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Dynamical determinants enabling 
two different types of flight 
in cheetah gallop to enhance speed 
through spine movement
Tomoya Kamimura1*, Shinya Aoi2, Yasuo Higurashi3, Naomi Wada3, Kazuo Tsuchiya2 & 
Fumitoshi Matsuno4

Cheetahs use a galloping gait in their fastest speed range. It has been reported that cheetahs achieve 
high-speed galloping by performing two types of flight through spine movement (gathered and 
extended). However, the dynamic factors that enable cheetahs to incorporate two types of flight 
while galloping remain unclear. To elucidate this issue from a dynamical viewpoint, we developed a 
simple analytical model. We derived possible periodic solutions with two different flight types (like 
cheetah galloping), and others with only one flight type (unlike cheetah galloping). The periodic 
solutions provided two criteria to determine the flight type, related to the position and magnitude 
of ground reaction forces entering the body. The periodic solutions and criteria were verified using 
measured cheetah data, and provided a dynamical mechanism by which galloping with two flight 
types enhances speed. These findings extend current understanding of the dynamical mechanisms 
underlying high-speed locomotion in cheetahs.

Cheetahs are the fastest land animal. They use a galloping gait in their highest speed range, that involves two 
types of flight in each gait cycle: gathered and extended1–3 (Fig. 1). Gathered flight occurs after the liftoff of the 
forelimbs, in which the forelimbs and hindlimbs are underneath the body, towards the midline. Extended flight 
occurs after the liftoff of the hindlimbs, in which the forelimbs and hindlimbs are extended outwards. These limb 
movements increase stride length, enhancing gait speed. While cheetahs exhibit two flight types, many animals, 
including horses, exhibit only one type of flight (generally gathered flight), and their gait speed is slower than 
that of cheetahs. Extended flight allows cheetahs to use the acceleration produced via the ground reaction forces 
of  the hindlimbs effectively to achieve high-speed locomotion1. Furthermore, cheetahs exhibit remarkable spine 
movement during the flights, which further enhances gait speed. Specifically, the spine movement differs between 
the two types of flight; whereas the spine is flexed during the gathered flight, it is extended during the extended 
flight (Fig. 1), which swings the limbs further and increases the stride length4–8. Although cheetahs are known to 
achieve high-speed locomotion using two types of flight and spine movements, the dynamic factors that enables 
the two types of flight and spine movement while galloping remain unclear.

Animal running consists of the flight phase and stance phase, which are governed by different dynamics. 
During the flight phase, all feet are in the air and the center of mass (COM) of the whole body exhibits ballistic 
motion. Conversely, during the stance phase, some of the feet are in contact with the ground and the body 
receives ground reaction forces. Because of the complex and hybrid nature of the governing dynamics, there are 
limitations to the understanding of the dynamical mechanisms underlying animal running that can be gained 
solely from observations of animals. To overcome the limitations of the observational approach, modeling 
approaches have recently attracted research attention1,9–15. Because the legs can be represented by springs, a 
monopode vertical hopping model was proposed16. A spring-loaded inverted pendulum (SLIP) model was then 
developed to investigate the mechanisms of animal gait from a dynamic perspective, particularly for human 
running17–22. The SLIP model has been improved for examining gait in quadrupeds23–28 to clarify the common and 
unique principles between the animal gaits. Recently, the SLIP model has been further improved to investigate 
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the dynamic roles of spine movement in quadruped running29–35. However, few researchers have focused on the 
types of flight and spine movement during galloping, and the dynamical conditions under which the cheetah 
gallop involves two different flight types through spine movement remain unclear.

To clarify these dynamical conditions, we developed a simple analytical model, which focused on the vertical 
movement and the spine movement based on our previous study32,33. We obtained possible periodic solutions 
with two different flight types through spine movement (like cheetah galloping), and solutions with only one 
flight type (unlike cheetah galloping). The periodic solutions provided two criteria determining the flight type, 
which are related to the position and magnitude of ground reaction forces entering the body. The periodic 
solutions and criteria were verified with the help of measured data from cheetahs, and provided the dynamical 
mechanism by which galloping involving two flight types produces higher-speed locomotion compared with 
galloping involving one flight type. We discuss the biological relevance of our findings.

