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Abstract Deterministically growing (wild-type) populations which seed stochasti-
cally developing mutant clones have found an expanding number of applications from
microbial populations to cancer. The special case of exponential wild-type population
growth, usually termed the Luria–Delbrück or Lea–Coulson model, is often assumed
but seldom realistic. In this article, we generalise this model to different types of wild-
type population growth,withmutants evolving as a birth–death branching process. Our
focus is on the size distribution of clones—that is the number of progeny of a founder
mutant—which can be mapped to the total number of mutants. Exact expressions are
derived for exponential, power-law and logistic population growth. Additionally, for
a large class of population growth, we prove that the long-time limit of the clone
size distribution has a general two-parameter form, whose tail decays as a power-law.
Considering metastases in cancer as the mutant clones, upon analysing a data-set of
their size distribution, we indeed find that a power-law tail is more likely than an
exponential one.
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1 Introduction

Cancerous tumours spawning metastases, bacterial colonies developing antibiotic
resistance or pathogens kickstarting the immune system are examples in which events
in a primary population initiate a distinct, secondary population. Regardless of the
scenario under consideration, the number of individuals in the secondary population,
and how they are clustered into colonies, or clones, is of paramount importance. An
approach which has offered insight has been to bundle the complexities of the initia-
tion process into a mutation rate and assume that the primary, or wild-type, population
seeding the secondary, or mutant, population is a random event.

This methodwas pioneered bymicrobiologist Salvador Luria and theoretical physi-
cistMaxDelbrück (Luria andDelbrück 1943). In their Nobel prize winningwork, they
considered an exponentially growing, virus susceptible, bacterial population. Upon
reproduction, with small probability, a virus resistant mutant may arise and initiate a
mutant clone. This model was contrasted with each wild-type individual developing
resistance upon exposure to the virus with a constant probability per individual. By
considering the variance in the total number of mutants in each case, they demon-
strated that bacterial evolution developed spontaneously as opposed to adaptively in
response to the environment.

In the original model of Luria and Delbrück, both wild-type and mutant popula-
tions grow deterministically, with mutant initiation events being the sole source of
randomness. Lea and Coulson (1949) generalised this process by introducing stochas-
tic mutant growth in the form of the pure birth process and were able to derive the
distribution of the number of mutants for neutral mutations. This was again extended
by Bartlett (1955) and later Kendall (1960), who considered both populations devel-
oping according to a birth process. An accessible review discussing these formulations
is given by Zheng (1999).

Recent developments have focused on cancer modelling, where usually mutant cell
death is included in the models. The main quantity of interest in these studies has been
the total number of mutant cells. Explicit and approximate solutions appeared for
deterministic, exponential wild-type growth, corresponding to a fixed size wild-type
population (Angerer 2001; Dewanji et al. 2005; Iwasa et al. 2006; Komarova et al.
2007; Keller and Antal 2015), and fully stochastic wild-type growth either at fixed
time or fixed size (Durrett and Moseley 2010; Antal and Krapivsky 2011; Kessler
and Levine 2015). An exciting recent application has been to model emergence of
resistance to cancer treatments (Kessler et al. 2014; Bozic et al. 2013; Bozic and
Nowak 2014). The current study continues in this vein with our inspiration being
primary tumours (wild-type) seeding metastases (mutant clones).

Interestingly, in the large time smallmutation rate limit, the clone size distribution at
a fixedwild-type population size coincides for stochastic and deterministic exponential
wild-type growth (Kessler and Levine 2015; Keller and Antal 2015). The intuition
behind this observation is that a supercritical birth–death branching process converges
to exponential growth in the large time limit, and, for a small mutation rate, mutant
clones are initiated at large times. So asymptotically the two methods are equivalent,
but the deterministic description of the wild-type population has twofold advantages:
(i) the calculations are much simpler in this case (Keller and Antal 2015), and (ii) the
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method can be easily generalised to arbitrary growth functions. This is the programme
that we develop in the present paper.

The present work differs from previous approaches in two ways. Firstly, motivated
by populations with environmental restrictions, we move away from the assumption
of exponential wild-type growth, a setting which has received limited previous con-
sideration as discussed in Foo and Michor (2014). We shall first review and extend
results for the exponential case and then provide explicit solutions for power-law and
logistic growth. Next, we present some general results which are valid for a large
class of growth functions. This extends the classic results found in Kendall (1948),
Athreya and Ney (2004), Karlin and Taylor (1981), Tavare (1987) and recent work in
Tomasetti (2012), Houchmandzadeh (2015) who considered the wild-type population
growth rate to be time-dependent but coupled with the mutant growth rate. Secondly,
rather than the total number of mutants, our primary interest is on the distribution of
mutant number in the clones initiated by mutation events. This complements Hanin
et al. (2006), which allowed deterministic wild-type and mutant growth, and the treat-
ment of clone sizes for constant wild-type populations found in Dewanji et al. (2011).
Whilewe focus on clone sizes,we demonstrate that the distribution for the total number
of mutants follows as a consequence, and hence, results hold in that setting also.

The outline of this work is as follows. We define our model in Sect. 2, utilising
formalism introduced inKarlin andTaylor (1981), anddemonstrate amappingbetween
the mutant clone size distribution and the distribution for the total number of mutants.
The exact time-dependent size distribution is given for exponential, power-law and
logistic wild-type growth function in Sect. 4. Section 5 pertains to universal features
of the clone size distribution and contains our most significant results. There, for a
large class of wild-type growth functions, we demonstrate a general two-parameter
distribution for clone sizes at large times. The distribution has power-law tail behaviour
which corroborates previous work (Iwasa et al. 2006; Durrett and Moseley 2010;
Williams et al. 2016). Large time results are also given for the mean and variance
of the clone sizes under general wild-type growth. Adopting the interpretation of the
wild-type population as the primary tumour and mutant clones as metastases, we test
our results regarding the tail of the distribution on empirical metastatic data in Sect. 6.
Section 7 considers alternative methods to ours, and we give some concluding remarks
in Sect. 8.

2 Model

In our model, a wild-type population gives rise to mutants during reproduction events.
The arisen mutant also reproduces, and so mutant clones stem from the original initi-
ating mutant’s progeny. In many applications, the wild-type population is significantly
larger than the mutant clones, and so we treat the wild-type population’s growth as
deterministic, with size dictated by a time-dependent function nτ . The mutant clones
are smaller in comparison, and so their growth is stochastic. For logistic wild-type
growth, a sample realisation of the process is shown in Fig. 1. The exact formulation
is now given.
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Fig. 1 (Color figure online)A sample realisation for deterministic logisticwild-type growth,with a carrying
capacity of 50, and stochastic mutant growth. Note that we typically assume the wild-type population is
much larger than individual clones

2.1 The Birth–Death Process

Stochastic growth of mutants will follow a birth–death branching process (Athreya
and Ney 2004). Time is scaled such that each mutant has unit birth rate and death rate
β. A brief note on converting our results to the case when the birth rate is arbitrary is
given in “Appendix B”. Let Zt be the size of a population at time t , with Z0 = 1. The
forward Kolmogorov equation for the distribution is given by

∂tP(Zt = k) = (k−1)P(Zt = k−1)+β(k+1)P(Zt = k+1)− (1+β)kP(Zt = k)
(1)

with k ≥ 1. Its solution in terms of the generating function, given on page 76 of
Bartlett (1955), is

Zt (s) = E(sZt ) = 1 − λ

1 − ξe−λt
, where ξ = β − s

1 − s
, λ = 1 − β. (2)

