were three base differences in the *cmdA*, two base differences in the *his3*, two base differences in the *tef1* and one base difference in the *tub2* sequences. Both species produce ellipsoidal to obpyriform vesicles of similar dimensions (*Ca. pseudohodgesii*: 4–10 µm; *Ca. brasiliensis*: 7–11 µm) and 1-septate macroconidia, the macroconidia of *Ca. pseudohodgesii* (av. 54 × 4.5 µm) are larger than those of *Ca. brasiliensis* (av. 38 × 3.5 µm) (Batista 1951, Lombard *et al.* 2010b, Alfenas *et al.* 2015), which was

considered to represent intraspecific variation (Supplementary Table S4).

pseudokyotensis Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 178. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21774 holotype.

Ex-type culture: CBS 137332 = CMW 31439 = CERC 1774. *Type locality*: **China**, GuangXi Province.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: *act* = MT334951; *cmdA* = MT335178; *his3* = MT335417; *tef1* = MT412708 (alternative markers: ITS = MT359638; LSU = MT359398).

Notes: Calonectria pseudokyotensis was treated as a synonym of *Ca. aconidialis* in this study. In comparisons of DNA sequences for six available gene regions (*rpb2* and *tub2* are not available for *Ca. pseudokyotensis*, *tub2* not available for *Ca. aconidialis*), all six gene sequences for the ex-type isolate of *Ca. pseudokyotensis* (CMW 31439) were 100 % identical to the extype isolate of *Ca. aconidialis* (CMW 35174). No sexual morph was observed for *Ca. pseudokyotensis* (Lombard *et al.* 2015a, Supplementary Table S4).

pseudometrosideri Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 118. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS 134845 (preserved as metabolically inactive culture, Alfenas *et al.* 2015).

Ex-type culture: CBS 134845 = LPF210.

Type locality: Brazil, Alagoas state, Maceió.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: cmdA = KM395995; his3 = KM396083; tef1 = KM395821; tub2 = KM395909.

Notes: Calonectria pseudometrosideri is closely related to *Ca. putriramosa*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. pseudometrosideri* (av. 51 × 4.5 µm) are longer than those of *Ca. putriramosa* (av. 43 × 5 µm), while the vesicles of *Ca. pseudometrosideri* (5–7 µm) are narrower than those of *Ca. putriramosa* (7–10 µm) (Alfenas *et al.* 2015, Lombard *et al.* 2016) (Supplementary Table S4).

pseudomexicana Calonectria L. Lombard *et al.*, Persoonia 27: 76. 2011.

Synonym: Calonectria tunisiana L. Lombard et al., Persoonia 27: 77. 2011.

In: Calonectria mexicana species complex.

Typus: CBS H-20685 holotype.

Ex-type culture: CBS 130354 = CMW 51313 = DISTEF-TCROU1.

Type locality: Tunisia, Carthage, Tunis.

Type substrate: Callistemon sp.

Barcodes: act = MT335110; cmdA = MT335343; his3 = MT335583; rpb2 = MT412636; tef1 = MT412874; tub2 = MT413086 (alternative markers: ITS = MT359804; LSU = MT359564).

Notes: Calonectria pseudomexicana is closely related to Ca. pseudouxmalensis and Ca. uxmalensis, and can be distinguished from these two species by the dimensions of its

macroconidia and vesicles. The macroconidia of *Ca. pseudo-mexicana* (av. 45 × 5 μ m) are larger than those of *Ca. pseudouxmalensis* (av. 29 × 3 μ m) and *Ca. uxmalensis* (av. 30 × 3 μ m), and vesicles of *Ca. pseudomexicana* (9–14 μ m) are wider than those of *Ca. pseudouxmalensis* (5–9 μ m) and *Ca. uxmalensis* (5–8 μ m) (Lombard *et al.* 2011, 2016) (Supplementary Table S4).

pseudonaviculata Calonectria (Crous *et al.*) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010.

Basionym: Cylindrocladium pseudonaviculatum Crous et al., Sydowia 54: 26. 2002.

Synonym: Cylindrocladium buxicola Henricot, Mycologia 94: 993. 2002.

In: Calonectria naviculata species complex.

Typus: PREM 57313 holotype.

Ex-type culture: CBS 116251 = CMW 51235 = CPC 3399 = Lynfield 824.

Type locality: New Zealand.

Type substrate: Buxus sempervirens.

Barcodes: cmdA = MT335345; his3 = MT335585; rpb2 = MT412638; tef1 = MT412876; tub2 = MT413088 (alternative markers: ITS = MT359806; LSU = MT359566).

Notes: Calonectria pseudonaviculata is closely related to Ca. henricotiae, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of Ca. pseudonaviculata [(av. $60 \times 5 \mu m$); Crous *et al.* 2002] are longer than those of Ca. henricotiae [(av. $56 \times 5.6 \mu m$); Gehesquiere *et al.* 2015]. Calonectria pseudonaviculata is heterothallic (Li *et al.* 2020) (Supplementary Table S4).

pseudopteridis Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 118. 2015.

Basionym: Cylindrocladium macrosporum Sherb., Phytopathology 18: 219. 1928.

In: Calonectria pteridis species complex.

Typus: BPI 414558 holotype.

Ex-type culture: CBS 163.28 = CMW 51159 = IMI 299579. *Type locality*: **USA**.

Type substrate: Washingtonia robusta.

Barcodes: *act* = MT335112; *cmdA* = MT335347; *his3* = MT335587; *rpb2* = MT412640; *tef1* = MT412878; (alternative markers: ITS = MT359808; LSU = MT359568).

Notes: Calonectria pseudopteridis is closely related to *Ca. pteridis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. pseudopteridis* [(av. 87.5 × 5.7 μ m) are longer than those of *Ca. pteridis* [(av. 82 × 5.5 μ m); Sobers 1968, Crous *et al.* 1993c, Alfenas *et al.* 2015] (Supplementary Table S4).

pseudoreteaudii Calonectria L. Lombard *et al.*, Persoonia 24: 8. 2010.

Synonyms: Calonectria pentaseptata L. Lombard et al., Persoonia 29: 157. 2012.

Calonectria microconidialis L. Lombard et al., Stud. Mycol. 80: 175. 2015.

In: Calonectria reteaudii species complex.

Typus: PREM 60290 holotype. *Ex-type culture*: CBS 123694 = CMW 25310. *Type locality*: **China**, GuangDong. Type substrate: Eucalyptus urophylla × E. grandis hybrid cutting. Barcodes: act = MT335119; cmdA = MT335354; his3 = MT335594; rpb2 = MT412647; tef1 = MT412885; tub2 = MT413096 (alternative markers: ITS = MT359815; LSU = MT359575).

Notes: Calonectria pseudoreteaudii is phylogenetically closely related to *Ca. acaciicola* and *Ca. reteaudii*. The sequences of *his3*, ITS, *rpb2*, *tef1* and *tub2* gene regions can differentiate *Ca. pseudoreteaudii* from these two species. The macroconidia of *Ca. pseudoreteaudii* [(av. 104 × 8 µm); Lombard *et al.* 2010c] are larger than those of *Ca. acaciicola* [(av. 94 × 7 µm); Pham *et al.* 2019] and *Ca. reteaudii* [(av. 84 × 6.5 µm); Kang *et al.* 2001a]. *Calonectria pseudoreteaudii* is heterothallic (Li *et al.* 2020) (Supplementary Table S4).

pseudoscoparia Calonectria L. Lombard et al., Stud. Mycol. 66: 53. 2010.

(see Calonectria candelabrum)

In: Calonectria candelabrum species complex.

Typus: PREM 60305 holotype.

Ex-type culture: CBS 125257 = CMW 15218.

Type locality: **Ecuador**, Pichincha Province, Las Golondrinas. *Type substrate*: *Eucalyptus grandis* cutting.

Barcodes: act = MT334979; cmdA = MT335209; his3 = MT335449; rpb2 = MT412513; tef1 = MT412740; tub2 = MT412961 (alternative markers: ITS = MT359670; LSU = MT359430).

Notes: Calonectria pseudoscoparia was treated as a synonym of *Ca. candelabrum* in this study. In comparisons of DNA sequences for eight gene regions, only one base difference in the *tub2* gene sequences was found between the ex-type isolate of *Ca. pseudoscoparia* (CMW 15218) and the isolates of *Ca. candelabrum* (CMW 31000, and CMW 31001). Both species produce ellipsoidal to obpyriform vesicles with overlapping dimensions (*Ca. pseudoscoparia*: 6–10 µm; *Ca. candelabrum*: 5–8 µm) and 1-septate macroconidia. The macroconidia of *Ca. pseudoscoparia* (av. 48 × 4 µm) are smaller than those of *Ca. candelabrum* (av. 60 × 4.5 µm) (Viégas 1946, Crous 2002, Lombard *et al.* 2010a, 2015b), which was considered to represent intraspecific variation (Supplementary Table S4).

pseudospathiphylli Calonectria J.C. Kang *et al.*, Syst. Appl. Microbiol. 24: 215. 2001.

Synonym: Cylindrocladium pseudospathiphylli J.C. Kang et al., Syst. Appl. Microbiol. 24: 215. 2001.

In: Calonectria spathiphylli species complex.

Typus: PREM 57196 (holotype of *Ca. pseudospathiphylli*; Kang *et al.* 2001b), PREM 57197 (holotype of *Cy. pseudospathiphylli*; Kang *et al.* 2001b).

Ex-type culture: CBS 109165 = CMW 30976 = CPC 1623 (Alfenas *et al.* 2015, Lombard *et al.* 2016).

Type locality: **Ecuador**. *Type substrate*: Soil.

Barcodes: act = GQ280493; cmdA = GQ267412; his3 = AF348241; rpb2 = KY653435; tef1 = FJ918562; tub2 = FJ918513 (alternative markers: ITS = GQ280615; LSU = GQ280737).

Notes: Calonectria pseudospathiphylli forms a single lineage closely related to Ca. densa, Ca. humicola and Ca. spathiphylli. No lateral stipe extension was observed in Ca. pseudospathiphylli, whereas these are common in Ca. densa. Calonectria

pseudospathiphylli produce stipe extensions (up to 250 µm) longer than those of *Ca. humicola* (up to 157 µm). The macroconidia of *Ca. pseudospathiphylli* (av. 52 × 4 µm) obviously smaller than those of *Ca. spathiphylli* (av. 70 × 6µm) (EI-Gholl *et al.* 1992, Kang *et al.* 2001b, Lombard *et al.* 2010a). *Calonectria pseudospathiphylli* is characterised as being homothallic, while *Ca. spathiphylli* is heterothallic (EI-Gholl *et al.* 1992, Kang *et al.* 2001b) (Supplementary Table S4).

pseudospathulata Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 118. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS H-21356 holotype.

Ex-type culture: CBS 134841 = LPF072.

Type locality: Brazil, Minas Gerais state, Araponga.

Type substrate: Soil in tropical rainforest.

Barcodes: *cmdA* = KM396070; *his3* = KM396153; *tef1* = KM395896; *tub2* = KM395983.

Notes: Calonectria pseudospathulata is closely related to *Ca. fragariae*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. pseudospathulata* [(av. 43 × 4 μ m); Alfenas *et al.* 2015] are longer than those of *Ca. fragariae* [(av. 39 × 4 μ m); Lopes *et al.* 2017] (Supplementary Table S4).

pseudoturangicola Calonectria J.Q. Li et al., IMA Fungus 8: 279. 2017.

(see Calonectria kyotensis)

In: Calonectria kyotensis species complex.

Typus: PREM 61948 holotype.

Ex-type culture: CBS 142890 = CMW 47496 = CERC 7126. *Type locality*: **China**, FuJian Province, FuZhou City. *Type substrate*: Soil. *Barcodes*: *act* = MT335121; *cmdA* = MT335356;

his3 = MT335596; rpb2 = MT412649; tef1 = MT412887; tub2 = MT413098 (alternative markers: ITS = MT359817; LSU = MT359577).

Notes: Calonectria pseudoturangicola was treated as a synonym of *Ca. kyotensis* in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca. pseudoturangicola* (CERC 7126) and the ex-type isolate of *Ca. kyotensis* (CBS 114525) was in the *cmdA*, ITS, LSU and *tub2* sequences, where there was one base difference in the *cmdA*, one base differences in the ITS, one base difference in the LSU and three base differences in the *tub2* sequences. Both species are homothallic and produce sphaeropedunculate (globose) vesicles and 1-septate macroconidia of similar dimensions (*Ca. pseudoturangicola*: av. 40 × 3.5 µm, *Ca. kyotensis*: av. 41 × 4 µm) (Terashita 1968, Li *et al.* 2017, 2020; Supplementary Table S4).

pseudovata Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 120. 2015.

In: Calonectria pteridis species complex.