Results
Model.  We developed a two-dimensional mathematical model emulating the main dynamical characteris-
tics of a cheetah consisting of two rigid bodies and two massless bars (Fig. 2). The bodies are connected by a 
joint, which is modeled to emulate the bending movement of the spine and has a torsional spring with a spring 
constant of K. The bars represent the legs. We assumed that the fore and hind parts of the model have the same 
physical parameters. X and Y are the horizontal and vertical positions, respectively, of the COM of the whole 
body. The spine joint angle is represented by 2φ . The mass and moment of inertia around the COM of each body 
are M and J, respectively. The lengths of each body and leg bar are 2L and H, respectively. The distance between 
the COM and the root of the leg bar, which is the joint between the leg bar and the body, is D. D is positive when 
the root is outside the COM relative to the spine joint. The root positions were not determined by the root joints 
of animal legs, but by the net ground reaction forces, because the leg bars of the model represent the effect of 
net ground reaction forces as impulsive forces, rather than the animal legs themselves. Therefore, D indicates 
the impulse position. The torsional spring is at its equilibrium position when the fore and hind bodies are in a 
straight line ( φ = 0 ). The gravitational acceleration is g.

Although cheetah galloping invoves a large spine movement, the pitching movement of the line connecting the 
root of the neck and the hip, that is the pitching movement of the whole body, is relatively small. In our previous 
work32, we used a model comprising of two rigid bodies and two legs, which was able to perform the spine and 
whole body pitching movements, as well as horizontal and vertical movements. The simulation results revealed 
that the vertical movement of the COM and spine movement were significant determinants of the dynamic 

Figure 1.   Cheetah galloping involves two types of flights through spine movement: gathered and extended.

Figure 2.   Model comprising two rigid bodies and two massless bars. The bodies are connected by a joint with a 
torsional spring. The bars represent the legs.
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characteristics of bounding gait, compared with the whole body pitching and horizontal movements. Specifically, 
when we compared the COM vertical and spine movements between hopping (without the whole body pitch-
ing and horizontal movements) and bounding (with the whole body pitching and horizontal movements) using 
our previous model, significant differences were not observed (Fig. 3). Furthermore, even when we ignored the 
horizontal ground reaction force in our previous work33, the principal dynamic characteristics in bounding gait 
remained unchanged. In the current study, we neglected the horizontal ground reaction force in the model and 
assumed that the leg bars were always perpendicular to the ground, which allowed us to ignore the dynamics of 
X. In addition to the horizontal movement, we also neglected the pitching movement of the whole body, making 
the COM vertical positions of the fore and hind bodies identical, and the fore and hind legs touch the ground 
simultaneously. That is, our model focuses on the vertical hopping movement. Although this movement differs 
from actual galloping in some ways, the COM vertical and spine movements are not significantly affected by this 
assumption, because the dynamical effects of the foot contacts by the fore and hind legs on these movements are 
identical, as explained in more depth in Supplemental Information S1.

Possible periodic solutions.  Because cheetah galloping involves two flight phases and two stance phases 
per gait cycle, we obtained analytical periodic solutions with two flight phases and two foot contacts for each 
gait cycle based on the linearized equations of the governing equations of the model. We defined the periodic 
solution as q̂(τ ) = [ŷ(τ ) φ̂(τ ) ˙̂y(τ ) ˙̂

φ(τ)]⊤ ( 0 ≤ τ < τ1 + τ2 ), where y = Y/H , τ = t/
√

H/g  , j = J/(MH2) , 
k = K/(MgH) , ω =

√

2k/j , and d = D/H ; τ = 0 is the onset time of the first flight phase, τ1 and τ2 are the dura-
tions of the first and second flight phases, respectively, and ∗̇ indicates the derivative of variable ∗ with respect to 
τ . We assumed that τi < 2π/ω ( i = 1, 2 ) because animals do not oscillate their spines more than once in one gait 
cycle. The periodic solution was derived by 

 where ai , bi , ci > 0 , −π ≤ ψi < π , and τi ( i = 1, 2 ) are given as functions of the initial phase ψ1 and the amplitude 
c1 of the spine movement in the first flight phase, as shown in Supplemental Information S2. ψ1 and c1 satisfy 
Ŵ(ψ1, c1) = 0 , where

 Therefore, the periodic solution is determined by one free parameter ( ψ1 or c1 ) and three physical parameters (j, 
d, k). These parameters are determined using measured data from cheetahs, as described below.