Due to our timescale, β is the probability of eventual extinction for a mutant clone
for β ≤ 1, and λ is the mutant fitness. When β = 0, and so the stochastic prolifera-
tion follows a pure birth or Yule process, the mutants will be denoted immortal. By
expanding the generating function around s = 0, we obtain for the probability of the
population size being k a geometric distribution with a modified zero term

P(Zt = k) =
{

β/St k = 0

(1 − β/St )(St − 1) S−k
t k ≥ 1,

(3)

with the shorthand notation

St = 1 − βe−λt

1 − e−λt
. (4)
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For the particular case of a critical branching process, i.e. when birth and death rates
are equal, the above probabilities are simplified by observing

lim
β→1

St = t + 1

t
. (5)

2.2 Mutant Clone Size Distribution

Here, we employ standard methods as outlined in, for instance, Karlin and Taylor
(1981), Dewanji et al. (2005). The system is observed at a fixed time t , and we let
the number of wild-type individuals be denoted by nτ for 0 ≤ τ ≤ t . Since mutants
are produced by wild-type individuals, the rate of mutant clone initiations will be
proportional to the product of nτ and the mutation rate μ. More precisely, the process
of clone initiations is an inhomogeneous Poisson process (Karlin and Taylor 1998)
with intensity μnτ . Let the Poisson random variable Kt denotes the number of clones
that have been initiated by t , which has mean

E(Kt ) =
∫ t

0
μnτ dτ.

Now, assuming Kt > 0, we consider a mutant clone sampled uniformly from the
Kt initiated clones and denote its size to be the random variable Yt . The clone was
initiated at the random time T , and as we must have T ≤ t , the density of T is given
by

fT (τ ) = μnτ

E(Kt )
= nτ

at
. (6)

Where

at = E(Kt )

μ
=

∫ t

0
nτ dτ (7)

is the expected number of clones seeded when the mutation rate is unity. The size of
the clone is dictated not only by the initiation time but also by its manner of growth,
here the birth–death process. Hence, by conditioning on the arrival time, we have

P(Yt = k) = 1

at

∫ t

0
nτP(Zt−τ = k) dτ. (8)

An immediate consequence is that the generating function of the clone size is given
by

Yt (s) = E(sYt ) = 1

at

∫ t

0
nτZt−τ (s) dτ, (9)

where Zt (s) is the generating function of the birth–death process (2).
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Wemake the following remarks on the above. (i) Themutation rateμdoes not appear
in the density for initiation times in (6); hence mutant clone sizes are independent of
the mutation rate and thus all following results regarding clone sizes will be also. (ii)
The integral in (8) is a convolution, and as convolutions commute, we may swap the
arguments of the integrand functions (nτZt−τ ↔ nt−τZτ ). (iii) If we start with n0
wild-type individuals, so the wild-type follows mτ = n0nτ , then both the numerator
and denominator in (6) will have a factor of n0, which cancel. So henceforth, apart
fromwhen n0 = 0 (used occasionally for analytic convenience), we set n0 = 1without
loss of generality. (iv) By similar logic, a positive random amplitude for the wild-type
growth function, i.e. mτ = Xnτ for a general positive random variable X , would also
cancel, and so our results on clone sizes hold in that case also.

3 Mapping Distributions: Clone Size to Total Mutant Number

This section is related to the classic Luria–Delbrück problem. Let Bt be the total
number of mutants existing at time t . Then, Bt is the sum of Kt generic clones

Bt =
Kt∑
i=1

(Yt )i ,

where all (Yt )i are iid random variables specifying the clone sizes. As such, Bt is a
compound Poisson random variable, and hence its generating function is

Bt (s) = E(sBt ) = eE(Kt )[Yt (s)−1], (10)

which can be derived by conditioning on Kt . It follows that

E(Bt ) = E(Kt )E(Yt ) and Var(Bt ) = E(Kt )E(Y 2
t ). (11)

The link between the mass functions of the mutant clone size, Yt , and the total number
of mutants, Bt , is given by the recursion

P(Bt = n) =

⎧⎪⎨
⎪⎩
eE(Kt )(P(Yt = 0)−1) n = 0

E(Kt )
n−1∑
k=0

n−k
n P(Bt = k)P(Yt = n − k) n ≥ 1.

This relationship may be found as Lemma 2 in Zheng (1999), and a short proof is
provided for convenience in “Appendix B”, Lemma B1. Hence, while wemay initially
work in the setting of size distribution of a single clone, by the above discussion, results
are transferable to the total number of mutants case.

Often long-time results are sought, which significantly reduces the complexity of
the distributions. For any fixed positive mutation rate, in the long-time limit, an infinite
number of clones will have been initiated, and thus, the probability distributions of
Bt will not be tight (Durrett 1996). A common solution to this problem is the Large
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Population-Small Mutation limit (Keller and Antal 2015), where θ = μnt is kept
constant. Then, for exponential wild-type growth, nτ = eδτ , (or exponential-type, see
Sect. 5), the expected number of initiated clones, E(Kt ), tends to θ/δ for large times.
Hence, we see that

lim
t → ∞

θ constant

Bt (s) = exp

[
θ

δ
( lim
t→∞Yt (s) − 1)

]
,

demonstrating that the limit of the clone size distribution is of primary concern. Fur-
thermore, if the expected number of initiated clones is small, we have the following
proposition, whose proof can be found in “Appendix B”.

Proposition 1 For a small expected number of initiated clones, conditioned on sur-
vival, the size of a single clone and the total number of mutants are approximately
equal in distribution. That is,

P(Bt = k|Bt > 0) = P(Yt = k|Yt > 0) + O(E(Kt )), as E(Kt ) → 0.

One immediate consequence of this result is that for immortal mutants (β = 0) and
E(Kt ) � 1 we have

Bt (s) ≈ (1 − e−E(Kt ))Yt (s) + e−E(Kt ) 	⇒ P(Bt = k) ≈ E(Kt )P(Yt = k) for k ≥ 1.

This agrees with intuition as for small enough E(Kt ), we expect only 0 or 1 clones
to be initiated, and hence, the total number of mutants will be dictated by the clone
size distribution. With exponential wild-type growth, this approximation was used in
Iwasa et al. (2006) to investigate drug resistance in cancer.

4 Finite Time Clone Size Distributions

Three particular cases of wild-type growth function, nτ , will be considered in detail,
namely: exponential, power-law and logistic (Fig. 2). Exponential and logistic growth
arewidely used in biologicalmodelling (Murray 2002). For the power-law cases, under
the assumption that the radius of a spherical wild-type population is proportional to
time, quadratic and cubic power-law growth represents mutation rates proportional
to the surface area and volume, respectively. In each case, we give the generat-
ing function and probability mass function. We stress again that the mutation rate
and an arbitrary positive prefactor for nτ cancel in (8) and so are irrelevant for our
results.

4.1 Exponential Wild-Type Growth

Let the wild-type population grow exponentially, that is nτ = eδτ with δ > 0 and
so from (7), at = eδt−1

δ
. The distribution for the total number of mutants, Bt , was
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Fig. 2 a Growth curves for different wild-type growth functions nτ . b The associated probability mass
functions, derived in Sect. 4, for the clone sizewhenwild-type follows growth curves shown in a. Parameters:
δ = 1.8, λ = 1, t = 9, K = 20,000

treated exhaustively in Keller and Antal (2015), and we follow their notation by letting
γ = δ/λ. Using (10) and the results found in section 3 of Keller and Antal (2015), the
generating function is

Yt (s) = 1 + λ

1 − n−1
t

[
n−1
t F

(
1, γ

1 + γ
; ξn−1/γ

t

)
− F

(
1, γ

1 + γ
; ξ

) ]
. (12)

Similarly, the mass function is

P(Yt = 0) = 1 + λ

1 − n−1
t

[
n−1
t F

(
1, γ

1 + γ
;βn−1/γ

t

)
− F

(
1, γ

1 + γ
;β

) ]

and for k ≥ 1

P(Yt = k) = δ

(nt − 1)

k∑
j=1

(
k − 1

j − 1

)
1

j + γ

(
λ

β − n1/γt

) j

F

(
1, γ

1 + γ + j
;βn−1/γ

t

)

+ δ

(1 − n−1
t )

(k − 1)!
(γ + 1)k

F

(
k, γ

1 + γ + k
;β

)
.