Typus: CBS H-21370 holotype. *Ex-type culture*: CBS 134674 = LPF267. *Type locality*: **Brazil**, Pará state, Santana. *Type substrate*: Soil in *Eucalyptus* plantation. *Barcodes*: *cmdA* = KM396032; *his3* = KM396115; *tef1* = KM395858; *tub2* = KM395945. Notes: Calonectria pseudovata is phylogenetically closely related to *Ca. ovata* and *Ca. terricola*. Morphologically, *Ca. pseudovata* shows some overlap with *Ca. ovata*, while the sequences of *cmdA*, *his3*, *tef1* and *tub2* gene regions can differentiate *Ca. pseudovata* from *Ca. ovata*. The macroconidia of *Ca. pseudovata* [(av. 69 × 5 µm); Alfenas *et al.* 2015] are larger than those of *Ca. terricola* [(av. 46 × 4.5 µm); Lombard *et al.* 2016]. Furthermore, the ability of *Ca. pseudovata* and *Ca. ovata* to produce miconidiophores and microconidia in culture distinguishes it from *Ca. terricola*.

pseudouxmalensis Calonectria L. Lombard & Crous, Stud. Mycol. 85: 187. 2016.

In: Calonectria mexicana species complex.

Typus: CBS H-22769 holotype.

Ex-type culture: CBS 110924 = CMW 51166 = CPC 942.

Type locality: Mexico.

Type substrate: Soil.

Barcodes: act = MT335123; cmdA = MT335358; his3 = MT335598; rpb2 = MT412651; tef1 = MT412889; tub2 = MT413100 (alternative markers: ITS = MT359819; LSU = MT359579).

Notes: Calonectria pseudouxmalensis is closely related to Ca. uxmalensis, the sequences of cmdA, his3, tef1 and tub2 gene regions can distinguish Ca. pseudouxmalensis from Ca. uxmalensis. Morphologically, these two species are similar to each other. However, no lateral stipe extensions were observed in Ca. pseudouxmalensis, a feature that has been reported in Ca. uxmalensis (Lombard *et al.* 2016) (Supplementary Table S4).

pseudoyunnanensis Calonectria J.Q. Li et al., IMA Fungus 8: 279. 2017.

(see Calonectria yunnanensis)

In: Calonectria kyotensis species complex.

Typus: PREM 61950 holotype.

Ex-type culture: CBS 142892 = CMW 47655 = CERC 5376.

Type locality: **China**, YunNan, PuEr Region.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: act = MT335126; cmdA = MT335361; his3 = MT335601; rpb2 = MT412654; tef1 = MT412892; tub2 = MT413103 (alternative markers: ITS = MT359822; LSU = MT359582).

Notes: Calonectria pseudoyunnanensis was treated as a synonym of *Ca. yunnanensis* in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca. pseudoyunnanensis* (CERC 5376) and the ex-type isolate of *Ca. yunnanensis* (CERC 5339) was in the *his3* and *tub2* sequences, where there were three base differences in the *his3* and four base differences in the *tub2* sequences. Both species are homothallic and produce sphaeropedunculate vesicles and 1-septate macroconidia (Li *et al.* 2017, 2020), and share vesicles of similar dimensions (*Ca. pseudoyunnanensis*: $2.5-5 \mu m$; *Ca. yunnanensis*: $2-4.5 \mu m$). The macroconidia of *Ca. pseudoyunnanensis* [(av. $47.5 \times 5 \mu m$); Li *et al.* 2017] are larger than those of *Ca. yunnanensis* [(av. $43 \times 4.5 \mu m$); Li *et al.* 2017] which was considered to represent intraspecific variation (Supplementary Table S4).

pteridis Calonectria Crous et al., Mycotaxon 46: 228. 1993.

Synonym: Cylindrocladium pteridis F.A. Wolf, J. Elisha Mitchell Sci. Soc. 42: 59. 1926.

In: Calonectria pteridis species complex.

Typus: PREM 51033 (holotype of *Ca. pteridis*; Crous *et al.* 1993c), BPI 414564 (holotype of *Cy. pteridis*; Wolf 1926). *Ex-type culture*: CBS 111793 = CMW 16736 = CPC

2372 = ATCC 34395 (Crous et al. 2006).

Type locality: USA.

Type substrate: Arachniodes adiantiformis.

Barcodes: act = GQ280494; cmdA = GQ267413; his3 = DQ190679; rpb2 = KY653438; tef1 = FJ918563; tub2 = DQ190578 (alternative markers: ITS = GQ280616; LSU = GQ280738).

Notes: Calonectria pteridis is closely related to *Ca. pseudopteridis*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. pteridis* [(av. 82 × 5.5 μ m); Crous *et al.* 1993c] are shorter than those of *Ca. pseudopteridis* [(av. 87.5 × 5.7 μ m); Sobers 1968, Alfenas *et al.* 2015]. (Supplementary Table S4).

putriramosa Calonectria L. Lombard & Crous, Stud. Mycol. 85: 188. 2016.

In: Calonectria candelabrum species complex.

Typus: CBS H-22770 holotype.

Ex-type culture: CBS 111449 = CMW 51181 = CPC 1951. *Type locality*: **Brazil**.

Type substrate: Eucalyptus cuttings.

Barcodes: act = MT335129; cmdA = MT335364; his3 = MT335604; rpb2 = MT412657; tef1 = MT412895; tub2 = MT413105 (alternative markers: ITS = MT359825; LSU = MT359585).

Notes: Calonectria putriramosa is closely related to *Ca. pseu*dometrosideri, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. putriramosa* (av. 43 × 5 µm) are shorter than those of *Ca. pseudometrosideri* (av. 51 × 4.5 µm), while the vesicles of *Ca. putriramosa* (7–10 µm) are wider than those of *Ca. pseudometrosideri* (5–7 µm) (Alfenas *et al.* 2015, Lombard *et al.* 2016) (Supplementary Table S4).

queenslandica Calonectria L. Lombard *et al.*, Persoonia 24: 8. 2010.

Synonym: Calonectria terrae-reginae L. Lombard et al., Persoonia 24: 8. 2010.

In: Calonectria reteaudii species complex.

Typus: PREM 60243 holotype.

Ex-type culture: CBS 112146 = CMW 30604 = CPC 3213.

Type locality: Australia, Queensland, Lannercost.

Type substrate: Eucalyptus urophylla.

Barcodes: act = MT335132; cmdA = MT335367; his3 = MT335607; rpb2 = MT412660; tef1 = MT412898; tub2 = MT413108 (alternative markers: ITS = MT359828; LSU = MT359588).

Notes: Calonectria queenslandica is phylogenetically closely related to *Ca. lombardiana* (Fig. 1). Sequences of ITS, *tef1* and *tub2* gene regions can differentiate *Ca. queenslandica* from *Ca. lombardiana*. In addition, the macroconidia of *Ca. queenslandica*

[(av. $69 \times 6 \mu m$); Lombard *et al.* 2010c] are shorter than those of *Ca. lombardiana* (av. $80 \times 6 \mu m$) (Supplementary Table S4).

quinqueramosa Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 123. 2015.

In: Calonectria brassicae species complex.

Typus: CBSH-21355 holotype.

Ex-type culture: CBS 134654 = LPF065.

Type locality: Brazil, Pará state, Monte Dourado.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: *cmdA* = KM396029; *his3* = KM396112; *tef1* = KM395855; *tub2* = KM395942.

Notes: Calonectria quinqueramosa is closely related to *Ca.* gracilis, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca.* quinqueramosa (av. 59 × 5 µm) are larger than those of *Ca.* gracilis (av. 56 × 4.5 µm), while the vesicles of *Ca.* quinqueramosa [(3–5 µm); Alfenas *et al.* 2015] are narrower than those of *Ca.* gracilis [(2–11 µm); Crous *et al.* 1993c]. Calonectria quinqueramosa is homothallic (Alfenas *et al.* 2015) (Supplementary Table S4).

reteaudii Calonectria (Bugnic.) C. Booth, Mycol. Pap. 104: 41. 1966.

Basionym: Neonectria reteaudii Bugnic., Encycl. Mycol. 11: 189. 1939.

Synonyms: Cylindrocarpon reteaudii Bugnic., Encycl. Mycol. 11: 189. 1939.

Cylindrocladium reteaudii (Bugnic.) Boesew., Trans. Brit. Mycol. Soc. 78: 553. 1982.

Cylindrocladium quinqueseptatum Boedijn & Reitsma, Reinwardtia 1: 59. 1950.

Calonectria baviensis N.Q. Pham et al., Mycologia 111: 90. 2019.

In: Calonectria reteaudii species complex.

Typus: PREM 57211 (neotype of *Ca. reteaudii*; Crous 2002), PREM 57212 (neotype of *Cy. reteaudii*; Crous 2002).

Ex-type culture: CBS 112144 = CMW 30984 = CPC 3201 (Crous 2002, Crous *et al.* 2006).

Type locality: Vietnam, Binh Phuoc, Chon Thanh.

Type substrate: Eucalyptus camaldulensis.

Barcodes: act = MT335135; cmdA = MT335370; his3 = MT335610; rpb2 = MT412663; tef1 = MT412901; tub2 = MT413111 (alternative markers: ITS = MT359831; LSU = MT359591).

Notes: Calonectria reteaudii is phylogenetically closely related to *Ca. acaciicola* and *Ca. pseudoreteaudii*. The sequences of the *his3, rpb2, tef1* and *tub2* gene regions can differentiate *Ca. reteaudii* from these two species. The macroconidia of *Ca. reteaudii* [(av. 84 × 6.5 µm); Kang *et al.* 2001a] are smaller than those of *Ca. acaciicola* [(av. 94 × 7 µm); Pham *et al.* 2019] and *Ca. pseudoreteaudii* [(av. 104 × 8 µm); Lombard *et al.* 2010c]. *Calonectria reteaudii* is heterothallic (Kang *et al.* 2001a) (Supplementary Table S4).

robigophila Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 123. 2015.

In: Calonectria brassicae species complex.

Typus: CBS H-21361 holotype. *Ex-type culture*: CBS 134652 = LPF192. *Type locality*: **Brazil**, Maranhao state, Açailandia. *Type substrate: Eucalyptus* sp.

Barcodes: *cmdA* = KM396024; *his3* = KM396107; *tef1* = KM395850; *tub2* = KM395937.

Notes: Calonectria robigophila forms a single lineage closely related to *Ca. duoramosa*, and it produce six tiers of branches in its conidiogenous apparatus in comparison to the two in *Ca. duoramosa*. The macroconidia of *Ca. robigophila* [(av. 50 × 4 µm); Alfenas *et al.* 2015] are longer than those of *Ca. duoramosa* [(av. 46 × 4 µm); Alfenas *et al.* 2015] (Supplementary Table S4).

rumohrae Calonectria El-Gholl & Alfenas, Mycotaxon 64: 478. 1997.

Synonym: Cylindrocladium rumohrae El-Gholl & Alfenas, Mycotaxon 64: 478. 1997.

In: Calonectria gracilipes species complex.

Typus: FLAS F56116a & b (holotypes of *Ca. rumohrae* and *Cy. rumohrae*; El-Gholl *et al.* 1997).

Ex-type culture: CBS 111431 = CMW 23697 = CPC 1716 = UFV 218 (Crous 2002, Crous *et al.* 2006).

Type locality: Panama, Volkan.

Type substrate: Rumohra adiantiformis.

Barcodes: act = MT335137; cmdA = MT335372; his3 = MT335612; tef1 = MT412903; tub2 = MT413113 (alternative markers: ITS = MT359833; LSU = MT359593).

Notes: Calonectria rumohrae is phylogenetically closely related to *Ca. hurae*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca. rumohrae* [(av. 110 × 9 μ m); EI-Gholl *et al.* 1997] are shorter but wider than those of *Ca. hurae* [(av. 120 × 7.5 μ m); Crous 2002]. *Calonectria rumohrae* is homothallic (EI-Gholl *et al.* 1997) (Supplementary Table S4).

seminaria Calonectria L. Lombard et al., Stud. Mycol. 80: 179. 2015.

(see Calonectria pauciramosa)

In: Calonectria candelabrum species complex.

Typus: CBS H-21475 holotype.

Ex-type culture: CBS 136632 = CMW 31450 = CERC 1785.

Type locality: **China**, GuangDong Province, ZhanJiang.

Type substrate: Eucalyptus urophylla × *E. grandis* clone seedling leaf.

Barcodes: act = MT335102; cmdA = MT335334; his3 = MT335574; rpb2 = MT412627; tef1 = MT412865; tub2 = MT413077 (alternative markers: ITS = MT359795; LSU = MT359555).

Notes: *Calonectria seminaria* was treated as a synonym of *Ca. pauciramosa* in this study. In comparisons of DNA sequences for eight gene regions, all the sequences of the isolates of *Ca. seminaria* (ex-type CMW 31450, and CMW 31489) were 100 % identical to those of the isolates of *Ca. pauciramosa* (ex-type CBS 138824, CMW 2151, CMW 7592, CMW 9151, CMW 30823, and CMW 30875). Both species produce obpyriform to ellipsoidal vesicles and 1-septate macroconidia, and shared the similar vesicles (*Ca. seminaria*: 6–11 µm; *Ca. pauciramosa*: 5–11 µm) and macroconidial dimensions (*Ca. seminaria*: av. 47 × 5 µm; *Ca. pauciramosa*: av. 50 × 4.5 µm) (Crous 2002, Lombard *et al.* 2015a) (Supplementary Table S4).

silvicola Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 123. 2015.

In: Calonectria candelabrum species complex.

Typus: CBS H-21357 holotype. Ex-type culture: CBS 135237 = LPF081. Type locality: **Brazil**, Bahia state, Mucuri. Type substrate: Soil in tropical rainforest. Barcodes: cmdA = KM396065; his3 = KM396148; tef1 = KM395891; tub2 = KM395978.