Classification of solutions.  The flight phases are classified into two types based on the spine joint move-
ment: gathered and extended. In gathered flight, the spine joint is flexed ( φ̂ < 0 ) at the mid-flight phase. There-
fore, ˙̂φ < 0 is satisfied at the beginning of gathered flight. In extended flight, the spine joint is extended ( φ̂ > 0 ) 
at the mid-flight phase. Therefore, ˙̂φ > 0 is satisfied at the beginning of extended flight. Because periodic solu-
tions have two flight phases per gait cycle, periodic solutions are classified into four types (both gathered, both 
extended, first gathered and second extended, and first extended and second gathered). In addition, some peri-

(1a)ŷ(τ ) =
{

− 1
2 τ

2 + a1τ + b1, 0 ≤ τ < τ1
− 1

2 (τ − τ1)
2 + a2(τ − τ1)+ b2, τ1 ≤ τ < τ1 + τ2

(1b)φ̂(τ ) =
{

c1 cos(ωτ + ψ1), 0 ≤ τ < τ1
c2 cos(ω(τ − τ1)+ ψ2), τ1 ≤ τ < τ1 + τ2

(2)Ŵ(ψ1, c1) =











−ψ2(ψ1, c1)

ω
− a2(ψ1, c1), − π ≤ ψ2(ψ1, c1) < 0

π − ψ2(ψ1, c1)

ω
− a2(ψ1, c1). 0 ≤ ψ2(ψ1, c1) < π

Figure 3.   Comparison of COM vertical and spine movements between hopping and bounding in our previous 
model, modified from Kamimura et al.33 Fr = (averaged velocity)/

√
gL0 indicates Froude number, where L0 is 

the leg length of the model.
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odic solutions have two identical flights, which satisfy q̂(τ ) = q̂(τ + τ1) , a1 = a2 , b1 = b2 , c1 = c2 , ψ1 = ψ2 , and 
τ1 = τ2 . We distinguished such solutions from those that had two different flights, and classified them into two 
types (two identical gathered and two identical extended). The solutions of these two types are identical to those 
obtained in our previous work33.

As a result, the periodic solutions are classified into the following six types, as shown in Fig. 4: 

1.	 Type G: Two identical gathered flights
2.	 Type E: Two identical extended flights
3.	 Type GG: Two different gathered flights
4.	 Type EE: Two different extended flights
5.	 Type GE: Two different flights (first: gathered, second: extended)
6.	 Type EG: Two different flights (first: extended, second: gathered).

Figure 4.   Phase plane of spine joint angle φ and snapshots of six types of solutions. G and E indicate gathered 
and extended flights, respectively. �φ̇ is the difference between φ̇+ and φ̇− , which indicate angular velocities 
immediately prior to and following foot contacts, respectively. ωc1 is the amplitude of angular velocity. ε is ratio 
of the angular velocity change ( ε = �φ̇/ωc1 ). When ε > 1 , solutions have one type of flight (solutions of type G, 
E, GG, and EE). Solutions of type GE and EG satisfy ε < 1.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9631  | https://doi.org/10.1038/s41598-021-88879-0

www.nature.com/scientificreports/

We distinguished types GE and EG with the assumption that the amplitude of oscillation of the spine joint angle 
φ in the first flight phase is greater than that of the second flight phase ( c1 > c2).

The periodic solution provides an important criterion to determine the solution type; the signs of the spine 
movement angular velocities ˙̂φ− and ˙̂φ+ are different for one type of flight (solutions of types G, E, GG, and EE) 
but are identical for two different types of flights (solutions of types GE and EG), where ∗− and ∗+ indicate the 
state immediately prior to and following foot contacts, respectively. This means that, while the direction of the 
spine movement changes with each foot contact for one type of flight, the direction does not change for two 
types of flights.

Evaluation of solutions using measured cheetah data.  From the measured cheetah data, we deter-
mined M = 19 kg, J = 0.53 kgm2 , and H = 0.67 m (M is comparable to the measured data in Hudson et al.36), 
which resulted in j = 0.063 . Figure 5 shows the relationship between the initial phase ψ1 and the amplitude c1 
that satisfies Ŵ(ψ1, c1) = 0 and produces the solution for various values of the impulse position d and the tor-
sional spring constant k, by using the value of the moment of inertia j obtained from the measured data. Specifi-
cally, we used d = −1.5