Here, F

(
a, b

c
; z

)
is Gauss’s hypergeometric function, and (a)k is the Pochhammer

symbol defined in “Appendix A”. The above expressions are given in terms of nt to
allow easy comparison to the formulas inKeller andAntal (2015). For these exact time-
dependent formulas, their form is somewhat cumbersome; however, simpler long-time
limit expressions are given in Sect. 5. A reduction in complexity is also obtained for the
special case of neutral mutants (δ = λ) where, by using (24), the generating function
in (12) simplifies to
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Yt (s) = 1 + λ

ξ(1 − e−δt )
log

1 − ξ

1 − ξe−δt
.

If additionally the neutralmutants are immortal, the above expression further simplifies
to

Yt (s) = 1 + 1 − s

sφ
log(1 − sφ) whereφ = 1 − e−δt .

The probabilities are then concisely given by

P(Yt = k) = φk−1

k
− φk

k + 1
or P(Yt > k) = φk

k + 1

which corresponds to the classical Lea–Coulson result (Lea and Coulson 1949)

Bt (s) = (1 − sφ)θ(1−s)/s

with θ = μeδt .

4.2 Power-Law Wild-Type Growth

Now,we assume that the wild-type population grows according to a general power-law
nτ = τρ , for some non-negative integer ρ, and therefore, at = tρ+1

ρ+1 . With power-law
wild-type growth and stochastic mutant proliferation, the mutant clone size generating
function is given by

Yt (s) = β + λ(ρ + 1)!
[
(−1)ρLiρ+1(ξe−λt )

(tλ)ρ+1 +
ρ∑

i=0

(−1)i+1Lii+1(ξ)

(ρ − i)!(tλ)i+1

]
. (13)

Here, Lii (s) is the polylogarithm of order i defined in “Appendix A”. Details of the
derivation are given in “Appendix C”. For immortal mutants, the mass function may
be explicitly written as

P(Yt = m) = (ρ + 1)

mt
+ (ρ + 1)!

mt

[
(−1)ρ

(t)ρ

m∑
k=1

(
m

k

)
(−e−t )k

kρ

+
ρ∑

i=1

(−1)i+1

(t)i (ρ − i)!
m∑

k=1

(
m

k

)
(−1)k

ki

]
. (14)

If mutants may die, the exact mass function is most easily obtained via Cauchy’s inte-
gral formula which may be efficiently computed using the fast Fourier transform. For
a brief discussion on implementation, see Antal and Krapivsky (2010) and references
therein.
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Note for ρ ≥ 1, n0 = 0 which, while useful for analytic tractability, is unrealistic.
This can be overcome by letting nτ = n0 + τρ . Then, by splitting the integral in the
generating function (9) and using the above analysis, one can obtain the mass function
for any n0. However, for practical purposes, the contribution of n0 is negligible.

4.3 Constant Size Wild-Type

For the specific power-law growth when ρ = 0, i.e. nτ = 1 (recall that this is equal
to the general case when nτ = n0), we recover some classical results for constant
immigration (Kendall 1948). We note that the distribution of the ordered clone size,
depending on initiation time, was discussed in Jeon et al. (2008). From (13) with
ρ = 0, the generating function is

Yt (s) = 1 − 1

t
log

(
1 − sS−1

t

1 − S−1
t

)
. (15)

with St as given in (4). By expanding this generating function in terms of s we obtain
the probabilities

P(Yt = k) =
{
1 + t−1 log(1 − S−1

t ) k = 0
1
tk S

−k
t k ≥ 1.

(16)

Then, using (10) with the clone sizes (15) we obtain the generating function of the
total number of mutants

Bt (s) =
[
1 − S−1

t

1 − sS−1
t

]μ

,

and from the binomial theorem we also get the probabilities

P(Bt = m) =
(
m + μ − 1

m

) (
1 − S−1

t

)μ

S−m
t .

We recognise this as a negative binomial distribution under the interpretation that Bt

is the number of failures untilμ successes, with failure probability S−1
t . This result for

Bt was first derived by Kendall (1948) who was attempting to explain the appearance
of the logarithmic distribution for species number when randomly sampling hetero-
geneous populations, conjectured by R.A. Fisher. From the distribution of Bt , by an
argument which may be considered a special case of Proposition 1, he derived that for
constant rate initiation, the clone size conditioned on non-extinction is logarithmically
distributed again with parameter S−1

t , which can be obtained via (16).
Constant immigration may imply a constant size source; hence, mutants with equal

birth and death rates (i.e. evolving as a critical branching process) are particularly
interesting. This case yields analogous formulas to those above but St is replaced with
the expression given in (5).
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4.4 Logistic Wild-Type Growth

Starting from a population of one and having a carrying capacity K , logistic growth
is given by nτ = Keλτ

K+eλτ −1
. We assume neutral mutations, i.e. λ is also the wild-type

growth rate. Integrating the growth function gives at = K
λ
log

( eλt

nt

)
.

We aim to calculate the generating function using (9). Recalling the definition of
Zt−τ (s) we observe that

∫
1

1 − ξe−λ(t−τ)
nτ dτ = K

λ[(K − 1)ξe−λt + 1] log
(
1 − eλτ − K

1 − Aeλτ

)
+ C,

where C is an integration constant. Therefore, the generating function is

Yt (s) = 1 + λeλt

[eλt + (K − 1)ξ ] log( eλt

nt
)
log

(
nt (1 − ξ)

eλt (1 − ξe−λt )

)
.

Agreeing with intuition for K = 1, we recover the generating function of the con-
stant case, and limK→∞ Yt (s) gives the generating function for exponential wild-type
growth. Therefore, the logistic case interpolates between the constant and exponential
growth cases. The mass function can be obtained by expanding the non-logarithmic
and logarithmic function in Yt (s) and using the Cauchy product formula. However,
this method provides little insight, and numerically, it is simpler to use the fast Fourier
transform.

4.5 Monotone Distribution and Finite Time Cut-Off

We conclude this section by demonstrating general features that exist in the clone size
distribution at finite times. Again proofs are provided in “Appendix C”. Firstly, we see
that, regardless of the particular wild-type growth function, the monotone decreasing
nature of the mass function for the birth–death process is preserved in the clone size
distribution.

Proposition 2 As long as nτ is positive for some subinterval of [0, t], then for k ≥ 1
we have P(Yt = k + 1) < P(Yt = k) for any finite t > 0.

Whether P(Yt = 0) ≥ P(Yt = 1) depends on nτ and t , but the inequality is typically
true for long times. Note that in contrast, the mass function of the total number of
mutants is not monotone in general (Keller and Antal 2015).