Notes: Calonectria silvicola is closely related to Ca. nemoricola, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of Ca. silvicola [(av. 41 × 4.5 μ m); Alfenas et al. 2015] are shorter than those of Ca. nemoricola [(av. 45 × 4 μ m); Alfenas et al. 2015] (Supplementary Table S4).

spathiphylli Calonectria El-Gholl *et al.*, Mycotaxon 45: 296. 1992.

Synonym: Cylindrocladium spathiphylli Schoult., et al., Mycotaxon 16: 268. 1982.

In: Calonectria spathiphylli species complex.

Typus: FLAS 55655 [holotype of *Ca. spathiphylli*; El-Gholl *et al.* 1992), ATCC 44730 (holotype of *Cy. spathiphylli*; Schoulties *et al.* 1982, Crous 2002).

Ex-type culture: CBS 114540 = CMW 16742 = ATCC 44730 = STE-U 2185 (Crous 2002, Alfenas *et al.* 2015).

Type locality: USA, Florida.

Type substrate: Spathiphyllum sp.

Barcodes: *cmdA* = MT335374; *his3* = MT335614; *rpb2* = MT412666; *tef1* = MT412905; *tub2* = MT413115 (alternative markers: ITS = MT359835; LSU = MT359595).

Notes: Calonectria spathiphylli is closely related to *Ca. densa* and *Ca. humicola*, and can be distinguished from these two species by the dimensions of its macroconidia. Macroconidia of *Ca. spathiphylli* [(av. 70 × 6 µm); El-Gholl *et al.* 1992] are longer than those of *Ca. densa* [(av. 54 × 6 µm); Lombard *et al.* 2010a] and larger than those of *Ca. humicola* [(av. 51 × 5 µm); Lombard *et al.* 2010a]. *Calonectria spathiphylli* is characterised as being heterothallic (El-Gholl *et al.* 1992) (Supplementary Table S4).

spathulata Calonectria El-Gholl *et al.*, Mycotaxon 26: 159. 1986 *emend*. Crous, Mycoscience 42: 55. 2001.

Synonyms: Cylindrocladium spathulatum El-Gholl et al., Mycotaxon 26: 159. 1986 emend. Crous, Mycoscience 42: 55. 2001. *Calonectria stipitata* L. Lombard & Crous, Stud. Mycol. 85: 188. 2016.

In: Calonectria candelabrum species complex.

Typus: FLAS F54257a (holotype of *Ca. spathulata*; Crous & Kang 2001), FLAS F54257b (holotype of *Cy. spathulatum*; Crous & Kang 2001).

Ex-type culture: CBS 555.92 = CMW 16744 (Lombard *et al.* 2010a).

Type locality: Brazil.

Type substrate: Eucalyptus viminalis.

Barcodes: act = MT335139; cmdA = MT335376; his3 = MT335616; rpb2 = MT412668; tef1 = MT412907; tub2 = MT413117 (alternative markers: ITS = MT359837; LSU = MT359597).

Notes: Calonectria spathulata is closely related to Ca. colombiana, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of Ca. spathulata (av. 80 × 6 μ m) are larger than those of Ca. colombiana (av. $37 \times 3 \mu m$). Furthermore, *Ca. spathulata* can produce both microconidiophores and microconidia, a feature not observed for *Ca. colombiana* (Crous & Kang 2001, Lombard *et al.* 2010b). *Calonectria spathulata* is homothallic (Crous & Kang 2001) (Supplementary Table S4). This species is commonly associated with leaf spots and cutting rot of *Eucalyptus* cultivated in plantations and nurseries, and has a wide geographic distribution in South America (Argentina, Brazil, Colombia and Ecuador) (El-Gholl *et al.* 1986, Crous & Kang 2001, Rodas *et al.* 2005).

sphaeropedunculata Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 180. 2015.

(see Calonectria aconidialis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21486 holotype.

Ex-type culture: CBS 136081 = CMW 31390 = CERC 1725. *Type locality*: **China**, GuangXi Province.

Type substrate: Soil in *Eucalyptus* plantation.

Barcodes: act = MT334952; cmdA = MT335179; his3 = MT335418; rpb2 = MT412485; tef1 = MT412709 (alternative markers: ITS = MT359639; LSU = MT359399).

Notes: Calonectria sphaeropedunculata was treated as a synonym of *Ca. aconidialis* in this study. In comparisons of DNA sequences for seven available gene regions, a single base difference in the *cmdA* and two base differences in the LSU sequences occurred between the ex-type isolate of *Ca. sphaeropedunculata* (CMW 31390) and the ex-type isolate of *Ca. aconidialis* (CMW 35174). Both species are homothallic and produce orange to orange-brown perithecia, 8-spored asci and 1-septate ascospores, and share the similar ascospores dimensions (*Ca. sphaeropedunculata*: av. 37 × 6 µm; *Ca. aconidialis*: av. 36 × 6 µm) (Lombard *et al.* 2015a, Li *et al.* 2020; Supplementary Table S4).

stipitata Calonectria L. Lombard & Crous, Stud. Mycol. 85: 188. 2016.

(see Calonectria spathulata)

In: Calonectria candelabrum species complex.

Typus: CBS H-22771 holotype.

Ex-type culture: CBS 112513 = CMW 51197 = CPC 3851. *Type locality*: **Colombia**.

Type substrate: Eucalyptus sp.

Barcodes: *act* = MT335140; *cmdA* = MT335377; *his3* = MT335617; *rpb2* = MT412669; *tef1* = MT412908; *tub2* = MT413118 (alternative markers: ITS = MT359838; LSU = MT359598).

Notes: Calonectria stipitata was treated as a synonym of *Ca.* spathulata in this study. In comparisons of DNA sequences for eight gene regions, the ex-type isolate of *Ca. stipitata* (CBS 112513) and the isolate of *Ca. spathulata* (CMW 16744) only had one base difference in the *his3* gene sequence. Both species produce ellipsoidal to obpyriform vesicles of similar dimensions (*Ca. stipitata*: 7–11 µm; *Ca. spathulata*: 6–10 µm). The macroconidia of *Ca. stipitata* (av. 32 × 4 µm) are smaller than those of *Ca. spathulata* (av. 80 × 6 µm) (EI-Gholl *et al.* 1986, Crous & Kang 2001, Lombard *et al.* 2016), which was considered to represent intraspecific variation.

sulawesiensis Calonectria L. Lombard *et al.*, Stud. Mycol. 66: 53.2010.

(see Calonectria hawksworthii)

In: Calonectria cylindrospora species complex.

Typus: PREM 60300 holotype.

Ex-type culture: CBS 125277 = CMW 14878.

Type locality: Indonesia, Sulawesi.

Type substrate: Leaf of Eucalyptus sp. Barcodes: act = MT335141; cmdA = MT335378; his3 = MT335618; rpb2 = MT412670; tef1 = MT412909; tub2 = MT413119 (alternative markers: ITS = MT359839; LSU = MT359599).

Notes: Calonectria sulawesiensis was treated as a synonym of *Ca. hawksworthii* in this study. In comparisons of DNA sequences for eight gene regions, the only difference between the ex-type isolate of *Ca. sulawesiensis* (CMW 14878) and the ex-type isolate of *Ca. hawksworthii* (CBS 111870) was in the *act*, *tef1* and *tub2* sequences, where there were four base differences in the *act*, one base difference in the *tef1* and four base differences in the *act*, one base differences. Both species produce ellipsoidal vesicles with overlapping dimensions (*Ca. sulawesiensis*: $5-7 \mu m$; *Ca. hawksworthii*: $6-9 \mu m$) and 1-septate macroconidia. The macroconidia of *Ca. sulawesiensis* (av. $48 \times 4 \mu m$) are shorter than those of *Ca. hawksworthii* (av. $56 \times 4 \mu m$) (Crous 2002, Lombard *et al.* 2010a), which was considered to represent intraspecific variation (Supplementary Table S4).

sumatrensis Calonectria (Crous) L. Lombard *et al.*, Stud. Mycol. 66: 56. 2010

Basionym: Cylindrocladium sumatrense Crous, Stud. Mycol. 50: 426. 2004.

Synonym: Calonectria indonesiana L. Lombard & Crous, Stud. Mycol. 85: 179. 2016.

In: Calonectria kyotensis species complex.

Typus: CBS 9888 holotype.

Ex-type culture: CBS 112829 = CMW 23698 = CPC 4518.

Type locality: Indonesia, Northern Sumatra.

Type substrate: Soil.

Barcodes: act = MT335145; *cmdA* = MT335382; *his3* = MT335622; *rpb2* = MT412674; *tef1* = MT412913 (alternative markers: ITS = MT359843; LSU = MT359603).

Notes: Calonectria sumatrensis is closely related to *Ca. brassicicola*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. sumatrensis* [(av. 58 × 5 µm); Crous *et al.* 2004] are longer than those of *Ca. brassicicola* [(av. 42 × 5 µm); Lombard *et al.* 2016], and the vesicles of *Ca. sumatrensis* (8–13 µm) are wider than those of *Ca. brassicicola* (3–5 µm) (Supplementary Table S4).

syzygiicola Calonectria L. Lombard & Crous, Stud. Mycol. 85: 190. 2016.

In: Calonectria kyotensis species complex.

Typus: CBS H-22772 holotype. *Ex-type culture*: CBS 112831 = CMW 51204 = CPC 4511. *Type locality*: **Indonesia**, Sumatra.

Type substrate: Soil under Syzygium aromaticum.

Barcodes: ITS = KX784736; LSU = KX784663.

Notes: Calonectria syzygiicola is closely related to Ca. asiatica, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of Ca. syzy-giicola [(av. 45 × 5 μ m); Lombard et al. 2016] are shorter than

those of *Ca. asiatica* [(av. 53 × 5 μ m); Crous *et al.* 2004], and the vesicles of *Ca. syzygiicola* (3–6 μ m) are narrower than those of *Ca. asiatica* (12–17 μ m) (Crous *et al.* 2004, Lombard *et al.* 2016) (Supplementary Table S4).

telluricola Calonectria R.F. Alfenas *et al.*, Stud. Mycol. 80: 125. 2015.

(see Calonectria paraensis)

In: Calonectria brassicae species complex.

Typus: CBS H-21365 holotype.

Ex-type culture: CBS 134664 = LPF217. *Type locality*: **Brazil**, Bahia state, Mucuri. *Type substrate*: Soil in tropical rainforest.

Barcodes: *cmdA* = KM396017; *his3* = KM396100; *tef1* = KM395843; *tub2* = KM395930.

Notes: Calonectria telluricola was treated as a synonym of *Ca.* paraensis in this study. In comparisons of DNA sequences for the four available gene regions, the only difference between the extype isolate of *Ca. telluricola* (CBS 134664) and the ex-type isolate of *Ca. paraensis* (CBS 134669) was in the *cmdA*, *his3*, *tef1* and *tub2* sequences, where there was one base difference in the *cmdA*, two base differences in the *his3*, one base difference in the *tef1* and two base differences in the *tub2* sequences. Both species produce clavate vesicles and 1-septate macroconidia, and shared the similar vesicle (*Ca. telluricola*: $3-6 \mu m$; *Ca. paraensis*: $4-6 \mu m$) and macroconidial dimensions (*Ca. telluricola*: av. $41 \times 5 \mu m$; *Ca. paraensis*: av. $42 \times 5 \mu m$) (Alfenas *et al.* 2015) (Supplementary Table S4).

tereticornis Calonectria L. Lombard & Crous, Stud. Mycol. 85: 190. 2016.

(see Calonectria ovata)

In: Calonectria pteridis species complex.

Typus: CBS H-22773 holotype.

Ex-type culture: CBS 111301 = CMW 51176 = CPC 1429. *Type locality*: **Brazil**, Pará, Tucuruí.

Type substrate: Eucalyptus tereticornis.

Barcodes: *act* = MT335077; *cmdA* = MT335309; *his3* = MT335549; *tef1* = MT412840; *tub2* = MT413054 (alternative markers: ITS = MT359770; LSU = MT359530).

Notes: Calonectria tereticornis was treated as a synonym of *Ca.* ovata in this study. In comparisons of DNA sequences for seven available gene regions, the only differences between the ex-type isolate of *Ca. tereticornis* (CBS 111301) and the ex-type isolate of *Ca. ovata* (CMW 16724) was in the LSU and *tub2* sequences where there was one base difference in the LSU and one base difference in the *tub2* sequences. Both of the species produce ovoid vesicles of similar dimensions (*Ca. tereticornis*: 8–14 µm; *Ca. ovata*: 8–14 µm) and 1-septate macroconidia. The macroconidia of *Ca. tereticornis* [(av. 59 × 5 µm); Lombard *et al.* 2016] are shorter than those of *Ca. ovata* [(av. 70 × 5 µm); Victor *et al.* 1997], which was considered to represent intraspecific variation (Supplementary Table S4).

terrae-reginae Calonectria L. Lombard *et al.*, Persoonia 24: 8. 2010.

(see Calonectria queenslandica)

In: Calonectria reteaudii species complex.

Typus: PREM 60239 holotype.

Ex-type culture: CBS 112151 = CMW 30601 = CPC 3202 = DFRI00150.

Type locality: **Australia**, Queensland, Cardwell. *Type substrate: Eucalyptus urophylla.*

Barcodes: act = MT335134; cmdA = MT335369; his3 = MT335609; rpb2 = MT412662; tef1 = MT412900; tub2 = MT413110 (alternative markers: ITS = MT359830; LSU = MT359590).