√
j , −0.5

√
j , 0.5

√
j , and 1.5

√
j , and k = 0.5 , 0.75, and 1.0. The solution type depended 

little on k, largely depending on d. For d = −1.5
√
j and 1.5

√
j , only type G and only type E exist, respectively, 

and the solution is unique for ψ1 and c1 . Conversely, for d = −0.5
√
j , types GG and GE exist, as well as type G, 

and for d = 0.5
√
j , types EE and EG exist, as well as type E. For these values of d, the solution is not necessarily 

unique for ψ1 or c1.
To more clearly show the dependence of the solution type on the impulse position d, Fig. 6a shows the solu-

tion types obtained for d and c1 by projecting the solutions in the d-c1-ψ1 space to the d-c1 plane, where we used 
the torsional spring constant k = 0.80 ( K = 98 Nm/rad) based on Hudson et al.36. Figure 6b shows solutions for 
d and c2 in a similar way to Fig. 6a. Because the spine is never bent at a right angle during galloping, we showed 
the range 0 ≤ ci ≤ π/2 ( i = 1, 2 ). Solutions with two identical flights appear when d  = 0 . Specifically, types 
G and E exist for d < 0 and d > 0 , respectively. Conversely, solutions with two different flights appear when 
−√

j < d <
√
j , including d = 0 . Specifically, types GG and GE exist for −√

j < d < 0 , types GE and EG exist 
for d = 0 , and types EE and EG exist for 0 < d <

√
j . Detailed explanations of the dependence of the solutions 

on these parameters are provided in Supplemental Information S3. These results indicate that the impulse posi-
tion d is another criterion to determine the solution type.

To further clarify important characteristics of the solutions from a dynamic viewpoint, Fig. 6c,d show stable 
solutions from a focused range among the solutions in Fig. 6a,b, respectively. These stable solutions were com-
pared with the measured cheetah data (black circles). While type EG had a small region for stable solution, the 
measured cheetah data were located close to the stable region, as shown in Fig. 6c,d. The measured data were 
also located close to the stable region of type EE.

Evaluation of two criteria.  We obtained two criteria to determine the solution type. Specifically, the first 
criterion showed that the impulse position d has to satisfy −√

j < d <
√
j to achieve two different flight types. 

The other criterion showed that the signs of the spine movement angular velocities ˙̂φ− and ˙̂φ+ have to be identi-
cal at each foot contact. We evaluated these criteria using the measured cheetah data.

First, we obtained d = 0.17± 0.02 (S.E.) and 
√
j = 0.31 , which satisfied −√

j < d <
√
j . The second cri-

terion was evaluated using the ratio ε = �φ̇/ωc1 , where �φ̇ and ωc1 indicate the angular velocity change and 
the amplitude of the angular velocity, respectively (Fig. 4). When ε > 1 , solutions have one type of flight. Con-
versely, solutions with two different flight types have ε < 1 . We obtained ε = 0.61± 0.08 ( �φ̇ = 1.13± 0.16 , 
ωc1 = 1.84± 0.11 ) from the measured cheetah data. The periodic solution showed ε = 0.49 ( �φ̇ = 0.90 , 
ωc1 = 1.8 ) by using the average of measured data for the impulse position d and the spine movement amplitude 
c1 . Both the measured data and periodic solutions satisfied ε < 1.

Evaluation of flight duration.  Short gait cycle durations allow animals to kick the ground frequently for 
acceleration and achieve high-speed locomotion36. From this viewpoint, we investigated the flight phase dura-

Figure 5.   Relationships between ψ1 and c1 for periodic solutions with various values of k and d in the model. 
The solution type depends little on k, but substantially depends on d.
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tion of the periodic solutions, which corresponds to the gait cycle duration in our model. The flight phase dura-
tion is given by (δψ1 + δψ2)/ω , where δψ1 and δψ2 are changes of the phase angle of the spine joint angle during 
the first and second flight, respectively, and are determined by ψ1 and ψ2 , respectively. Specifically, for solutions 
of type EG, δψEG

1 = |2ψEG
1 | and δψEG

2 = |2π − 2ψEG
2 | , as shown in Fig. 7a, where ∗i indicates the constant in 

the solution of type i. For solutions of type EE, δψEE
1 = |2ψEE

1 | and δψEE
2 = |2ψEE

2 | , as shown in Fig. 7b. For solu-
tions of type E, δψE

1 = δψE
2 = |2ψE

1 | , as shown in Fig. 7c. Figure 7d shows δψ1 + δψ2 for the amplitude c1 of the 
spine joint angle φ . While δψ1 + δψ2 is close to 2π for the solution of type EG, it is much larger than 2π for the 
solutions of types E and EE in the range of measured values of the spine movement amplitude c1 obtained from 
cheetahs. When c1 is identical between solutions of types EG, EE, and E, solutions of type EG have the shortest 
flight duration among these solution types.