Now restricting ourselves to the λ > 0 case, as an example, consider the mass
function when the size of the wild-type population is constant, which is given by (16),
and specifically for k ≥ 1. For any moderate t , S−1

t is typically close to unity but for
large k, S−k

t will become the dominant term in themass function, dictating exponential
decay. We term this a cut-off in the distribution which occurs at approximately k =
O(eλt ). It is an artefact of the mass function for the birth–death process (3). Hence,
we will have (at least) two behaviour regimes for the mass function for finite times.
Here, we show that this cut-off exists generally for finite times.
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Theorem 1 Let λ > 0 and nτ be continuous and positive for τ ∈ [0, t]. Then

P(Yt = k) = S−k
t Θt (k),

where Θt (k) is an unspecified subexponential factor, i.e. lim supk→∞ k
√

Θt (k) = 1,
and St is given by (4).

Note that St > 1 for finite t , and St → 1 exponentially fast for large t . Hence,
the cut-off will disappear for long times and the subexponential factor, discussed in
detail in Sect. 5, will completely determine the tail of the distribution. Also notice that
the power-law cases, nτ = τρ , for ρ ≥ 1 are not covered as, to make the analysis
tractable, they artificially start at n0 = 0. However, the generating function in this
case (13) also has its closest to origin singularity at St so the cut-off exists there
also.

5 Universal Large Time Features

Here, we give results regarding the large time behaviour of our model which is relevant
in many applications and also provides general insight. In many applications, the cut-
off location (k = O(eλt )) is so large that the distribution at or above this point is of
little relevance, and hence, for this purpose the limiting approximations now discussed
are of particular interest. Using the notation of Theorem 1, this section investigates
the large time form of Θt (k). The proofs for the results presented in this section can
be found in “Appendix D”. We highlight the power-law decaying, “fat” tail found
in each case. Henceforth, we again assume λ > 0, i.e. a supercritical birth–death
process.

5.1 General Wild-Type Growth Functions

To give general results, we introduce the following assumption which will be assumed
to hold for the remainder of this section.

Assumption 1 For wild-type growth function nτ , we assume

(i) nτ = 0 for τ < 0, continuous for τ > 0 and right continuous at τ = 0.
(ii) nτ is positive and monotone increasing for τ > 0.
(iii) For x ≥ 0 the limit limt→∞ nt−x/nt exists, is positive and finite.

We note that the cases discussed in Sect. 4 are all covered by Assumption 1. The
reason for the seemingly arbitrary limit assumed in (iii) becomes clear with the follow-
ing result which is an application of the theory of regular variation found in Bingham
et al. (1987).

Lemma 1 For x ≥ 0

lim
t→∞

nt−x

nt
= e−xδ∗

, where lim
t→∞

log nt
t

= δ∗ ≥ 0.
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Fig. 3 Illustration of the asymptotic behaviour of the mean and variance as given in Theorem 2

Often the long-time behaviour of the clone size distribution may be separated into
δ∗ > 0 and δ∗ = 0, and so we give the following definition (Flajolet and Sedgewick
2009).

Definition 1 Consider a real valued function f (x) such that

lim
x→∞

log f (x)

x
= δ∗

holds for some δ∗ ∈ R. Then, f (x) is of exponential-type for δ∗ �= 0 and is subexpo-
nential for δ∗ = 0.

Simple examples of subexponential functions are e
√
t , log(t), tρ , while eδt , eδt tρ

are of exponential-type, with δ, ρ ∈ R.

5.2 Mean and Variance

We now address the asymptotic properties of the clone size distribution by first dis-
cussing its mean and variance.

Theorem 2 With si (t) subexponential functions such that s1(t), s3(t) → ∞

E(Yt ) ∼

⎧⎪⎨
⎪⎩

δ∗
δ∗−λ

λ < δ∗

s1(t) δ∗ = λ

e(λ−δ∗)t s2(t) δ∗ < λ

Var(Yt ) ∼

⎧⎪⎪⎨
⎪⎪⎩

δ∗
λ

(
2

δ∗−2λ − 2−λ
δ∗−λ

)
−

(
δ∗

δ∗−λ

)2
2λ < δ∗

s3(t) δ∗ = 2λ

e(2λ−δ∗)t s4(t) δ∗ < 2λ

as t → ∞.

The leading asymptotic behaviour which has different regimes dependent on δ∗/λ
is illustrated in Fig. 3. As an example, for the exponential case nτ = eδτ , by using (11)
and the results found in Keller and Antal (2015), then δ∗ = δ, s1(t) = λt, s2(t) =

δ
λ−δ

, s3(t) = 4t and s4(t) = 2δ
λ(2λ−δ)

.

5.3 Large Time Clone Size Distribution

Turning to the distribution function, we have the following result regarding the gen-
erating function at large times.
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Theorem 3 Let γ ∗ = δ∗/λ. Then for |s| < 1

lim
t→∞

at
nt

(Yt (s) − β) = 1

γ ∗

[
1 − F

(
1, γ ∗

1 + γ ∗; ξ

)]
= −

∑
k≥1

ξ k

γ ∗ + k
.

This result is made clearer in the next corollary, in which the cases of exponential-
type and subexponential growth are separated. This is as, for δ∗ > 0,

lim
t→∞

nt
at

→ δ∗.

For a proof, see LemmaD1. Consequently, in the exponential-type setting, the limiting
result is a proper probability distribution, while in the subexponential case it is not.
We can interpret this as the clone sizes staying finite in the exponential case but grow
to infinity for subexponential cases at large times. Henceforth, for brevity, we do not
impose such a separation but the reader should note that for exponential-type growth
the above limit holds and may simplify further results.

Corollary 1 For |s| < 1,

lim
t→∞(Yt (s) − β) = λ

[
1 − F

(
1, γ ∗

1 + γ ∗; ξ

)]
γ ∗ > 0,

lim
t→∞

at
nt

(Yt (s) − β) = log(1 − ξ) γ ∗ = 0,

where the second expression is the γ ∗ → 0 limit of the first expression. Then for
t → ∞ the probabilities for exponential-type growth γ ∗ > 0 are

P(Yt = k) ∼

⎧⎪⎪⎨
⎪⎪⎩
1 − λ F

(
1, γ ∗

1 + γ ∗ ;β

)
k = 0

δ∗Γ (k)
(γ ∗+1)k

F

(
k, γ ∗

1 + γ ∗ + k
;β

)
k ≥ 1,

and for subexponential growth (γ ∗ = 0)

P(Yt = k) ∼
{

β + nt log(λ)
at

k = 0
nt
at k

k ≥ 1.

This result is exemplified in Fig. 4. The expressions obtained in the δ∗ > 0 case
also appeared as an approximation in Kessler and Levine (2015) for the total number
of mutants with stochastic wild-type and mutant growth when the mean number of
clones is small. This can now be interpreted as an application of Proposition 1.

The case of immortal mutants does not simplify the above expressions for subex-
ponential growth, but for exponential-type growth, by applying (23) then (22) to the
limiting generating function, we have the following link to theYule-Simon distribution
which appears often in random networks (Simon 1955; Krapivsky and Redner 2001).
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Fig. 4 Transition to the asymptotic regime as described in Corollary 1. For subexponential wild-type
growth, the mass functions tend to k−1 behaviour, while for exponential-type it tends to k−1−γ ∗

. Here,
t = 20 and all other parameters are as given in Fig. 2

Corollary 2 For immortal mutants with exponential-type wild-type growth the clone
size distribution Yt follows a Yule-Simon distributionwith parameter δ∗ for large times.
That is, for β = 0, δ∗ > 0,

lim
t→∞Yt (s) = sδ∗

δ∗ + 1
F

(
1, 1

2 + δ∗ ; s
)

,

and thus, for k ≥ 1,

lim
t→∞P(Yt = k) = δ∗Γ (k)

(δ∗ + 1)k
.