Notes: Calonectria terrae-reginae was treated as a synonym of *Ca. queenslandica* in this study. In comparisons of DNA sequences for eight gene regions, only a single base difference in the *tub2* gene sequence was found between the ex-type isolate of *Ca. terrae-reginae* (CMW 30601) and the ex-type isolate of *Ca. queenslandica* (CMW 30604). Both species produce narrowly clavate vesicles of similar dimensions (*Ca. terrae-reginae*: $3-5 \mu m$; *Ca. queenslandica*: $3-4 \mu m$) and 4-6-septate macroconidia. The macroconidia of *Ca. terrae-reginae* (av. $76 \times 6 \mu m$) are longer than those of *Ca. queenslandica* (av. $69 \times 6 \mu m$) (Lombard *et al.* 2010c), which was considered to represent intraspecific variation (Supplementary Table S4).

terrestris Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 182. 2015.

(see Calonectria cerciana)

In: Calonectria cylindrospora species complex.

Typus: CBS H-21478 holotype.

Ex-type culture: CBS 136642 = CMW 35180 = CERC 1856.

Type locality: China, GuangDong.

Type substrate: Soil in a Eucalyptus plantation.

Barcodes: act = MT334986; cmdA = MT335216; his3 = MT335456; rpb2 = MT412520; tef1 = MT412747; tub2 = MT412968 (alternative markers: ITS = MT359677; LSU = MT359437).

Notes: Calonectria terrestris was treated as a synonym of *Ca.* cerciana in this study. In comparisons of DNA sequences for eight gene regions, the only differences between the ex-type isolate *Ca.* terrestris (CMW 35180) and the ex-type isolate of *Ca.* cerciana (CMW 25309) was in the ITS and tef1 sequences, where there was one base difference in the ITS and three base differences in the tef1 sequences. Both species produce obpyriform vesicles with overlapping dimensions (*Ca.* terrestris: $5-12 \mu m$; *Ca.* cerciana: $8-13 \mu m$) and 1-septate macroconidia. The macroconidia of *Ca.* terrestris (av. $38.5 \times 4.5 \mu m$) are smaller than those of *Ca.* cerciana (av. $44 \times 5 \mu m$) (Lombard et al. 2010c, 2015a), which was considered to represent intraspecific variation (Supplementary Table S4).

terricola Calonectria L. Lombard & Crous, Stud. Mycol. 85: 191. 2016.

In: Calonectria pteridis species complex.

Typus: CBS H-22774 holotype.

Ex-type culture: CBS 116247 = CMW 51232 = CPC 3583. *Type locality*: **Brazil**.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: tef1 = KX784738; tub2 = KX784665.

Notes: Calonectria terricola is closely related to *Ca. ovata* and *Ca. pseudovata*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. terricola* [(av. 46 × 4.5 µm); Lombard *et al.* 2016] are smaller

than those of *Ca. ovata* [(av. 70 × 5 μ m); Victor *et al.* 1997] and *Ca. pseudovata* [(av. 69 × 5 μ m); Alfenas *et al.* 2015]. In addition, no microconidiophores and microconidia were reported in *Ca. terricola*, a feature that is common in *Ca. ovata* and *Ca. pseudovata* (Victor *et al.* 1997, Alfenas *et al.* 2015, Lombard *et al.* 2016) (Supplementary Table S4).

tetraramosa Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 183. 2015.

(see Calonectria pauciramosa)

In: Calonectria candelabrum species complex.

Typus: CBS H-21477 holotype.

Ex-type culture: CBS 136635 = CMW 31474 = CERC 1809.

Type locality: China, GuangDong Province, ZhanJiang.

Type substrate: Eucalyptus urophylla × *E. grandis* clone seedling leaf.

Barcodes: act = MT335104; cmdA = MT335336; his3 = MT335576; rpb2 = MT412629; tef1 = MT412867; tub2 = MT413079 (alternative markers: ITS = MT359797; LSU = MT359557).

Notes: Calonectria tetraramosa was treated as a synonym of *Ca.* pauciramosa in this study. In comparisons of DNA sequences for eight gene regions, all the sequences of the isolates of *Ca.* tetraramosa (ex-type CMW 31474, and CMW 31476) were 100 % identical to those of the isolates of *Ca.* pauciramosa (ex-type CBS 138824, CMW 2151, CMW 7592, CMW 9151, CMW 30823, and CMW 30875). Both species produce obpyriform vesicles and 1-septate macroconidia, and shared similar vesicle (*Ca.* tetraramosa: 4–10 µm; *Ca.* pauciramosa: 5–11 µm) and macroconidial dimensions (*Ca.* tetraramosa: av. 48 × 5 µm; *Ca.* pauciramosa: av. 50 × 4.5 µm) (Crous 2002, Lombard *et al.* 2015a) (Supplementary Table S4).

tonkinensis Calonectria N.Q. Pham *et al.*, Mycologia 111: 87. 2019.

In: Calonectria cylindrospora species complex.

Typus: PREM 62124 holotype.

Ex-type culture: CBS 143576 = CMW 47430.

Type locality: Vietnam, Hanoi, Bavi.

Type substrate: Soil in a Eucalyptus plantation.

Barcodes: act = MT335147; cmdA = MT335384; his3 = MT335624; rpb2 = MT412676; tef1 = MT412915; tub2 = MT413122 (alternative markers: ITS = MT359845; LSU = MT359605).

Notes: Calonectria tonkinensis is closely related to Ca. cerciana, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of Ca. tonkinensis (av. 41.5 × 4 μ m) are smaller than those of Ca. cerciana (av. 44 × 5 μ m), and the vesicles of Ca. tonkinensis (3–7 μ m) are narrower than those of Ca. cerciana (8–13 μ m) (Lombard et al. 2010c, Pham et al. 2019) (Supplementary Table S4).

tropicalis Calonectria L. Lombard & Crous, Stud. Mycol. 85: 192. 2016.

(see Calonectria amazonica)

In: Calonectria pteridis species complex.

Typus: CBS H-22776 holotype. *Ex-type culture*: CBS 116271 = CMW 51236 = CPC 3559. *Type locality*: **Brazil**, Amazon.

Type substrate: Eucalyptus sp.

Barcodes: act = MT335148; cmdA = MT335385; his3 = MT335625; rpb2 = MT412677; tef1 = MT412916; tub2 = MT413123 (alternative markers: ITS = MT359846; LSU = MT359606).

Notes: Calonectria tropicalis was treated as a synonym of *Ca. amazonica* in this study. In comparisons of DNA sequences for eight gene regions, the only differences between the ex-type isolate of *Ca. tropicalis* (CBS 116271) and the ex-type isolate of *Ca. amazonica* (CBS 116250) was in the ITS, *rpb2* and *tub2* sequences, where there was one base difference in the ITS, one base difference in the *rpb2* and three base differences in the *tub2* sequences. Both species produce clavate vesicles and 1(-3)-septate macroconidia, and shared similar vesicle (*Ca. tropicalis*: $5-6 \ \mu m$; *Ca. amazonica*: $5-6 \ \mu m$) and macroconidial dimensions (*Ca. tropicalis*: av. $80 \times 5 \ \mu m$; *Ca. amazonica*: av. $79 \times 5 \ \mu m$) (Lombard *et al.* 2016) (Supplementary Table S4).

tucuruiensis Calonectria L. Lombard & Crous, Stud. Mycol. 86: 123. 2017.

(see Calonectria ovata)

In: Calonectria pteridis species complex.

Typus: CBS H-22777 holotype.

Ex-type culture: CBS 114755 = CMW 51827 = CPC 1403.

Type locality: Brazil, Pará, Tucuruí.

Type substrate: Eucalyptus tereticornis.

Barcodes: *act* = MT335078; *cmdA* = MT335310; *his3* = MT335550; *tef1* = MT412841; *tub2* = MT413055 (alternative markers: ITS = MT359771; LSU = MT359531).

Notes: Calonectria tucuruiensis was treated as a synonym of *Ca.* ovata in this study. In comparisons of DNA sequences for seven available gene regions, there was one base difference between the ex-type isolate of *Ca. tucuruiensis* (CBS 114755) and the ex-type isolate of *Ca. ovata* (CMW 16724) in each of the LSU and *tub2* sequences. Both of the species produce ovoid vesicles with overlapping dimensions (*Ca. tucuruiensis*: 9–12 µm; *Ca. ovata*: 8–14 µm) and 1-septate macroconidia. The macroconidia of *Ca. tucuruiensis* [(av. 63 × 5 µm); Marin-Felix *et al.* 2017] are shorter than those of *Ca. ovata* [(av. 70 × 5 µm); Victor *et al.* 1997], which was considered to represent intraspecific variation (Supplementary Table S4).

tunisiana Calonectria L. Lombard *et al.*, Persoonia 27: 77. 2011. (see *Calonectria pseudomexicana*)

In: Calonectria mexicana species complex.

Typus: CBS H-20684 holotype.

Ex-type culture: CBS 130357 = CMW 51316 = DISTEF-TCL1. *Type locality*: **Tunisia**, Carthage, Tunis.

Type substrate: Callistemon laevis.

Barcodes: act = MT335149; cmdA = MT335386; his3 = MT335626; rpb2 = MT412678; tef1 = MT412917; tub2 = MT413124 (alternative markers: ITS = MT359847; LSU = MT359607).

Notes: Calonectria tunisiana was treated as a synonym of *Ca.* pseudomexicana in this study. In comparisons of DNA sequences for eight gene regions, the only differences between the ex-type isolate of *Ca. tunisiana* (CBS 130357) and the ex-type isolate of *Ca. pseudomexicana* (CBS 130354) was in the LSU and *tef1* sequences, where there was one base difference in the

LSU and six base differences in the *tef1* sequences. Both species produce fusiform to broadly ellipsoidal vesicles with papillate apex and 1-septate macroconidia, and similar vesicles (*Ca. tunisiana*: 8–14 µm; *Ca. pseudomexicana*: 9–14 µm). The macroconidia of *Ca. tunisiana* (av. 49 × 5 µm) are longer than those of *Ca. pseudomexicana* (av. 45 × 5 µm) (Lombard *et al.* 2011), which was considered to represent intraspecific variation (Supplementary Table S4).

turangicola Calonectria L. Lombard *et al.*, Stud. Mycol. 80: 184. 2015.

(see Calonectria kyotensis)

In: Calonectria kyotensis species complex.

Typus: CBS H-21488 holotype.

Ex-type culture: CBS 136077 = CMW 31411.

Type locality: **China**, GuangXi Province.

Type substrate: Soil in a Eucalyptus plantation.

Barcodes: *act* = MT335151; *cmdA* = MT335388; *his*3 = MT335628; *tef1* = MT412919; *tub2* = MT413126 (alternative markers: ITS = MT359849; LSU = MT359609).

Notes: Calonectria turangicola was treated as a synonym of *Ca. kyotensis* in this study. In comparison of DNA sequences for seven available gene regions, the only difference between the ex-type isolate of *Ca. turangicola* (CMW 31411) and the ex-type isolate of *Ca. kyotensis* (CBS 114525) was in the LSU, *tef1* and *tub2* sequences, where there was one base difference in the LSU, two base differences in the *tef1* and two base differences in the *tub2* sequences. Both species are homothallic and produce sphaeropedunculate (globose) vesicles and 1-septate macroconidia of similar dimensions (*Ca. turangicola*: av. 44 × 4 µm, *Ca. kyotensis*: av. 41 × 4 µm) (Terashita 1968, Lombard *et al.* 2015a, Li *et al.* 2020; Supplementary Table S4).

uniseptata Calonectria Gerlach, Phytopathol. Z. 61: 379. 1968.

In: Calonectria kyotensis species complex.

Typus: No. 10759 holotype.

Ex-type culture: CBS 413.67 = CMW 23678 = CPC 2391 = IMI 299577.

Type locality: Germany, Celle.

Type substrate: Paphiopedilum callosum.

Barcodes: *act* = GQ280451; *cmdA* = GQ267379; *his3* = GQ267248; *tef1* = GQ267307; *tub2* = GQ267208 (alternative markers: ITS = GQ280573; LSU = GQ280695).

Notes: *Calonectria uniseptata* is closely related to *Ca. asiatica* and *Ca. syzygiicola*, and can be distinguished from these two species by the dimensions of its ascospores and vesicles. The ascospores of *Ca. uniseptata* [(av. 41.5 × 6.3 μ m); Gerlach 1968] are longer than those of *Ca. asiatica* [(av. 33 × 6 μ m); Crous *et al.* 2004], and the vesicles of *Ca. uniseptata* (8.2–20.4 μ m) are wider than those of *Ca. syzygiicola* (3–6 μ m) (Gerlach 1968, Lombard *et al.* 2016) (Supplementary Table S4).

uxmalensis Calonectria L. Lombard & Crous, Stud. Mycol. 85: 193. 2016.

In: Calonectria mexicana species complex.

Typus: CBS H-22761 holotype.

Ex-type culture: CBS 110925 = CMW 51167 = CPC 945. *Type locality*: **Mexico**, Uxmal.

DNA barcodes

Fig. 4. The identification success rates of the eight candidate DNA barcodes for the genus Calonectria.