Discussion
In the current study, to clarify the dynamical conditions under which cheetah gallop can involve two different 
flight types through the spine movement in one gait cycle, we developed a simple analytical model and derived 
periodic solutions. The results revealed six types (G, E, GG, EE, GE, and EG) of possible periodic solutions 
(Fig. 4). These solutions were classified into two types according to their flights: types G, E, GG, and EE involved 
one type of flight, and types GE and EG involved two different flight types.

Conditions under which cheetah gallop involves two different types of flight.  We investigated 
cheetah galloping, focusing on flight and spine movement. Specifically, the cheetah gallop involves two different 
types of flight (gathered and extended); the spine is flexed in gathered flight and extended in extended flight. 
Periodic solutions of types EG and GE involved two different types of flight through spine movement, similar 
to cheetah galloping. Conversely, periodic solutions of types E, G, EE, and GG involved only one type of flight. 
We verified the obtained solutions from the comparison with measured data from cheetahs. In particular, the 
impulse position d and the spine movement amplitudes c1 and c2 of the measured data of cheetahs were close to 
those of the stable solutions of the type EG (Fig. 6b,c). This result suggests that the solutions of the type EG cor-
respond to cheetah galloping. However, the solutions of the types E and EE also exist for the measured d (Fig. 6), 
implying that cheetah gallop does not necessarily involve two types of flight. Our results suggest that cheetahs 

Figure 6.   Solution type for d and c1 (a), and d and c2 (b). Stable solutions among solutions in a focused range of 
d and c1 (c), and d and c2 (d). Black circles and error bars show average values and standard errors of measured 
animal data, respectively.
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select the gallop with two types of flight because it can achieve faster locomotion than galloping with only one 
type of flight, as described later.

The periodic solution led to two important criteria to determine the solution type, which are related to the 
position and magnitude of the ground reaction force entering the body. First, the periodic solution revealed that 
the types of solution depend on the relationship between the impulse position d and the value 

√
j , which is called 

the radius of gyration37. (The radius of gyration is the distance from the COM to the point at which the whole 
mass of the rigid body could be concentrated without changing its moment of inertia.) Specifically, solutions 
with two different flight types appear when |d| < √

j (Fig. 6), meaning that they are obtained when the impulse 
position is located inside the radius of gyration (the proofs are shown in  Supplemental Information S3). We 
evaluated this criterion using the measured cheetah data and showed that cheetah galloping satisfies this condi-
tion (Fig. 6). Second, the periodic solution showed that whereas the signs of the spine angular velocities φ̇− and 
φ̇+ are identical for two different types of flights, they are different for one type of flight (Fig. 4). This criterion 
suggests that the effect of the ground reaction force is too small to change the direction of the spine movement 
in cheetah galloping. To evaluate this criterion, we calculated the angular velocity change �φ̇ of the spine move-
ment caused by the ground reaction force and the amplitude ωc1 of the angular velocity, and obtained the ratio 
ε = �φ̇/ωc1 in the derived solutions and measured cheetah data. When the direction of the spine movement 
does not change, ε < 1 because �φ̇ is smaller than ωc1 . Conversely, when ε > 1 , the direction changes because 
�φ̇ is larger than ωc1 (Fig. 4). We achieved ε < 1 for both the solutions and measured data. This result suggests 
that cheetahs exhibit large spine movement to reduce the effect of the ground reaction force, which prevents the 
direction from changing. This allows cheetah galloping to generate two different flight types.

It has been reported that the relationship between the impulse position d and the radius of gyration 
√
j is 

crucial in quadrupedal walking and running. When 0 < d <
√
j , the energy efficiency in walking and running 

(ambling) is improved38. This is because the moment of inertia is relatively small, and the body is easy to rotate. 
In this study, the obtained periodic solutions showed that when |d| < √

j , the model can achieve types EG and 
GE, which involve large spine movements.