With immortal, neutral (δ∗ = 1) mutants we have

lim
t→∞P(Yt = k) = 1

k(k + 1)
.

which is in agreement with the long-time limit of (4.1). For immortal mutants and
exponential-type growth, as the clone size distribution tends to a Yule-Simon distribu-
tion, we expect power-law tail behaviour at large times (Newman 2005). Interestingly,
we see that this behaviour holds when we include mutant death and have general
wild-type growth.

Corollary 3 At large times, the tail of the clone size distribution follows a power-law
with index 1 + γ ∗. More precisely,

lim
k→∞ lim

t→∞
kγ ∗+1at

nt
P(Yt = k) = Γ (1 + γ ∗)

λγ ∗ .

123



2258 M. D. Nicholson, T. Antal

5.4 Large Time Distribution for Total Number of Mutants

Finally, to conclude this section, we give the corresponding results for the total number
of mutants Bt in the often used Large Population-Small Mutation limit.

Theorem 4 Letting θ = μnt be constant and with si (t) subexponential functions as
in Theorem 2

E(Bt ) ∼

⎧⎪⎨
⎪⎩

θat
nt

δ∗
δ∗−λ

λ < δ∗
θat
nt

s1(t) δ∗ = λ
θat
nt

e(λ−δ∗)t s2(t) δ∗ < λ

Var(Bt ) ∼

⎧⎪⎪⎨
⎪⎪⎩

θat
nt

δ∗
λ

(
2

δ∗−2λ − 2−λ
δ∗−λ

)
2λ < δ∗

θat
nt

s3(t) δ∗ = 2λ
θat
nt

e(2λ−δ∗)t s4(t) δ∗ < 2λ

as t → ∞. For |s| < 1

lim
t→∞

θ constant

Bt (s) exp

(
θatλ

nt

)
= exp

(
θ

γ ∗

[
1 − F

(
1, γ ∗

1 + γ ∗; ξ

)])
,

and we have the following tail result

lim
k→∞ lim

t→∞
θ constant

kγ ∗+1 exp

(
θat
nt

)
P(Bt = k) = θΓ (1 + γ ∗)

λγ ∗ .

6 Tail Behaviour in Empirical Metastatic Data

Given the above discussion we expect, for a large class of wild-type growth functions,
to see power tail behaviour on approach to the exponential cut-off in the clone size
distribution. We take the first steps to verify this theoretical hypothesis by analysing
an empirical metastatic data. In this setting, the wild-type population is the primary
tumour and mutant clones are the metastases.

Our data are sourced from the supplementarymaterials in Bozic et al. (2013). These
data are taken from 22 patients; 7 with pancreatic ductal adenocarcinomas, 11 with
colorectal carcinomas, and 6withmelanomas. One patient had only a singlemetastasis
so we discard this data. Of the 21 remaining patients, the number of cells in a single
metastasis ranged from 6×106 to 2.23×109. Our theoretical model predicts a cut-off
in the distribution around k = eλt . Taking some sample parameters from the literature,
namely λ = 0.069/day (Diaz et al. 2012), and t = 14.1 years (Yachida et al. 2010), this
leads to a cut-off around k ≈ 10154 cells. Due to the enormity of this value, we ignore
the cut-off here. Additionally, as the minimum observed metastasis size is 6 × 106

cells, we assume that all data points are sampled from the tail of the distribution.
For each of the data-sets, we examine the likelihood ratio to determine whether

the data is more likely sampled from a power-law decaying or geometrically decaying
distribution. Nineteen of the 21 data-set return the power-law hypothesis as more plau-
sible which is in agreement with the theoretical prediction. Both are single parameter
distributions, and maximum likelihood analysis was utilised to estimate the parame-
ters. The methodology outlined in Clauset et al. (2009) was broadly followed, and
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Fig. 5 Likelihood analysis results: patients are sorted left to right by number of metastases with patient 1
having 30mets to patient 21 having 3. Hence, values to left of figures aremore significant. a Likelihood ratio
R̂ for each data-set. Points above the horizontal line suggest data-set is from a power-law distribution over a
geometric distribution. b Estimate ω̂ for each data-set, determined via maximum likelihood. c Normalised
log-likelihood function for best data-set. Vertical bars show the likelihood interval

brief details regarding calculating maximum likelihood estimates (MLEs) are given in
“Appendix E”. We note that in this context the likelihood ratio point esimator returns
equivalent results to the Akaike information criterion widely used in model selection
(Burnham and Anderson 1998). Under the power-law model, P(Yt = k) ∝ k−ω, for
20 of the 21 data-sets, we find the point estimate of the power-law index, ω̂, lies in
[−2,−1]. The outlier comes from the smallest data-set (3 metastases). Due to the
small size of data-sets, we recognise the influence of statistical fluctuations.

Details of the likelihood ratio are as follows. Let y = (y1, . . . , yN ) be a data-
set of size N . We test the hypothesis that y is drawn from a power-law distribution,
P1(Yt = k) = C1k−ω, versus that it is sampled from a geometric distribution,P2(Yt =
k) = C2 p(1 − p)k , where C1, C2 are normalising constants and p is the parameter
for the geometric distribution. The log-likelihood ratio is

R̂ =
N∑
i=1

[logP1(Yt = yi ) − logP2(Yt = yi )],

where R̂ > 0 gives support to the hypothesis that the data is drawn from the power-
law distribution with MLE exponent ω̂, over the geometric distribution with MLE
parameter p̂. The results are given in Fig. 5a.

Assuming a power-law distribution, the maximum likelihood estimates for the
exponent ω for each data-set are given in Fig. 5b. Due to the small sample size of
our data-sets and the high variance in the distribution, we do not derive confidence
intervals via normal distribution approximations. Instead we show the normalised
log-likelihood, logL(ω)/L(ω̂), for our best data-set, with N = 30, in Fig. 5c, where
L(ω) is the likelihood function. Also, following Hudson (1971), we demonstrate the
likelihood interval defined as

I (ω) =
{
ω : log L(ω)

L(ω̂)
≥ −2

}
.
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If a large sample size was possible this interval would correspond to a 95.4%
confidence interval. For the data-set with N = 30, we numerically determined
I (ω) = [1.295, 1.616], demonstrated as the domain between the vertical bars in
Fig. 5c.

7 Alternative Approaches

7.1 Deterministic Approximation

In order to circumvent the complexity introduced by the birth–death process, one
might be tempted to simply assume the mutant clone size grows according to eλτ , the
mean of the birth–death process. This approach corroborates our results regarding the
tail of the size distribution. Indeed, the clone size density may be found to be

fYt (y) =
nt− log(y)

λ

atλy
. (17)

which has support [1, eλt ]. This formula can also be found in Hanin et al. (2006).
Then, as in Sect. 5 under Assumption 1,

lim
t→∞

at
nt

fYt (y) = 1

yγ ∗+1λ
.

Thus, asymptotically the density has the same behaviour as the tail of the limiting
result given in Corollary 3, but with a different amplitude.

However, despite this agreement, the densities given by (17) for specific wild-type
growth function differ significantly compared with stochastic mutant proliferation.
Letting Y Stoch

t be the clone size distribution with stochastic mutant growth and YDet
t be

its deterministic approximation specified by (17), we may quantify the approximation
error, at least for the moments, by the following theorem, whose proof can be found
in “Appendix F”.

Theorem 5 As t → ∞
E[(Y Stoch

t )m]
E[(YDet

t )m] = m!
λm−1 + O(e−λt ).