Type substrate: Soil.

Barcodes: act = MT335153; cmdA = MT335390; his3 = MT335630; rpb2 = MT412681; tef1 = MT412921; tub2 = MT413128 (alternative markers: ITS = MT359851; LSU = MT359611).

Notes: Calonectria uxmalensis is closely related to Ca. pseudouxmalensis, and sequences of cmdA, his3, tef1 and tub2 gene regions can distinguish Ca. uxmalensis from Ca. pseudouxmalensis. Morphologically, these two species are similar to each other, while the ability of Ca. uxmalensis to produce lateral stipe extensions can differentiate Ca. uxmalensis from Ca. pseudouxmalensis (Lombard *et al.* 2016) (Supplementary Table S4).

variabilis Calonectria Crous et al., Syst. Appl. Microbiol. 16: 270. 1993.

Synonym: Cylindrocladium variabile Crous *et al.*, Syst. Appl. Microbiol. 16: 270. 1993.

In: Calonectria cylindrospora species complex.

Typus: PREM 51039 (holotype of *Ca. variabilis*; Crous *et al.* 1993b), PREM 51041 (holotype of *Cy. variabile*; Crous *et al.* 1993b).

Ex-type culture: CBS 114677 = CMW 3187 = CPC 2436 = AR2675 (Crous *et al.* 1993b, Crous 2002)

Type locality: Brazil, Pará.

Type substrate: Schefflera morototoni.

Barcodes: *cmdA* = MT335392; *his3* = MT335632; *rpb2* = MT412683; *tef1* = MT412923; *tub2* = MT413130 (alternative markers: ITS = MT359853; LSU = MT359613).

Notes: Calonectria variabilis is phylogenetically closely related to *Ca. cylindrospora*, and can be distinguished from that species by the dimensions of its macroconidia. The macroconidia of *Ca.*

variabilis [(av. 73 × 5 μ m); Crous *et al.* 1993b] are larger than those of *Ca. cylindrospora* [(av. 45 × 4 μ m); Crous *et al.* 1993a, Lombard *et al.* 2015b]. *Calonectria variabilis* readily produces a microconidial morph in culture on CLA (Crous *et al.* 1993b), a feature not observed for *Ca. cylindrospora* (Crous *et al.* 1993a). *Calonectria variabilis* is characterised as being homothallic, while *Ca. cylindrospora* is heterothallic (Crous *et al.* 1993b).

vegrandis Calonectria N.Q. Pham & M.J. Wingfield, Mycologia 111: 99. 2019.

(see Calonectria curvispora)

In: Calonectria kyotensis species complex.

Typus: PREM 62113 holotype.

Ex-type culture: CBS 143565 = CMW 48245.

Type locality: Indonesia, North Sumatra, Aek Nauli.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: act = MT335003; *cmdA* = MT335233; *his3* = MT335473; *rpb2* = MT412537; *tef1* = MT412764 (alternative markers: ITS = MT359694; LSU = MT359454).

Notes: Calonectria vegrandis was treated as a synonym of *Ca. curvispora* in this study. In comparisons of DNA sequences for seven available gene regions, all seven gene sequences for the isolates of *Ca. vegrandis* (ex-type CMW 48245, and CMW 48246) were 100 % identical to the ex-type isolate of *Ca. curvispora* (CMW 23693). Both species produce sphaer-opedunculate vesicles and 1-septate macroconidia, whereas *Ca. curvispora* typically produce curved macroconidia which are straight in *Ca. vegrandis* (Victor *et al.* 1997, Lombard *et al.* 2010a, Pham *et al.* 2019), suggesting that curved or straight macroconidia may be not a reliable feature to distinguish between these species. The macroconidia of *Ca. vegrandis* (av.

Species complexes and DNA barcodes

Fig. 5. The identification success rates of the eight candidate DNA barcodes for each of the 11 species complex; "*" above the histogram indicate four of the barcodes with highest identification success rates within each of the 11 species complexes; Triangle indicate the identification success rate of the candidate DNA barcodes is zero.

41 × 4.5 μ m) are smaller than those of *Ca. curvispora* (av. 60 × 5 μ m) (Victor *et al.* 1997, Lombard *et al.* 2010a, Pham *et al.* 2019), which was considered to represent intraspecific variation (Supplementary Table S4).

venezuelana Calonectria L. Lombard et al., Stud. Mycol. 85: 195. 2016.

In: Calonectria candelabrum species complex.

Typus: CBS H-22778 holotype.

Ex-type culture: CBS 111052 = CMW 51173 = CPC 1183. *Type locality*: **Venezuela**, Acarigua.

Type substrate: Soil.

Barcodes: act = MT335155; cmdA = MT335394; his3 = MT335634; rpb2 = MT412685; tef1 = MT412925; tub2 = MT413132 (alternative markers: ITS = MT359855; LSU = MT359615).

Notes: Calonectria venezuelana is closely related to *Ca. candelabrum* and *Ca. eucalypticola*, and can be distinguished from these two species by the dimensions of its macroconidia. The macroconidia of *Ca. venezuelana* [(av. 58 × 5 µm); Lombard *et al.* 2016] are shorter than those of *Ca. candelabrum* [(av. 60 × 4.5 µm); Crous 2002], and larger than those of *Ca. eucalypticola* [(av. 50 × 4 µm); Alfenas *et al.* 2015] (Supplementary Table S4).

yunnanensis Calonectria J.Q. Li *et al.*, IMA Fungus 8: 282. 2017.

Synonym: Calonectria pseudoyunnanensis J.Q. Li et al., IMA Fungus 8: 279. 2017.

In: Calonectria kyotensis species complex.

Typus: PREM 61955 holotype.

Ex-type culture: CBS 142897 = CMW 47644 = CERC 5339. *Type locality*: **China**, YunNan.

Type substrate: Soil in Eucalyptus plantation.

Barcodes: act = MT335157; cmdA = MT335396; his3 = MT335636; rpb2 = MT412687; tef1 = MT412927; tub2 = MT413134 (alternative markers: ITS = MT359857; LSU = MT359617).

Notes: Calonectria yunnanensis is closely related to *Ca. asiatica*, and can be distinguished from that species by the dimensions of its macroconidia and vesicles. The macroconidia of *Ca. yunnanensis* [(av. 43 × 4.5 µm); Li *et al.* 2017] are smaller than those of *Ca. asiatica* [(av. 53 × 5 µm); Crous *et al.* 2004], and the vesicles of *Ca. yunnanensis* (2–4.5 µm) are narrower than those of *Ca. asiatica* (12–17 µm). *Calonectria yunnanensis* is homothallic (Li *et al.* 2020) (Supplementary Table S4).

zuluensis Calonectria L. Lombard & Crous, Stud. Mycol. 66: 25. 2010.

(see Calonectria pauciramosa)

In: Calonectria candelabrum species complex.

Typus: PREM 60292 holotype. *Ex-type culture*: CBS 125268 = CMW 9188. *Type locality*: **South Africa**, KwaZulu-Natal, Kwambonambi. *Type substrate*: *Eucalyptus grandis* clonal cutting. *Barcodes*: *act* = MT335159; *cmdA* = MT335398; *his3* = MT335638; *rpb2* = MT412689; *tef1* = MT412929; *tub2* = MT413136 (alternative markers: ITS = MT359859; LSU = MT359619). Notes: Calonectria zuluensis was treated as a synonym of *Ca.* pauciramosa in this study. In comparisons of DNA sequences for eight gene regions, the only differences between the ex-type isolate of *Ca. zuluensis* (CMW 9188) and the ex-type isolate of *Ca. pauciramosa* (CBS 138824) was in the *act* and *tub2* sequences, where there were two base differences in the *act* and three base differences in the *tub2* sequences. Both species are heterothallic and produce obpyriform to ellipsoidal vesicles of similar dimensions (*Ca. zuluensis*: 6–10 µm; *Ca. pauciramosa*: 5–11 µm) and 1-septate macroconidia. The macroconidia of *Ca. zuluensis* (av. 36 × 4 µm) are smaller than those of *Ca. pauciramosa* (av. 50 × 4.5 µm) (Crous 2002, Lombard *et al.* 2010b, Li *et al.* 2020), which was considered to represent intraspecific variation (Supplementary Table S4).

Selection of DNA barcodes for species recognition

Phylogenetic analyses of sequences for eight gene regions resulted in the delineation of 120 clearly defined *Calonectria* species. These eight gene regions thus serve as putative DNA barcodes. As with most other fungi, it is not possible to use a single DNA barcode to identify species of *Calonectria*. Consequently, the Identification Success Rate (ISR) was calculated for each of the eight putative barcodes for all 120 species of *Calonectria* and also for species residing in each of the 11 well-defined species complexes (Supplementary Table S5).

For the genus as a whole, the results showed that sequence data for *tef1* and *tub2* had the strongest ability to correctly identify species (ISRs: 89.1 % and 88.3 %, respectively; Supplementary Table S5, Fig. 4). This was followed by *cmdA*, *his3*, *rpb2* and *act* gene regions which also provided relatively effective resolution of the *Calonectria* spp. (Supplementary Table S5, Fig. 4). The efficacy of the ITS and LSU regions to identify species was relatively low (ISRs: 29.3 % and 27.6 %, respectively; Supplementary Table S5, Fig. 4).

For the 11 species complexes, the results showed that the most effective barcodes could not be employed across all species complexes. The tef1 sequences provided resolution power in the Ca. candelabrum and Ca. cylindrospora species complexes (Supplementary Table S5, Fig. 5). In contrast, tub2 was the best DNA barcode for the Ca. brassicae and Ca. reteaudii species complexes (Supplementary Table S5, Fig. 5), act and tub2 both the best for the Ca. mexicana species complex. The frequency of successful identification using the eight gene region data in the 11 species complexes also differed. Collectively, the six regions (tef1, tub2, cmdA, his3, rpb2 and act) provided stable and reliable resolution power for species in each of the 11 species complexes. Our results suggested that all of the 120 Calonectria species accepted in this study could be distinguished based on the six-region (tef1, tub2, cmdA, his3, rpb2, and act) combined phylogeny, and 118 of the 120 (98 %) Calonectria species could be recognised based on the tef1 and tub2 gene region combined phylogeny.

DISCUSSION

This study represents the most comprehensive molecular phylogenetic overview of *Calonectria*, a genus that includes

many important plant pathogens. Sequence data for eight gene regions of 240 isolates representing 128 species were newly generated. In the case of 44 species for which cultures could not be obtained, sequence data were sourced from GenBank so as to consider all 169 previously described species. Phylogenetic analyses were conducted for each of the eight gene regions individually as well as for a combined dataset. The results provided clear evidence that 51 species are indistinguishable from previously described taxa and synonymies have been provided for these. Two novel taxa were recognised and described as Ca. lombardiana and Ca. pauciphialidica. Furthermore, the name Ca. lauri was validated. The overall result of the study is the acceptance of 120 clearly defined species of Calonectria. The eight sequenced gene regions were then evaluated individually to identify the most useful DNA barcodes to accurately identify these species. These analyses showed that six gene regions (tef1, tub2, cmdA, his3, rpb2 and act) provide effective barcodes for the genus.

The combined eight-gene phylogenetic tree emerging from this study placed the 120 accepted *Calonectria* species in the two major groups; the Prolate Group and the Sphaero-Naviculate Group. This is consistent with the results of previous studies (Lombard *et al.* 2016, Jayawardena *et al.* 2019), showing a clear phylogenetic distinction between these two groups in *Calonectria*. The previously recognised 10 species complexes (Lombard *et al.* 2016) were also well resolved. Interestingly, the results of this study also revealed a new species complex, that we have defined as the *Calonectria gracilipes* species complex. Delimitation of this new species complex was supported by both phylogenetic placement and morphological characteristics.

Species in the *Ca. brassicae* species complex typically have clavate vesicles and 1-septate macroconidia, producing orange to red-brown perithecia, 8-spored asci and 1-septate ascospores. The species complex also includes both heterothallic and homothallic species, and these are primarily distributed in South America (Crous 2002, Crous *et al.* 2006, Lombard *et al.* 2009, 2010a, 2016, Alfenas *et al.* 2015, Marin-Felix *et al.* 2017, Li *et al.* 2020). In the present study, two species were reduced to synonymy based on phylogenetic inference; *Ca. ecuadorensis* reduced to synonymy with *Ca. ecuadorae*, and *Ca. telluricola* with *Ca. paraensis*. The description of *Ca. pauciphialidica* adds a novel species to this species complex, and it is closely related to, but morphologically distinct from *Ca. ecuadorae*. Sixteen species are now recognised in the *Ca. brassicae* species complex.

Species in the Ca. candelabrum species complex are characterised by ellipsoidal to obpyriform vesicles and 1-septate macroconidia, producing orange to red-brown perithecia, 8spored asci and 1-septate ascospores. The species complex includes both heterothallic and homothallic species that are known from Africa, Asia, Europe, North and South America, Oceania (Viégas 1946, Schoch et al. 1999, Crous & Kang 2001, Crous 2002, Lombard et al. 2010a, b, 2015a, b, 2016, Alfenas et al. 2013a, 2015, Lopes et al. 2017, Li et al. 2020). The Ca. candelabrum species complex includes important plant pathogens some of which pose a serious threat to global forestry and agricultural industries (Schoch et al. 1999, Crous 2002, Lombard et al. 2010b, 2015a, Crous et al. 2013, Alfenas et al. 2015). In the present study, 10 species were reduced to synonymy based on phylogenetic inference, eight (Ca. cliffordiicola, Ca. ericae, Ca. machaerinae, Ca. mossambicensis, Ca. polizzii, Ca. seminaria, Ca. tetraramosa and Ca. zuluensis) of which were reduced to synonymy with *Ca. pauciramosa*. In addition, one species (*Ca. pseudoscoparia*) was reduced to synonymy with *Ca. candelabrum*, and one species (*Ca. stipitata*) with *Ca. spathulata*. Eighteen species are now included in the *Ca. candelabrum* species complex.