Furthermore, the periodic solutions enabled us to discuss the galloping gait of other animals involving 
only one type of flight. For example, horse galloping involves only gathered flight and rarely or never involve 
extended flight1,5. Previous observational studies have suggested that horses do not exhibit substantial bending 
of the spine1,5. Periodic solutions suggest that horses exhibit only one type of flight because the spine movement 
is small and the direction of the spine movement changes by the ground reaction force during the stance phase, 
in contrast to cheetah galloping.

Figure 7.   Changes δψi ( i = 1, 2 ) of phase angle of spine joint angle φ , for solutions of (a) type EG, (b) type 
EE, and (c) type E. (d) δψ1 + δψ2 for amplitude c1 of spine joint angle φ for periodic solutions. Dashed line is 
average measured c1 values in cheetahs, and gray area shows standard error.
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Different flight types enable high‑speed locomotion.  In cheetah galloping, whereas ground reac-
tion forces caused by the hindlimbs act to accelerate, those caused by the forelimbs act to decelerate. Because 
extended flight occurs after the hindlimb stance, the top-speed is achieved when the hindlimbs leave the ground 
and the speed is maintained until the forelimbs touch the ground. Without the extended flight, the top-speed 
cannot be achieved because the forelimbs touch the ground before the hindlimbs leave the ground1. Therefore, 
the use of the extended flight in addition to the gathered flight achieves a higher speed of locomotion. The 
dynamical roles of fore and hind legs are identical in our model because we used an anterior-posterior symmet-
ric model and ignored the whole body pitching movement. That is, our model focused only on vertical hopping. 
However, there was not any significant difference in dynamical properties, such as spine movement, between 
hopping (without whole body pitching and horizontal movements) and bounding (with whole body pitching 
and horizontal movements) in our previous model33 (Fig. 3). This suggests that the dynamical essence of cheetah 
galloping is explained by hopping. The current findings extend current understanding of how cheetahs achieve 
high-speed locomotion.

Furthermore, short gait cycle durations allow animals to kick the ground frequently for acceleration and 
achieve high-speed locomotion36. Comparison between the periodic solutions and measured cheetah data showed 
that the solutions of types E and EE, which have only one flight type, would be available for cheetahs (Fig. 6). 
However, the periodic solutions revealed that including two different flight types induced shorter gait cycle 
durations compared with including only one flight type (Fig. 7). Our results suggest that cheetah galloping uses 
two different flight types to achieve higher-speed locomotion.

Conclusion
The current study revealed that our simple model has six types of solutions (E, G, EE, GG, EG, and GE) depend-
ing on the spine movement during the flight phase and that the impulse position and the change of the spine 
angular velocity determine the type of solution. In particular, stable solutions of type EG had similar charac-
teristics to the measured data from cheetahs and reproduced cheetah galloping from the perspective of spine 
movement. The obtained solutions suggested the dynamical mechanism by which the galloping with two flight 
types enhances speed. However, because our model neglected the dynamics in horizontal movement, our model 
is limited in terms of understanding gait speed. Furthermore, although it has also been suggested that cheetahs 
achieve high-speed locomotion by extended flight so that the touchdown of the forelimbs does not decelerate 
in the horizontal direction1, our model neglects whole body pitching movement, which induced simultaneous 
touchdown between the fore and hind legs. In addition, our model involved several assumptions that differed 
from real cheetah galloping, including massless legs, instantaneous stance phases, and anterior-posterior sym-
metry of the model. We plan to incorporate these factors to improve our model in future studies.

Furthermore, although we focused on cheetah galloping with two different flight types, many animals, includ-
ing horses, exhibit galloping with one type of flight. The mechanism underlying this difference remains unclear. 
In future, we plan to investigate common and specific mechanisms underlying different types of galloping gait 
by improving our model using measured animal data.

Our model incorporated a torsional spring connecting two rigid bodies. Previous animal data suggest that 
animals use their bodies as elastic structures, such as the tendons in the torso9,39. However, trunk muscles are also 
effectively used as actuators to produce energy for acceleration2,5. Moreover, spine movement improves energy 
efficiency because energy is stored in the elastic elements of the body, then released9,39,40. Finally, in future studies, 
we also intend to investigate the effect of trunk control on locomotion speed and energy efficiency.