7.2 Time-Dependent Rate Parameters

Some authors Houchmandzadeh (2015), Tomasetti (2012) have previously considered
the case where all rates in the system are multiplied by a time-dependent function, say
z(τ ). This is relevant in the scenario where both the wild-type and mutant populations
have their growth restricted simultaneously by environmental factors, for example
exposure to a chemotherapeutic agent. We observe that under a change of timescale
this system is equivalent to our setting with exponential wild-type growth. This is due
to the following argument.
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In this setting, the wild-type population is governed by

dnτ

dτ
= λz(τ )nτ . (18)

Mutant clones are now initiated at a rateμz(τ )nτ . Let Ẑt be the size of a mutant popu-
lation governed by the birth–death process with time-dependent rates. Once initiated,
the size distribution obeys the forward Kolmogorov equation for time-dependent sto-
chastic mutant proliferation

∂tP(Ẑt = k) = z(t)(k − 1)P(Ẑt = k − 1)

+ βz(t)(k + 1)P(Ẑt = k + 1) − (1 + β)z(t)kP(Ẑt = k).
(19)

If we let

F(τ ) =
∫ τ

0
z(s)ds

then under a new timescale, τ ′ = F−1(τ ) , the mutant clone initiation will occur at a
rate μnτ ′ . Further, using the chain rule to express (18) and (19) in terms of τ ′, we see
that nτ ′ = eλτ ′

and that the forward Kolmogorov equation (19) becomes (1). Thus,
under a time-rescaling, all dynamics are equivalent to the system with exponential
wild-type growth and stochastic mutant proliferation with constant birth and death
rates, as studied in this article or in Keller and Antal (2015).

7.3 Poisson Process Characterisation of Tail

Complementing Corollary 3 in Sect. 5, following Tavare (1987), we can also describe
the size distribution for large clones at long times via a Poisson process in the following
way. Let (Z (i)(t))i≥1 be independent copies of the birth–death process as in Sect. 2
and (Ti )i≥1 ⊂ (0,∞) be the points of a of Poisson process with intensity μnτ , for
τ ≥ 0. The Ti represent the clone arrival times, and so Kt is the number of Ti less
than or equal to t .

Let us consider the size of the first clone. By known results about the large time
behaviour of the birth–death process (Athreya and Ney 2004), as t → ∞,

e−λt Z (1)(t − T1) = e−λT1e−λ(t−T1)Z (1)(t − T1) → e−λT1W1 a.s.

The distribution of the limiting random variable W1 is composed of a point mass at 0
and an exponential random variable, precisely

P(W1 ≤ x) = β + λ(1 − e−λx ), x ≥ 0.

Analogously, with the details given in Tavare (1987) (Theorem 3), the limiting behav-
iour of the time-ordered clone sizes is given by

lim
t→∞ e−λt (Z (i)(t − Ti ))i≥1 = (e−λTi Wi )i≥1 a.s.
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whereW1 is as before and allWi are iid. The random sequence (e−λTi Wi )i≥1 takes non-
negative real values; however, if we restrict our attention to only the positive elements
(that is clones that do not die), then these can be taken to be points from a non-
homogeneous Poisson process. More precisely, the set {σ j } j≥1 := {e−λTi Wi }i≥1 \ {0}
are the points (in some order) from a Poisson process on (0,∞) with mean measure

m(x,∞) = μ

∫ ∞

x
nλ−1 log(s/x)

e−λs

s
ds, x > 0. (20)

The proof of the above only requires minor modification from that of Theorem 4 in
Tavare (1987).

The Poisson process description of the large clones, at large times, can also offer
insight into further properties of the system, including links to the Poisson-Dirichlet
distribution, see Tavare (1987), Durrett (2015). With regards to the present article, the
interesting point is that for fixed ε > 0, as the number of σ j > ε is finite almost surely,
we may sample unformly from this set (i.e. {σ j } j≥1 ∩ (ε,∞)) and construct a random
variable Yε with distribution

P(Yε > x) = m(x,∞)

m(ε,∞)
, x ≥ ε

where m(x,∞) is as in (20). The new variable Yε can be related to the previously
considered random variable Yt by the following result, whose proof is contained in
“Appendix F”.

Theorem 6 For ε > 0, with Yε as above,

lim
t→∞P(Yte

−λt > x |Yte−λt > ε) = P(Yε > x), x ≥ ε.

Of note is the reappearance of power-law behaviour with a cut-off in the density
of Yε. For example in the constant wild-type case, nτ = 1, the density, using (20), is
given by

fYε (x) = d

dx
P(Yε ≤ x) = e−λx

xΓ (0, λε)
, x ≥ ε.

For exponential growth with neutral mutants, nτ = eλτ ,

fYε (x) = e−λx

x2
(1 + λx)εeλε, x ≥ ε.

Note that the exponents in the power-law terms is equal to that given in Corollary 3,
indicating the two approaches are complimentary.

8 Discussion

In this study, we focus on the size distribution for mutant clones initiated at a rate
proportional to the size of the wild-type population. The size of the wild-type popula-
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tion is dictated by a generic deterministic growth function, and the mutant growth is
stochastic. This shifts the focus from previous studies which have mostly been con-
cerned with exponential, or mean exponential, wild-type growth, and considered the
total number of mutants. Results for the total number of mutants are, however, easily
obtained from the clone size distribution.

The special cases of exponential, power-law and logistic wild-type growth were
treated in detail, due to their extensive use inmodels for various applications.Utilising a
generating function centred approach, exact time-dependent formulaswere ascertained
for the probability distributions in each case. Regardless of the growth function, the
mass function is monotone decreasing and the distribution has a cut-off for any finite
time. This cut-off goes to infinity for large times and is often enormous in practical
applications; hence, we focused on the approach to the cut-off.

We found that the clone size distribution behaves quite distinctly for exponential-
type versus subexponential wild-type growth. Although the probability of finding a
clone of any given size stays finite as t → ∞ for exponential-type growth, it tends to
zero for subexponential type. Despite these differences, with a proper scaling, for a
large class of growth functions,weproved that the clone size distributionhas a universal
long-time form. This long-time form possesses a power-law “fat” tail which decays
as 1/k for subexponential wild-type growth, but faster for exponential-type growth.
This can be intuitively understood as the tail distribution represents clones that arrive
early, and the chance that a clone is initiated early in the process is larger for a slower
growing wild-type function. Hence, we expect a “fatter” tail in the subexponential
case.

Note that although we consider the case of subexponential wild-type growth, sur-
viving mutant clones will grow exponentially for large time, which can be unrealistic
in some situations. Stochastic growth which accounts for environmental restrictions,
for instance the logistic branching process, introduces further technical difficulties and
is left for future work. We do note that, despite the drawbacks of deterministic mutant
growth as discussed in Sect. 7, when both the wild-type and mutant populations grow
deterministically as τρ , it is easy to see that for large times the clone size distribution
still displays a power-law tail, limt→∞ t fYt (y) = ρ+1

ρ
y1/ρ−1.

Anunderlyingmotivation for thiswork is the scenario of primary tumours spawning
metastases in cancer. We test our hypothesis regarding a power-law tail in metastasis
size distributions by analysing empirical data. For 19 of 21 data-sets, the power-law
distribution is deemed more likely than an exponentially decaying distribution. The
exponent of the power-law decay was estimated in each case and found to lie between
−1 and −2. Interpreting this in light of our theory, either the primary tumour had
entered a subexponential growth phase or, if one assumes exponential primary growth,
the metastatic cells had a fitness advantage compared to those in the primary. Either
way we can conclude that, for the majority of patients, the metastases grew faster than
the primary tumour.
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Appendix A: Special Functions, Definitions and Requisite Results

Required definitions and identities taken from DLMF (2016) unless otherwise stated.
With s, z ∈ C the polylogarithm of order s is defined as

Lis(z) =
∑
k≥1

zk

ks
.