Species in the Ca. colhounii species complex typically have clavate vesicles and 3-septate macroconidia, producing yellow perithecia, which is considered as the most characteristic feature of the species complex. They include 4-spored asci and 3septate ascospores and both heterothallic and homothallic species. Homothallism is the dominant mating system (Crous 2002, Lombard et al. 2010a, Chen et al. 2011, Li et al. 2017, 2020) and the majority of species have been collected from Asia (Peerally 1973, Crous et al. 1999, Crous 2002, Lombard et al. 2010a, 2016, Chen et al. 2011, Xu et al. 2012, Li et al. 2017, 2020, Liu & Chen 2017). In the present study, three species were reduced to synonymy based on phylogenetic inference. These include Ca. pseudocolhounii reduced to synonymy with Ca. eucalypti, Ca. nymphaeae was synonymised with Ca. fujianensis, and Ca. parva with Ca. macroconidialis. In addition, Ca. madagascariensis with typical clavate vesicles was shown to reside in the Ca. colhounii species complex, consistent with the findings of Lombard et al. (2010a). This result is in contrast to the phylogeny presented by Jayawardena et al. (2019) who suggested that the species formed a distinct lineage apart from species in the 11 species complexes. Based on our results, 11 species reside in the Ca. colhounii species complex, including Ca. madagascariensis.

In the Ca. cylindrospora species complex, species have variable vesicle shapes, including clavate, ellipsoidal, fusiform, obpyriform to sphaeropedunculate, and they typically produce 1septate macroconidia, orange to red-brown perithecia, 8-spored asci and 1-septate ascospores. The species complex includes both heterothallic and homothallic species (Crous et al. 1993b, Schoch et al. 1999, Crous 2002, Li et al. 2020). Species in the Ca. cylindrospora species complex exhibit a broad geographic distribution including Africa, Asia, Europe, North and South America (Crous et al. 1993c, 2013, Crous 2002, Lombard et al. 2010a, b, c, 2015a, 2016, Alfenas et al. 2013b, 2015, Pham et al. 2019, Li et al. 2020). In the present study, eight species were reduced to synonymy based on phylogenetic inference including two species (Ca. hodgesii and Ca. pseudohodgesii) as synonyms of Ca. brasiliensis, two species (Ca. papillata and Ca. terrestris) as synonyms of Ca. cerciana, two species (Ca. foliicola and Ca. sulawesiensis) as synonyms of Ca. hawksworthii, one species (Ca. blephiliae) as a synonym of Ca. cylindrospora and one species (Ca. pseudocerciana) as a synonym of Ca. propaginicola. As a consequence, 12 species are now accepted in the Ca. cylindrospora species complex.

In the *Ca. gracilipes* species complex, species are characterised by narrowly clavate vesicles and multi-septate (> 3) macroconidia, producing orange to red-brown perithecia and 8spored asci. Species in this species complex have a homothallic mating system (Crous *et al.* 1997a, El-Gholl *et al.* 1997, Crous 2002) and they have been reported from both North and South America (Figueiredo & Namekata 1967, Crous *et al.* 1997a, 2000, El-Gholl *et al.* 1997, Crous 2002). Five species are now included in the *Ca. gracilipes* species complex.

Species in the *Ca. kyotensis* species complex typically have sphaeropedunculate vesicles and 1-septate macroconidia, producing orange to red-brown perithecia, 8-spored asci and 1septate ascospores. Both heterothallic and homothallic species are known in the species complex and a majority of the members have been described from Asia (Boedijn & Reitsma 1950, Tubaki 1958, Sobers & Seymour 1967, Gerlach 1968, Terashita 1968, Sobers 1969, Alfieri et al. 1982, Victor et al. 1997, Kang et al. 2001b, Crous 2002, Crous et al. 2004, Lombard et al. 2015a, 2016, Li et al. 2017, 2020, Liu & Chen 2017, Pham et al. 2019). Results of the present study have shown that 17 species in this complex are the same as earlier described taxa. Of these, nine species (Ca. arbusta, Ca. expansa, Ca. guangxiensis, Ca. hainanensis. Ca. magnispora. Ca. parakvotensis. Ca. pluriramosa. Ca. pseudokyotensis and Ca. sphaeropedunculata) were reduced to synonymy with Ca. aconidialis, three (Ca. floridana, Ca. pseudoturangicola and Ca. turangicola) with Ca. kyotensis, one (Ca. montana) with Ca. canadiana, one (Ca. multistipitata) with Ca. chinensis, one (Ca. vegrandis) with Ca. curvispora, one (Ca. indonesiana) with Ca. sumatrensis and one (Ca. pseudoyunnanensis) with Ca. yunnanensis. Consequently, 24 species are now accommodated in the Ca. kyotensis species complex, making it the largest Calonectria species complex.

Species in the *Ca. mexicana* species complex typically have ellipsoidal vesicles with a papillate apex and 1-septate macroconidia. The species complex includes both heterothallic and homothallic species, although the heterothallic mating system is dominant (El-Gholl *et al.* 1989, Schubert *et al.* 1989, Schoch *et al.* 1999, Crous 2002). Species in the *Ca. mexicana* complex have been collected from many continents, including Africa, Europe and North America (El-Gholl *et al.* 1989, Schubert *et al.* 1989, Schubert *et al.* 1989, Schoch *et al.* 1999, Crous 2002, Lechat *et al.* 2010, Lombard *et al.* 2011, 2016, Li *et al.* 2020). In the present study, *Ca. tunisiana* was reduced to synonymy with *Ca. pseudomexicana*. Consequently, eight species are now accommodated in this species complex.

In the *Ca. naviculata* species complex, species typically have naviculate vesicles and 1-septate macroconidia. Species in the species complex have a heterothallic mating system (Crous *et al.* 1997a, 2002, Gehesquiere *et al.* 2015, Li *et al.* 2020) and they have been collected from Africa, Asia, Europe, North and South America and Oceania (Crous *et al.* 1997a, 2002, 2004, Crous 2002, Alfenas *et al.* 2015, Gehesquiere *et al.* 2015, Lombard *et al.* 2016, LeBlanc *et al.* 2019, Li *et al.* 2020). In the study of Jayawardena *et al.* (2019), *Ca. pseudonaviculata* formed a distinct lineage and did not reside in any of the previously defined species complexes. Results of the present study have shown that this species resides comfortably in the *Ca. naviculata* species complex, consistent with the results of Lombard *et al.* (2010a, 2016). Currently, six species are included in the *Ca. naviculata* species complex.

In the *Ca. pteridis* species complex, species typically have clavate or ovate vesicles and 1-septate macroconidia. Species have a heterothallic mating system (El-Gholl *et al.* 1993a, Li *et al.* 2020) and have commonly been collected in North and South America (Sobers 1968, Crous *et al.* 1993c, El-Gholl *et al.* 1993a, Leahy *et al.* 2000, Crous 2002, Alfenas *et al.* 2015, Lombard *et al.* 2016, Marin-Felix *et al.* 2017, Li *et al.* 2020). Results of the present study have shown that six species in this complex are synonyms of earlier described taxa. Three species (*Ca. amazoniensis, Ca. longiramosa* and *Ca. tropicalis*) have thus been reduced to synonymy with *Ca. amazonica* and three species (*Ca. nemoralis, Ca. tereticornis* and *Ca. tucuruiensis*) with *Ca. ovata.* Consequently, seven species are now accommodated in the *Ca. pteridis* species complex.

In the Ca. reteaudii species complex, species are characterised by having narrowly clavate vesicles, multi-septate (> 3) macroconidia and they produce orange to red-brown perithecia, 8-spored asci and multi-septate (> 3) ascospores. Both heterothallic and homothallic Calonectria species have been described in this species complex (Kang et al. 2001a, Crous 2002, Gadgil & Dick 2004, Lombard et al. 2010c, Chen et al. 2011, Li et al. 2020) and species have been reported in Asia and Oceania (Kang et al. 2001a, Crous 2002, Gadgil & Dick 2004, Crous et al. 2006, 2012, Lombard et al. 2010c. 2015a. 2016. Chen et al. 2011. Li et al. 2017, 2020, Pham et al. 2019). Four species in this species complex were reduced to synonymy, including two species (Ca. microconidialis and Ca. pentaseptata) with Ca. pseudoreteaudii, one species (Ca. terrae-reginae) with Ca. gueenslandica and one species (Ca. baviensis) with Ca. reteaudii. The description of Ca. lombardiana adds a new member to the Ca. reteaudii species complex and its larger macroconidial dimensions easily distinguish it from Ca. queenslandica, its closest phylogenetic relative. Nine species are now accepted as residing in the Ca. reteaudii species complex.

Calonectria species in the Ca. reteaudii species complex incorporate many important causal agents of plant disease. resulting in mainly leaf blights on a wide range of hosts in several countries including Australia, China, India, Laos and Vietnam (Old et al. 2003, Chen et al. 2011, Pham et al. 2019). Calonectria pentaseptata, initially described from Vietnam, has been reported from the GuangDong, GuangXi and HaiNan provinces of China (Crous et al. 2012, Lombard et al. 2015a, Li et al. 2017), causing severe leaf blight diseases on Eucalyptus in plantations and nurseries. In the present study, Ca. pentaseptata and Ca. microconidialis (Crous et al. 2012, Lombard et al. 2015a) were reduced to synonymy with Ca. pseudoreteaudii. Calonectria pseudorateaudii was originally described by Lombard et al. (2010c) from stems of *E. urophylla* \times *E. grandis* hybrid cuttings in GuangDong Province, China. The results of the present study suggest that this species has been in China at least for 10 yr and continues to pose a serious threat to the Eucalyptus industry.

In the *Ca. spathiphylli* species complex, species typically have sphaeropedunculate vesicles and 1-spetate macroconidia and produce orange to red-brown perithecia, 8-spored asci and 1-septate ascospores. Both heterothallic and homothallic *Calonectria* species have been described in this species complex (El-Gholl *et al.* 1992, Kang *et al.* 2001b) and species are commonly collected in North and South America (El-Gholl *et al.* 1992, Kang *et al.* 2001b, Crous 2002, Lombard *et al.* 2010a). Four species are now accommodated in the *Ca. spathiphylli* species complex.

Results of this study have revealed interesting patterns regarding the geographic distribution of various groups of *Calonectria* spp. For example, more than 75 % of the species in the *Ca. brassicae* and *Ca. candelabrum* species complexes have been described from South American countries such as Brazil, Colombia, Ecuador and Venezuela (Alfenas *et al.* 2013a, b, 2015). Likewise, species in the *Ca. kyotensis* species complex appear to represent an Asian assemblage, with 19 of the 24 species collected in Asian countries such as China, Indonesia, Japan, Malaysia and Vietnam (Crous 2002, Crous *et al.* 2004, Lombard *et al.* 2015a, Li *et al.* 2017, Liu & Chen 2017, Pham *et al.* 2019). Of those species, 14 were isolated from soil collected in Asia, suggesting this geographic region could be their centre of origin. There are, however, few studies that have considered the centres of origin of *Calonectria* species (Wright

et al. 2010, Freitas *et al.* 2019, LeBlanc *et al.* 2019, Malapi-Wight *et al.* 2019), emphasizing a need for population biology studies on these fungi in the future.

The synonymised species in this study were generally from regions adjacent to those from which the validated taxa were originally collected. For example, Ca. cerciana, together with its now recognised synonyms Ca. papillata and Ca. terrestris were isolated from adjacent sites in GuangDong Province in southern China (Lombard et al. 2010c, 2015a). However, there were also some cases where species reduced to synonymy were from different continents where the climates differed significantly. For example, Ca. pauciramosa and the eight species (Ca. cliffordiicola, Ca. ericae, Ca. machaerinae, Ca. mossambicensis, Ca. polizzii, Ca. seminaria, Ca. tetraramosa and Ca. zuluensis) reduced to synonymy with it, thus were isolated from Africa, Asia, Europe and North America (Schoch et al. 1999, Crous & Kang 2001, Crous et al. 2013, Lombard et al. 2010b, 2015a, 2016, Alfenas et al. 2015). The present study further supports the fact that Ca. pauciramosa has a worldwide distribution and that it is able to exist under various climatic conditions (Schoch et al. 1999, Crous 2002, Lombard et al. 2010b, 2015a, 2016, Crous et al. 2013).