Methods
Governing equations of the model.  During the flight phase, the equations of motion for the COM verti-
cal position Y and the spine joint angle φ are given by 

When the foot touches the ground, it receives the ground reaction force. Because the COM vertical positions 
are identical between the fore and hind bodies, the foot contact of the fore and hind legs occurs simultaneously. 
This condition is given by

where Q = [Y φ Ẏ φ̇]⊤ . Because the duty factor in animal galloping is small36, we assumed that the stance phase 
is sufficiently short and that the foot contact can be regarded as an elastic collision, involving energy conservation 
and no position change. The relationship between the states immediately prior to and immediately following 
the foot contact is given by 

(3a)2MŸ = −2Mg ,

(3b)(2J + 2ML2 sin2 φ)φ̈ = −4Kφ −ML2φ̇2 sin 2φ.

(4)R(Q−) = Y− + D sin φ− −H = 0,

(5a)Ẏ+ = − J −MD2 cos2 φ−

J +MD2 cos2 φ− Ẏ− − 2JD cosφ−

J +MD2 cos2 φ− φ̇−,

(5b)φ̇+ = − 2MD cos2 φ−

J +MD2 cos2 φ− Ẏ− + J −MD2 cos2 φ−

J +MD2 cos2 φ− φ̇−.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9631  | https://doi.org/10.1038/s41598-021-88879-0

www.nature.com/scientificreports/

 The derivation of these equations is presented in Supplemental Information S4.
In this study, we solved these governing equations under the condition |φ| ≪ 1 and |φ̇| ≪ 1 using non-

dimensional variables and parameters. The linearization of the equations of motion (3) gives 

 where ∗̇ indicates the derivative of variable ∗ with respect to τ , and ∗̈ indicates the second derivative of variable 
∗ with respect to τ . The foot-contact condition (4) is approximated by

where q = [y φ ẏ φ̇]⊤ . The foot-contact relationship (5) is linearized by

where

Derivation of periodic solution.  We defined the periodic solution as q̂(τ ) = [ŷ(τ ) φ̂(τ ) ˙̂y(τ ) ˙̂
φ(τ)]⊤ 

( 0 ≤ τ < τ1 + τ2 ). Because the foot-contact condition is satisfied at the first foot contact ( τ = τ1 ) and second 
foot contact ( τ = τ1 + τ2 ), (7) gives

From the foot-contact relationship (8) and periodic condition, we obtain

(6a)ÿ = −1

(6b)φ̈ = −ω2φ.

(7)r(q−) = y− + dφ− − 1 = 0,

(8)q+ = Bq−,

B =

















1 0 0 0
0 1 0 0

0 0 − j − d2

j + d2
− 2jd

j + d2

0 0 − 2d

j + d2
j − d2

j + d2

















.

(9)r(q̂−(τ1)) = 0,

(10)r(q̂−(τ1 + τ2)) = 0.

(11)q̂+(τ1) = Bq̂−(τ1),

(12)q̂(0) = Bq̂−(τ1 + τ2).

Figure 8.   Symmetry condition for periodic solution. (a) ŷ+(τ1) = ŷ(0) for ŷ(τ ) . (b) Symmetric periodic 
solutions with respect to τ = τ1/2 and τ = τ1 + τ2/2.
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From the conditions (9)–(12), we determined ten constants ai , bi , ci , ψi , and τi ( i = 1, 2 ) to obtain the periodic 
solution. However, these conditions produced various types of solutions, including solutions that are unlikely 
in animals. Therefore, we focused on solutions which satisfy

so that the COM vertical position remained unchanged at each foot contact, as shown in Fig. 8a. Under this 
assumption, the periodic solution is symmetric with respect to τ = τ1/2 and τ = τ1 + τ2/2 from the periodic 
condition, as shown in Fig. 8b. It has been reported that quadruped animals show this symmetric property in 
locomotion41. The symmetry condition (13) forces the third and fourth rows in (12) to be satisfied and reduces 
two conditions (this proof is presented in Supplemental Information S5). As a result, the number of independent 
conditions is reduced to 9 from 11. To find a unique solution, another condition (e.g., total energy) is needed.

Evaluation of criterion related to spine angular velocity.  The solutions we obtained provided a cri-
terion related to spine angular velocity to determine the solution type; the signs of the spine movement angular 
velocities φ̇− and φ̇+ are different for one type of flight but identical for two different types of flight. This criterion 
suggests that the effect of the ground reaction force is too small to change the direction of spine movement in 
cheetah galloping (Fig. 4). We evaluated the angular velocity changes using measured animal data as follows. The 
difference of φ̇+ and φ̇− is given by

where �p = ẏ+ − ẏ− is the vertical impulse at the foot contact. To investigate the ratio of the angular velocity 
change to the amplitude of the angular velocity, we define

which can be calculated using measured animal data, as shown below. When ε > 1 , solutions have one type of 
flight. Conversely, solutions with two different flight types have ε < 1.