Note that Li1(z) = − log(1 − z). A required identity (from Weisstein 2016) is

Li−n(z) =
n∑

k=0

k!S(n + 1, k + 1)

(
z

1 − z

)k+1

(21)

for n ∈ N. Here, S(n, k) are the Stirling numbers of the second kind.
Gauss’s hypergeometric function also appears and for complex a, b, c, z is defined

by the power series

F

(
a, b

c
; z

)
=

∑
k≥0

(a)k(b)k
(c)k

zk

k! for |z| < 1,

and by analytic continuation elsewhere. Here, (a)k denotes the Pochhammer symbol
or rising factorial, that is

(a)k = Γ (a + k)

Γ (a)
= a(a + 1)(a + 2) · · · (a + k − 1).

Some required identities for the hypergeometric function are:

F

(
a, b

c
; z

)
= (1 − z)−b F

(
c − a, b

c
; z

z − 1

)
, (22)

F

(
1, b

c
; z

)
= 1 + b

c
z F

(
1, b + 1

c + 1
; z

)
, (23)

F

(
1, 1

2
; z

)
= − log(1 − z)

z
, (24)

and the following connection can be made to the incomplete beta-function

za

a
F

(
a, 1 − b

a + 1
; z

)
= Bz(a, b) =

∫ x

0
ta−1(1 − t)b−1 dt. (25)
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For any analytic function f (z) = ∑
n≥0 fnzn , we denote the nth coefficient as

[zn] f (z) = fn .

Theorem A1 (Flajolet and Sedgewick 2009: Exponential Growth Formula) If f (z)
is analytic at 0 and R is the modulus of a singularity nearest the origin in the sense
that R := sup{r ≥ 0| f is analytic in |z| < r}. Then the coefficient [zn] f (z) satisfies
fn = R−nΘ(n) where lim supn

n
√|Θ(n)| = 1.

We utilise several results from Bingham et al. (1987) on the theory of regularly
varying functions which we now define.

Definition 2 (Bingham et al. 1987) A Lebesgue measurable function f : R+ �→ R

that is eventually positive is regularly varying (at infinity) if for some κ ∈ R,

lim
t→∞

f (t x)

f (t)
= xκ , x > 0.

The notation f ∈ RVκ will be used and we will denote f ∈ RV0 as slowly varying
functions.

Theorem A2 (Bingham et al. 1987: CharacterisationTheorem) Suppose f : R+ �→
R ismeasurable, eventually positive, and limt→∞ f (t x)

f (t) exists, and is finite and positive
for all x in a set of positive Lebesgue measure. Then, for some κ ∈ R,

(i) f ∈ RVκ .
(ii) f (y) = yκ l(y) where l ∈ RV0.

Proposition A1 (Bingham et al. 1987: Proposition 1.3.6) For f ∈ RVκ

limt→∞ log f (t)
log t = κ.

Theorem A3 (Bingham et al. 1987: Karamata’s Theorem) If f ∈ RVκ , X sufficiently
large such that f (y) is locally bounded in [X,∞), and κ > −1, then

∫ y

X
f (s) ds ∼ y f (y)

κ + 1
as y → ∞.

Proposition A2 (Bingham et al. 1987: Proposition 1.5.9.a) Let l ∈ RV0 and choose
X so that l is locally integrable on [X,∞) . Then,

(i)
∫ x
X

l(t)
t dt ∈ RV0 .

(ii) 1
l(x)

∫ x
X

l(t)
t dt → ∞ as x → ∞.

Appendix B: Proofs for Section 3

In this work, we have fixed the birth rate to be one. Other works, for example Keller
and Antal (2015), use a birth–death process with birth rate α′ and death rate β ′ under
timescale t ′. Then, the timescale used in the present work is defined by t = α′t ′. This
in turn implies that all rates under t are given by dividing the corresponding rate under
t ′ by α′, e.g. β = β ′

α′ .
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Lemma B1 Consider generating functions F(s) = ∑
n≥0 pns

n and G(s) =∑
n≥0 qns

n where F(s) = eG(s). Then p0 = eq0 and for n ≥ 1 the following recursion
holds

npn =
n−1∑
k=0

(n − k)pkqn−k .

Proof Clearly, p0 = eq0 from F(0) = eG(0). By differentiating F(s), we obtain
F ′(s) = F(s)G ′(s), and in general

F (n)(s) =
n−1∑
k=0

(
n − 1

k

)
F (k)(s)G(n−k)(s)

which can be shown by induction using Pascal’s formula for binomial coefficients.
Evaluating the above equation at s = 0 and using that F (m)(0) = m!pn and
G(m)(0) = m!qn we arrive at the announced recursion. ��
Proof of Proposition 1 Utilising generating functions,

E(sBt |Bt > 0) = Bt (s) − Bt (0)

1 − Bt (0)
= eE(Kt )(Yt (s)−1) − eE(Kt )(Yt (0)−1)

1 − eE(Kt )(Yt (0)−1)

= E(Kt )(Yt (s) − 1) − (Yt (0) − 1))

−E(Kt )(Yt (0) − 1)
+ O(E(Kt ))

= Yt (s) − Yt (0)

1 − Yt (0)
+ O(E(Kt )) = E(sYt |Yt > 0) + O(E(Kt )).

��

Appendix C: Proofs for Section 4

We derive the generating function for the clone size distribution for stochastic growth
and power-law wild-type growth, nτ = τρ , given in (13). From (9), we have

Yt (s) = ρ + 1

tρ+1

∫ t

0
τρ

(
1 − λ

1 − ξe−λ(t−τ)

)
dτ

= 1 − (ρ + 1)λ

tρ+1

∫ t

0

τρ

1 − ξe−λ(t−τ)
dτ.

It is enough to show

∫
τρ

1 − ξe−λ(t−τ)
dτ = τρ+1

ρ + 1
+ ρ!

ρ∑
i=0

(−1)i

(ρ − i)!λi+1 τρ−iLii+1(ξe
−λ(t−τ)) + C

(26)
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whereC is a constant of integration. Thismaybederived by abinomial expansion of the
denominator and an identity for the incomplete gamma function, but for succinctness
we simply differentiate both sides with respect to τ . First, we note that

z∂zLii (z) = Lii−1(z).

Now differentiating the right hand side of (26) yields

τρ + τρλLi0(ξe−λ(t−τ))

λ
+ ρ!

ρ−1∑
j=0

(−1) j (ρ − j)τρ− j−1Li j+1(ξe−λ(t−τ))

(ρ − j)!λ j+1

+ ρ!
ρ∑

i=1

(−1)iτρ−iλLii (ξe−λ(t−τ))

(ρ − i)!λi+1 = τρ(1 + Li0(ξe
−λ(t−τ)))

where the equality follows by the telescoping nature of the sums. Noting that (1 −
ξe−λ(t−τ))−1 = Li0

(
ξe−λ(t−τ)

) + 1 and applying the limits of the integral gives the
desired result.

To determine the mass function, we seek a power series representation of the gen-
erating function. We focus on the β = 0 case and thus ξ = s

s−1 . By the definition of
the polylogarithm and the binomial theorem

Lii

(
s

s − 1

)
=

∑
k≥1

∑
j≥0

(
k + j − 1

j

)
(−1)k

s j+k

ki
.