Results of this study showed that six loci (act, cmdA, his3, rpb2, tef1 and tub2) can serve as reliable DNA barcodes for species delimitation in Calonectria. A similar six gene approach has been established for Colletotrichum, where the act, chs-1, gapdh, his3, ITS and tub2 regions have been employed to reveal the phylogenetic relationships of species with curved conidia from herbaceous hosts (Damm et al. 2009). Likewise, six markers (act, cmdA, gapdh, gs, ITS and tub2) were utilised to characterise the species of Colletotrichum associated with coffee berries in northern Thailand (Prihastuti et al. 2009). A six gene (act, ITS, LSU, rpb1, tef1 and tub2) approach has also been used for the phylogenetic analyses of Allantonectria, Nectria, and Pleonectria (Hirooka et al. 2012). The present study has revealed that optimal barcodes for taxon delimitation differs for the various Calonectria species complexes. This is similar to the case in Fusarium, where five barcodes (cmdA, IGS, rpb2, tef1 and tub2) were applied to stabilise the taxonomic position of species in the Fusarium oxysporum species complex (Lombard et al. 2019). Similarly, Wang et al. (2019) utilised five loci (cmdA. ITS, rpb1, rpb2 and tef1) to evaluate and clarify the phylogenetic relationships of the F. incarnatum-equiseti species complex. Although the ideal set of barcodes differed among the various species complexes in Calonectria, six loci (act, cmdA, his3, rpb2, tef1 and tub2) served as the most phylogenetically informative markers. These are consequently recommended as the universal DNA barcodes for species delimitation in Calonectria.

Multi-gene phylogenetic analyses combined with morphological features provides a robust means to delimit fungal species boundaries (James *et al.* 2006, Hibbett *et al.* 2007, Liu *et al.* 2015, Chen *et al.* 2017, Woudenberg *et al.* 2017). This polyphasic approach has been widely employed in the taxonomy of *Calonectria* species (Lombard *et al.* 2010a, Chen *et al.* 2011, Crous *et al.* 2012, Alfenas *et al.* 2015, Lombard *et al.* 2016, Marin-Felix *et al.* 2017, Pham *et al.* 2019). However, a problem pertaining to the taxonomy of this group is that studies have used different markers and gene regions to identify species. This lack of consistency has resulted in confusion, and the many synonyms identified in the present study also arise, at least to some extent, from an inconsistency of taxonomic approaches.

In an attempt to provide a unified taxonomic system for Calonectria, we have evaluated the sequence data for eight gene regions that are available for all 120 species. These results showed that sequences of tef1 and tub2 provide markers that can recognise the majority of Calonectria species. The tef1 and tub2 combined phylogeny made it possible to recognise 118 of the 120 (98 %) species, indicating that combinations of tef1 and tub2 gene sequences are suitable for preliminary identification of Calonectria species. Results of this study indicated that the tef1 region provided the best barcode, which is in contrast to the study of Lombard et al. (2010a), who suggested that the cmdA region provides the best signal for species recognition in these fungi. Results of the present study also indicated that the rpb2 region provides stable and reliable taxonomic signal for Calonectria identification and this is the first study where that gene region has been sequenced for a large collection of species in this genus.

Overall, the results of this study have provided a robust overview of the species boundaries in Calonectria. This is based largely on phylogenetic inference using DNA sequences for eight gene regions. It is evident that, over a period of approximately 10 yr (Lombard et al. 2010a, 2015a, 2016, Li et al. 2017, Marin-Felix et al. 2017, Pham et al. 2019), numerous species have been described in Calonectria that are synonyms of existing species. This is a common problem in many groups of fungi where species were described based on relatively limited DNA sequence data. As time has passed, new and more informative gene regions have become available to define phylogenetic species boundaries more clearly. The DNA sequence backbone emerging and reliable DNA barcodes resulting from the present study provides a robust foundation for future taxonomic studies on the group. It is recognised that in many cases, species identity in this study is based on only a single or a small number of isolates. Clearly, larger collections of isolates will help to further confirm species boundaries and provide a better understanding of species delineation. However, the framework presented here will provide an ideal basis on which to explore this further. Furthermore, the genomes of numerous Calonectria spp. have now been sequenced (Malapi-Wight et al. 2016a, b, Ye et al. 2018, Liu et al. 2019). In time, it is likely that phylogenomic studies will increase the clarity of species boundaries and provide even more robust DNA barcodes for Calonectria.

ACKNOWLEDGEMENTS

This study was provided with financial support by the National Key R&D Program of China, China (project no. 2017YFD0600103), the Fundamental Research Funds for the Central Non-Profit Research Institution of CAF, China (Project No. CAFYBB2018QC003), the National Natural Science Foundation of China, China (NSFC) (project no. 31622019), the National Ten-thousand Talents Program, China (project No. 2017115) and the GuangDong Top Young Talents Program, China (project No. 20171172).

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https:// doi.org/10.1016/j.simyco.2020.08.001.

REFERENCES

- Alfenas RF, Lombard L, Pereira OL, et al. (2015). Diversity and potential impact of Calonectria species in Eucalyptus plantations in Brazil. Studies in Mycology 80: 89–130.
- Alfenas RF, Pereira OL, Ferreira MA, et al. (2013a). Calonectria metrosideri, a highly aggressive pathogen causing leaf blight, root rot, and wilt of Metrosideros spp. in Brazil. Forest Pathology 43: 257–265.
- Alfenas RF, Pereira OL, Jorge VL, et al. (2013b). A new species of Calonectria causing leaf blight and cutting rot of three forest tree species in Brazil. *Tropical Plant Pathology* 38: 513–521.
- Alfieri SA, El-Gholl NE, Schoulties CL (1982). Homothallism in Calonectria ilicicola. Mycologia 74: 513–514.
- Batista AC (1951). Cylindrocladium scoparium Morgan var. brasiliensis Batista & Ciferri, a new fungus on Eucalyptus. Boletim da Secretaria de agricultura, industria e comercio do Estado de Pernambuco 18: 188–191.
- Boedijn KB, Reitsma J (1950). Notes on the genus Cylindrocladium (Fungi: Mucedineae). Reinwardtia 1: 51–60.
- Brand T (2005). Auftreten von Cylindrocladium buxicola B. henricot an Buchsbaum in Nordwest-Deutschland. Nachrichtenblatt des deutschen Pflanzenschutzdienstes 57: 237–240.
- Carbone I, Kohn LM (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* **91**: 553–556.
- Chen Q, Hou LW, Duan WJ, et al. (2017). Didymellaceae revisited. Studies in Mycology 87: 105–159.
- Chen SF, Lombard L, Roux J, et al. (2011). Novel species of Calonectria associated with Eucalyptus leaf blight in Southeast China. Persoonia 26: 1–12.
- Crous PW (2002). Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. APS Press, St. Paul, Minnesota, USA.
- Crous PW, Alfenas AC, Wingfield MJ (1993a). Calonectria scoparia and Calonectria morganii sp. nov., and variation among isolates of their Cylindrocladium anamorphs. Mycological Research 97: 701–708.
- Crous PW, Groenewald JZ, Hill CF (2002). *Cylindrocladium pseudonaviculatum sp. nov.* from New Zealand, and new *Cylindrocladium* records from Vietnam. *Sydowia* **54**: 23–34.
- Crous PW, Groenewald JZ, Risède JM, *et al.* (2004). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology **50**: 415–430.
- Crous PW, Groenewald JZ, Risède JM, *et al.* (2006). Calonectria species and their Cylindrocladium anamorphs: species with clavate vesicles. Studies in Mycology **55**: 213–226.
- Crous PW, Janse BJH, Victor D, et al. (1993b). Characterization of some Cylindrocladium species with three-septate conidia using morphology, isozyme banding patterns and DNA polymorphisms. Systematic and Applied Microbiology 16: 266–273.
- Crous PW, Kang JC (2001). Phylogenetic confirmation of *Calonectria spathulata* and *Cylindrocladium leucothoes* based on morphology, and sequence data of the β-tubulin and ITS rRNA genes. *Mycoscience* **42**: 51–57.
- Crous PW, Kang JC, Schoch CL, *et al.* (1999). Phylogenetic relationships of *Cylindrocladium pseudogracile* and *Cylindrocladium rumohrae* with morphologically similar taxa, based on morphology and DNA sequences of internal transcribed spacers and β-tubulin. *Canadian Journal of Botany* **77**: 1813–1820.
- Crous PW, Korf A, Zyl vanWH (1995). Nuclear DNA polymorphisms of Cylindrocladium species with 1-septate conidia and clavate vesicles. Systematic and Applied Microbiology 18: 244–250.
- Crous PW, Mchau GR, Zyl WHV, et al. (1997a). New species of Calonectria and Cylindrocladium isolated from soil in the tropics. Mycologia 89: 653–660.
- Crous PW, Schoch CL, El-Gholl N, et al. (2000). Cylindrocladium angustatum sp. nov., a new leaf spot pathogen of *Tillandsia capitata* from Florida, USA. Mycoscience **41**: 521–526.
- Crous PW, Shivas RG, Wingfield MJ, et al. (2012). Fungal Planet description sheets: 128–153. Persoonia 29: 146–201.
- Crous PW, Theron L, Van Zyl WH (1997b). Delineation of *Cylindrocladium* species with 1-3-septate conidia and clavate vesicles based on morphology and rDNA RFLPs. *Mycological Research* **101**: 210–214.
- Crous PW, Wingfield MJ, Alfenas AC (1993c). Additions to Calonectria. Mycotaxon 46: 217–234.
- Crous PW, Wingfield MJ, Alfenas AC, et al. (1994). Cylindrocladium naviculatum sp. nov., and two new vesiculate hyphomycete genera, Falcocladium and Vesicladiella. Mycotaxon **50**: 441–458.

- Crous PW, Wingfield MJ, Guarro J, et al. (2013). Fungal Planet description sheets: 154–213. Persoonia 31: 188–296.
- Crous PW, Wingfield MJ, Mohammed C, *et al.* (1998). New foliar pathogens of *Eucalyptus* from Australia and Indonesia. *Mycological Research* **102**: 527–532.
- Crous PW, Wingfield MJ, Roux JJ, *et al.* (2015). Fungal Planet description sheets: 371–399. *Persoonia* **35**: 264–327.
- Cunningham CW (1997). Can three incongruence tests predict when data should be combined? *Molecular Biology and Evolution* **14**: 733–740.
- Damm U, Woudenberg JHC, Cannon PF, et al. (2009). Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity 39: 45–87.
- Daughtrey ML (2019). Boxwood blight: threat to ornamentals. Annual Review of Phytopathology 57: 189–209.
- De Hoog G, Van den Ende AHGG (1998). Molecular diagnostics of clinical strains of filamentous *Basidiomycetes*. *Mycoses* **41**: 183–189.
- Decock C, Crous PW (1998). Curvicladium gen. nov., a new hyphomycete genus from French Guiana. Mycologia 90: 276–281.
- El-Gholl NE, Alfenas AC, Crous PW, et al. (1993a). Description and pathogenicity of Cylindrocladium ovatum sp. nov. Canadian Journal of Botany 71: 466–470.
- El-Gholl NE, Alfenas AC, Junghans DT, et al. (1997). Description of Calonectria rumohrae sp. nov. (anamorph = Cylindrocladium rumohrae sp. nov.). Mycotaxon 64: 467–484.
- El-Gholl NE, Alfieri Jr SAJr., Barnard EL (1993b). Description and pathogenicity of Calonectria clavata sp. nov. Mycotaxon 48: 201–216.
- El-Gholl NE, Kimbrough JW, Barnard EL, et al. (1986). Calonectria spathulata sp. nov. Mycotaxon XXVI: 151–164.
- El-Gholl NE, Leahy RM, Schubert TS (1989). Cylindrocladium leucothoeae sp. nov. Canadian Journal of Botany 67: 2529–2532.
- El-Gholl NE, Uchida JY, Alfenas AC, et al. (1992). Induction and description of perithecia of Calonectria spathiphylli sp. nov. Mycotaxon 45: 285–300.
- Farris JS, Kallersjo M, Kluge AG, et al. (1994). Testing significance of incongruence. Cladistics 10: 315–319.
- Fawcett HS, Klotz LJ (1937). A new species of Candelospora causing decay of citrus fruits. Mycologia 29: 207–215.
- Felsenstein J (1985). Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39: 783–791.
- Figueiredo MB, Namekata T (1967). Record on the occurrence of Calonectria quinqueseptata n. sp., the perfect form of Cylindrocladium quinqueseptatum, on Annona squamosa and Eucalyptus sp. Archivos do Instituto Biologico, Sao Paulo **34**: 91–96.
- Freitas RG, Alfenas RF, Guimaraes LMS, et al. (2019). Genetic diversity and aggressiveness of Calonectria pteridis in Eucalyptus spp. Plant Pathology 68: 869–877.
- Gadgil P, Dick M (2004). Fungi silvicolae novazelandiae: 10. New Zealand Journal of Forestry Science 44: 1–7.
- Gai YP, Deng QW, Chen XL, et al. (2017). Phylogenetic diversity of Calonectria ilicicola causing Cylindrocladium black rot of peanut and red crown rot of soybean in southern China. Journal of General Plant Pathology 83: 273–282.
- Gehesquiere B, Crouch JA, Marra RE, et al. (2015). Characterization and taxonomic reassessment of the box blight pathogen Calonectria pseudonaviculata, introducing Calonectria henricotiae sp. nov. Plant Pathology 65: 37–52.
- Gerlach VW (1968). Calonectria uniseptata n. sp. die bisher unbekannte hauptfruchtform von Cylindrocladium scoparium Morgan. Journal of Phytopathology 61: 372–381.
- Gill DL, Alfieri SA, Sobers EK (1971). A new disease of *llex* spp. caused by *Cylindrocladium avesiculatum* sp. nov. Phytopathology **61**: 58–60.
- Guindon S, Gascuel O (2003). A simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology 52: 696–704.
- Henricot B, Culham A (2002). Cylindrocladium buxicola, a new species affecting Buxus spp., and its phylogenetic status. Mycologia 94: 980–997.
- Hibbett DS, Binder M, Bischoff JF, et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research 111: 509–547.
- Hirooka Y, Rossman AY, Samuels GJ, et al. (2012). A monograph of Allantonectria, Nectria, and Pleonectria (Nectriaceae, Hypocreales, Ascomycota) and their pycnidial, sporodochial, and synnematous anamorphs. Studies in Mycology **71**: 1–210.
- James TY, Kauff F, Schoch CL, et al. (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818–822.