Stability analysis.  When we found periodic solutions, we computationally investigated the local stability 
from the eigenvalues of the linearized Poincaré map around the fixed points on a Poincaré section. We defined 
the Poincaré section by the state just after the second foot contact. Because our model is energy conservative, the 
gait is asymptotically stable when all of the eigenvalues, except for one eigenvalue of 1, are inside the unit cycle 
(these magnitudes are less than 1).

Measurement of animals.  To determine the physical parameters (M, L, and J) of our model, we used 
whole-body computed tomography (CT) from one fresh cadaver of an adult cheetah, obtained from Himeji 
Central Park (Hyogo, Japan). A total of 1941 consecutive cross-sectional images were obtained using a Supria 
scanner (Hitachi Medical Corporation, Tokyo, Japan) at the Yamaguchi University Animal Medical Center. The 
tube voltage and current were set to 120 kV and 200 mA, respectively. The pixel size of each image was 0.841 mm 
and the slice interval was 0.625 mm. Observations of the spinal oscillation of cheetahs during galloping indicate 
that the anti-node is located approximately at the 12th thoracic vertebra (T12). Therefore, we divided the CT 
into the fore and hind parts at T12. We calculated the physical parameters at each part individually and averaged 
them. To calculate the mass M, COM position L, and moment inertia J around the COM, we approximated the 
body as multiple elliptical cylinders and assumed that the density is uniform and 1000 kg/m3.

The length of the leg bar H indicates the height of the leg root during the stance phase of galloping, and is 
different from the actual leg length. To determine H, we used kinematics data of cheetahs measured during gal-
loping. We examined four adult male cheetahs (40–50 kg) at Shanghai Wild Animal Park (Shanghai, China), 
who were raised at the zoo from infancy. The cheetahs were encouraged to run around a 400 m track at the zoo 
using a lure that traveled ahead of them at a speed of 15–18 m/s. Their motion was measured from the side using 
six high-speed cameras (EX-F1 cameras, CASIO, Tokyo, Japan) at a sampling rate of 600 Hz. We analyzed eight 
strides during straight running (five from one cheetah and three from the others). We determined H from the 
average of the heights of the shoulder joint and the greater trochanter of the femur during the stance phase.

All procedures used in the present study were performed according to university Guidelines for the Care and 
Use of Laboratory Animals and were approved by the Ethics and Welfare Committee of Yamaguchi University.

Our model included an impulsive force at the foot contact and the distance D determines the position in the 
model to receive the force. Note that D was not determined by the leg root joints of animals. To determine D, we 
used the vertical ground reaction force data of cheetahs measured during galloping in Hudson et al.36, as well 
as the kinematics data above. Specifically, we first calculated the percentage of the stance phase when half of the 
net impulse during the stance phase was applied in each fore leg and hind leg. We then calculated the horizontal 
positions of the toe and leg root at the moment from the measured kinematic data in the fore legs and hind legs 
individually and averaged them to determine D.

We determined the spring constant K from 
√
2K/J = 2π f  , where f was the stride frequency determined from 

the value estimated in  Hudson et al.36.

(13)ŷ+(τ1) = ŷ(0),

(14)�φ̇ = φ̇+ − φ̇− = d

j
�p,

(15)ε =
�φ̇

ωc1
= d�p

ωc1j
,
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We used the measured amplitudes of the spine oscillation to evaluate the solutions. Specifically, we compared 
the first amplitude c1 and second amplitude c2 of stable solutions of the types GE and EG in the cheetah model 
with the measured amplitudes during the first and second flights of cheetahs.

To estimate the ratio of the angular velocity change ε in (15), we calculated the impulse �p from the meas-
ured ground reaction force data in Hudson et al.36 Specifically, we calculated the vertical impulses of each leg 
individually and averaged them as p̄ . We determined �p = 2p̄ because two legs touch the ground in one stance 
phase (Fig. 1). We determined the spine movement amplitude c1 from the measured amplitude of the first flight 
and ω from ω =

√

H/g
√
2K/J .
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