- Jayawardena RS, Hyde KD, Jeewon R, *et al.* (2019). One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50 (2019). *Fungal Diversity* **94**: 41–129.
- Jiang G, Gao F, Yue H, *et al.* (2019). First report of a fruit spot of *Macadamia* caused by *Calonectria pentaseptata* in Yunnan, China. *Plant Disease* **104**: 575.
- Kang JC, Crous PW, Old KM, *et al.* (2001a). Non-conspecificity of *Cylin-drocladium quinqueseptatum* and *Calonectria quinqueseptata* based on a β-tubulin gene phylogeny and morphology. *Canadian Journal of Botany* **79**: 1241–1247.
- Kang JC, Crous PW, Schoch CL (2001b). Species concepts in the Cylindrocladium floridanum and Cy. spathiphylli complexes (Hypocreaceae) based on multi-allelic sequence data, sexual compatibility and morphology. Systematic and Applied Microbiology 24: 206–217.
- Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology* and Evolution 30: 772–780.
- Kearse M, Moir R, Wilson A, et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28: 1647–1649.
- Kleczewski N, Plewa D, Kangas C, et al. (2019). First report of red crown rot of Soybeans caused by Calonectria ilicicola (Anamorph: Cylindrocladium parasiticum) in Illinois. Plant Disease 103: 1777.
- Koike ST, Henderson DM, Crous PW, et al. (1999). A new root and crown rot disease of heath in California caused by Cylindrocladium pauciramosum. Plant Disease 83: 589.
- Leahy RM, Schubert TS, El-Gholl NE (2000). Cylindrocladium gordoniae sp. nov. *Mycotaxon* **76**: 77–83.
- LeBlanc N, Gehesquière B, Salgado-Salazar C, et al. (2019). Limited genetic diversity across pathogen populations responsible for the global emergence of boxwood blight identified using SSRs. Plant Pathology 68: 861–868.
- Lechat C, Crous PW, Groenewald JZ (2010). The enigma of *Calonectria* species occurring on leaves of *llex aquifolium* in Europe. *IMA Fungus* 1: 101–108.
- Li JQ, Wingfield BD, Wingfield MJ, et al. (2020). Mating genes in Calonectria and evidence for a heterothallic ancestral state. *Persoonia* **45**: 163–176.
- Li JQ, Wingfield MJ, Liu QL, *et al.* (2017). *Calonectria* species isolated from *Eucalyptus* plantations and nurseries in South China. *IMA Fungus* 8: 259–294.
- Liu FF, Chen SF, Ferreira MA, et al. (2019). Draft genome sequences of five Calonectria species from Eucalyptus plantations in China, Celoporthe dispersa, Sporothrix phasma and Alectoria sarmentosa. IMA Fungus 10: 1–13.
- Liu QL, Chen SF (2017). Two novel species of *Calonectria* isolated from soil in a natural forest in China. *MycoKeys* **26**: 25–60.
- Liu XZ, Wang QM, Göker M, et al. (2015). Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in Mycology 81: 85–147.
- Liu YJ, Whelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. *Molecular Biology and Evolution* **16**: 1799–1808.
- Lombard L, Chen SF, Mou X, *et al.* (2015a). New species, hyper-diversity and potential importance of *Calonectria* spp. from *Eucalyptus* in South China. *Studies in Mycology* **80**: 151–188.
- Lombard L, Crous PW, Wingfield BD, *et al.* (2010a). Phylogeny and systematics of the genus *Calonectria. Studies in Mycology* **66**: 31–69.
- Lombard L, Crous PW, Wingfield BD, et al. (2010b). Multigene phylogeny and mating tests reveal three cryptic species related to Calonectria pauciramosa. Studies in Mycology 66: 15–30.
- Lombard L, Merwe van der NA, Groenewald JZ, et al. (2015b). Generic concepts in Nectriaceae. Studies in Mycology 80: 189–245.
- Lombard L, Polizzi G, Guarnaccia V, et al. (2011). Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia. Persoonia 27: 73–79.
- Lombard L, Rodas CA, Crous PW, et al. (2009). Calonectria (Cylindrocladium) species associated with dying Pinus cuttings. Persoonia 23: 41–47.
- Lombard L, Sandoval-Denis M, Lamprecht SC, et al. (2019). Epitypification of Fusarium oxysporum-clearing the taxonomic chaos. Persoonia 43: 1–47.
- Lombard L, Wingfield MJ, Alfenas AC, et al. (2016). The forgotten Calonectria collection: pouring old wine into new bags. Studies in Mycology 85: 159–198.
- Lombard L, Zhou XD, Crous PW, et al. (2010c). Calonectria species associated with cutting rot of Eucalyptus. Persoonia 24: 1–11.
- Lopes UP, Alfenas RF, Zambolim L, *et al.* (2017). A new species of *Calonectria* causing rot on ripe strawberry fruit in Brazil. *Australasian Plant Pathology* **47**: 1–11.

- Malapi-Wight M, Demers JE, Veltri D, et al. (2016a). LAMP detection assays for boxwood blight pathogens: a comparative genomics approach. Scientific Reports 6: 26140.
- Malapi-Wight M, Salgado-Salazar C, Demers JE, et al. (2016b). Sarcococca blight: use of whole-genome sequencing for fungal plant disease diagnosis. *Plant Disease* **100**: 1093–1100.
- Malapi-Wight M, Veltri D, Gehesquière B, et al. (2019). Global distribution of mating types shows limited opportunities for mating across populations of fungi causing boxwood blight disease. Fungal Genetics and Biology 27: 103246.
- Marin-Felix Y, Groenewald JZ, Cai L, et al. (2017). Genera of phytopathogenic fungi: GOPHY 1. Studies in Mycology 86: 99–216.
- Maryani N, Sandoval-Denis M, Lombard L, et al. (2019). New endemic Fusarium species hitch-hiking with pathogenic Fusarium strains causing Panama disease in small-holder banana plots in Indonesia. Persoonia 43: 48–69.
- Moncalvo JM, Wang HH, Hseu RS (1995). Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia 87: 223–238.
- Nirenburg HI (1981). A simplified method for identifying *Fusarium* spp. occurring on wheat. *Canadian Journal of Botany* 59: 1599–1609.
- O'Donnell K, Cigelnik E (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Molecular Phylogenetics and Evolution* **7**: 103–116.
- O'Donnell K, Kistler HC, Cigelnik E, et al. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the USA 95: 2044–2049.
- Old KM, Wingfield MJ, Yuan ZQ (2003). A manual of diseases of Eucalyptus in South-East Asia. Center for International Forestry Research, Jakarta, Indonesia.
- Peerally MA (1973). Calonectria colhounii sp. nov., a common parasite of tea in Mauritius. Transactions of the British Mycological Society **61**: 89–93.
- Pham NQ, Barnes I, Chen SF, et al. (2019). Ten new species of Calonectria from Indonesia and Vietnam. Mycologia 111: 78–102.
- Polizzi G, Crous PW (1999). Root and collar rot of milkwort caused by Cylindrocladium pauciramosum, a new record for Europe. European Journal of Plant Pathology 105: 407–411.
- Posada D (2008). JModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.
- Prihastuti H, Cai L, Chen H, *et al.* (2009). Characterization of *Colletotrichum* species associated with coffee berries in northern Thailand. *Fungal Diversity* **39**: 89–109.
- Quaedvlieg W, Kema GHJ, Groenewald JZ, et al. (2011). Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26: 57–69.
- Rayner RW (1970). A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew, Surrey, UK.
- Reeb V, Lutzoni F, Roux C, et al. (2004). Contribution of *RPB2* to multilocus phylogenetic studies of the euascomycetes (*Pezizomycotina*, Fungi) with special emphasis on the lichen forming *Acarosporaceae* and evolution of polyspory. *Molecular Phylogenetics and Evolution* **32**: 1036–1060.
- Rodas CA, Lombard L, Gryzenhoinf M, et al. (2005). Cylindrocladium blight of Eucalyptus grandis in Colombia. Australasian Plant Pathology 34: 143–149.
- Sandoval-Denis M, Lombard L, Crous PW (2019). Back to the roots: a reappraisal of *Neocosmospora*. *Persoonia* **43**: 90–185.
- Schoch CL, Crous PW, Wingfield BD, *et al.* (1999). The *Cylindrocladium candelabrum* species complex includes four distinct mating populations. *Mycologia* **91**: 286–298.
- Schoch CL, Seifert KA, Huhndorf S, et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the USA 109: 6241–6246.
- Schoulties CL, El-Gholl NE, Alfieri JrSA (1982). Cylindrocladium spathiphylli sp. nov. Mycotaxon 16: 265–272.
- Schubert TS, El-Gholl NE, Alfieri JrSA, et al. (1989). Calonectria avesiculata sp. nov. Canadian Journal of Botany 67: 2414–2419.
- Sherbakoff CD (1928). Washington palm leaf spot due to Cylindrocladium macrosporum n. sp. Phytopathology 18: 219-225.
- Sobers EK (1968). Morphology and host range of Cylindrocladium pteridis. *Phytopathology* **58**: 1265–1270.
- Sobers EK (1969). Calonectria floridana sp. nov., the perfect stage of Cylindrocladium floridanum. Phytopathology **59**: 364–366.
- Sobers EK (1972). Morphology and pathogenicity of Calonectria floridana, Calonectria kyotensis and Calonectria uniseptata. Phytopathology **62**: 485–487.

Sobers EK, Seymour CP (1967). Cylindrocladium floridanum sp. n. associated with decline of peach trees in Florida. Phytopathology 57: 389–393.

- Stielow JB, Levesque CA, Seifert KA, et al. (2015). One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. *Persoonia* 35: 242–263.
- Swofford DL (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts, USA. V. 4.0b10.
- Tamura K, Stecher G, Peterson D, et al. (2013). MEGA6: Molecular evolutionary genetics analysis v. 6.0. Molecular Biology and Evolution 30: 2725–2729.
- Terashita T (1968). A new species of Calonectria and its conidial state. Transactions of the Mycological Society of Japan 8: 124–129.
- Tubaki K (1958). Studies on the Japanese Hyphomycetes. V. Leaf & stem group with a discussion of the classification of Hyphomycetes and their perfect stages. The Journal of the Hattori Botanical Laboratory **20**: 142–244.
- Van Burik JAH, Schreckhise RW, White TC, et al. (1998). Comparison of six extraction techniques for isolation of DNA from filamentous fungi. *Medical Mycology* 36: 299–303.
- Victor D, Crous PW, Janse BJH, et al. (1997). Genetic variation in Cylindrocladium floridanum and other morphologically similar Cylindrocladium species. Systematic and Applied Microbiology 20: 268–285.
- Viégas AP (1946). Alguns fungos do Brasil: XIII Hifomicetos. Bragantia 6: 353-442.
- Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* **172**: 4238–4246.
- Vu D, Groenewald M, De Vries M, et al. (2019). Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom

fungi and reveals thresholds for fungal species and higher taxon delimitation. *Studies in Mycology* **92**: 135–154.

- Wang MM, Chen Q, Diao YZ, et al. (2019). Fusarium incarnatum-equiseti complex from China. Persoonia 43: 70–89.
- White TJ, Bruns T, Lee S, et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 18: 315–322.
- Wolf FA (1926). Brown leaf spot of leather leaf fern. Journal of the Elisha Mitchell Scientific Society 42: 55–62.
- Woudenberg JHC, Hanse B, Van Leeuwen GCM, et al. (2017). Stemphylium revisited. Studies in Mycology 87: 77–103.
- Wright LP, Davis AJ, Wingfield BD, et al. (2010). Population structure of Cylindrocladium parasiticum infecting peanuts (Arachis hypogaea) in Georgia, USA. European Journal of Plant Pathology 127: 199–206.
- Xia JW, Sandoval-Denis M, Crous PW, et al. (2019). Numbers to names-restyling the Fusarium incarnatum-equiseti species complex. Persoonia 43: 186–221.
- Xu JJ, Qin SY, Hao YY, et al. (2012). A new species of Calonectria causing leaf disease of water lily in China. Mycotaxon 122: 177–185.
- Yamamoto R, Nakagawa A, Shimada S, et al. (2017). Histopathology of red crown rot of soybean. Journal of General Plant Pathology 83: 23–32.
- Ye X, Zhong Z, Liu H, et al. (2018). Whole genome and transcriptome analysis reveal adaptive strategies and pathogenesis of Calonectria pseudoreteaudii to Eucalyptus. BMC Genomics 19: 358.