Reindexing the sum, we obtain

Lii

(
s

s − 1

)
=

∑
m≥1

sm
m∑

k=1

(
m − 1

m − k

)
(−1)k

ki
and Lii

(
se−t

s − 1

)
=

∑
m≥1

sm
m∑

k=1

(
m − 1

m − k

)
(−e−t )k

ki
.

Applying this to the polylogarithmic terms in Yt (s), and noting

m∑
k=1

(
m − 1

m − k

)
(−1)k

ki
= 1

m

m∑
k=1

(
m

k

)
(−1)k

ki−1 and
m∑

k=1

(
m

k

)
(−1)k = −1,

yields (14) as the desired mass function.

Proof of Proposition 2 Using (8), we see that for k ≥ 1

P(Yt = k + 1) − P(Yt = k) = 1

at

∫ t

0
nt−τ [P(Zτ = k + 1) − P(Zτ = k)] dτ.

Now from (3), it is clear that the integrand is negative for finite, positive τ giving the
result. ��
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Proof of Theorem 1 The result is an application of Theorem A1. We seek the closest
to the origin singularity of

It (s) =
∫ t

0
nτZt−τ (s) dτ =

∫ t

0
nt−τZτ (s) dτ

which is claimed to be at St . Indeed, we note that for |s| < St , Zτ (s) is analytic for
all τ , and as nτ is continuous, we can conclude that the It (s) is analytic in this region
also [Chapter 2, Theorem 5.4 in Stein and Shakarchi (2003)]. As nτ > 0 there exists
ε > 0 such that

|It (s)| ≥ ε

∣∣∣∣
∫ t

0
Zτ (s) dτ

∣∣∣∣ = ε

∣∣∣∣βt + log

[
λ

1 − βe−λt − s(1 − e−λt )

]∣∣∣∣.
The rightmost expression can be seen to have closest to origin singularity at St and as
atYt (s) = It (s), by Theorem A1, we can conclude Theorem 1. ��

Appendix D: Proofs for Section 5

Proof of Lemma 1 Choose x ≥ 0 and let y = et , c = e−x . Consider the function
g(z) = nlog(z). Then Theorem A2(i) yields

lim
t→∞

nt−x

nt
= lim

y→∞
g(yc)

g(y)
= cδ∗ = e−xδ∗

.

Further, Proposition A1 gives

lim
y→∞

log g(y)

log y
= lim

t→∞
log(nt )

t
= δ∗ ≥ 0.

The non-negativity of δ∗ is dictated by the monotone increasing nature of nτ . ��
To prove Theorem 2, we require the following:

Lemma D1 Let s1(t), s2(t) be subexponential functions, then

(i) nt = etδ
∗
s1(t).

(ii) For η ≥ 0, C > 0

∫ t

0
nτ e

−ητ dτ ∼

⎧⎪⎨
⎪⎩

e(δ∗−η)t s1(t)
δ∗−η

η < δ∗

s2(t) δ∗ = η

C δ∗ < η

as t → ∞.

We highlight that neither subexponential function depend on η.
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Proof (i) For y = et , nlog y = g(y). Now g ∈ RVδ∗ hence g(y) = yδ∗
l(y) with

l ∈ RV0 by Theorem A2(ii). Setting s1(log y) = l(y), by Lemma 1, s1(t) is subexpo-
nential. (ii) Let g(y) be as above. With δ∗ > η ≥ 0 and using the change of variables
s = log τ we have

∫ t

0
nτ e

−ητ dτ =
∫ y

1
g(s)s−1−η ds ∼ y−ηg(y)

δ∗ − η
= e(δ∗−η)t s1(t)

δ∗ − η
(27)

where the asymptotic equivalence is due to Theorem A3 applied to g(y)y−1−η ∈
RVδ∗−η−1 and the final equality is by part (i). For δ∗ = η, by Theorem A2(ii) the
integrand will be a subexponential function. Applying the same change of variables as
in (27), we see by Proposition A2(i) that the integral is a slowly varying function in y
and hence is subexponential in t , which we denote s2(t). Now for δ∗ < η, by Lemma
1, we may choose t large enough such that n1/tt < e(δ∗+η)/2 which by a basic result
for Laplace transforms, see, e.g. Theorem 1.11 in Schiff (1999), ensures convergence
to a finite, positive constant. ��

As an example, which will be useful for the next proof, we apply the above lemma
to at . With s1(t), s2(t) subexponential functions

at =
∫ t

0
nτ dτ ∼

{
eδ∗t s1(t)

δ∗ δ∗ > 0

s2(t) δ∗ = 0
as t → ∞.

Proof of Theorem 2 We require the first and second moments of Zt which may be
found by differentiating (2), or see Lemma F1. Then

E(Yt ) = 1

at

∫ t

0
nτE(Zt−τ ) dτ = eλt

∫ t
0 nτ e−λτ dτ∫ t

0 nτ dτ
, (28)

E(Y 2
t ) = 1

at

∫ t

0
nτE(Z2

t−τ ) dτ

= e2λt

atλ

(
2

∫ t

0
nτ e

−2λτ dτ − (2 − λ)e−λt
∫ t

0
nτ e

−λτ dτ

)
. (29)

Throughout let st be a generic subexponential function and it will be helpful to observe
that the reciprocal or constant multiples of a subexponential function are subexponen-
tial. We first consider the mean. For the cases δ∗ �= λ, applying Lemma D1(ii) to (28)
with η = λ for the numerator and η = 0 for the denominator proves the claim. For
δ∗ = λ, using Lemma D1(i) then (ii), we have

E(Yt ) = eδ∗t ∫ t
0 e

δ∗τ sτ e−δ∗τ∫ t
0 e

δ∗τ sτ dτ
∼ δ∗ ∫ t

0 sτ dτ

st
= s1(t). (30)

That s1(t) diverges can be seen by applying the standard change of variables t =
log(y), τ = log(s) coupled with Proposition A2(ii). Turning to the variance, with
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Var(Yt ) = E(Y 2
t ) − E(Yt )2, when δ∗ > 2λ we apply Lemma D1(ii) term by term to

(29). For δ∗ < λ all integrals converge and so, with C1, C2 constants,

Var(Yt ) ∼ e2λt

at

(
C1 − C2

at

)
∼ C1

e2λt

at
.

The last relation is due to the monotonicity of at and the desired representation is
obtained by applying Lemma D1(ii) to at and absorbing C1 into s4(t). When λ ≤
δ∗ < 2λ, the same argument holds as long as we note that

e−λt
∫ t

0
nτ e

−λt dτ = e−λt
∫ t

0
e(δ∗−λ)τ sτ dτ ≤ e−(2λ−δ∗)t

∫ t

0
sτ dτ.

By Proposition A2(i) the rightmost integral is a subexponential function and as we
may always choose t sufficiently large such that s1/tt < e2λ−δ∗

, we find

e−λt
∫ t

0
nτ e

−λt dτ → 0.

Applying Lemma D1 to a−1
t

∫ t
0 nτ e−λt dτ demonstrates the contribution from the

mean squared is negligible. For δ∗ = 2λ, we apply the same argument as in (30) to
each term and this completes the proof. ��

In order to prove Theorem 3, we require the following lemma.

Lemma D2 For |s| < 1, β ∈ [0, 1), u ∈ [0, 1] and ξ as in (2), we have∣∣∣∣ ξ

1 − ξu

∣∣∣∣ ≤
∣∣∣∣ β − s

1 − max{β, |s|}
∣∣∣∣ .

Proof By the definition of ξ ,

ξ

1 − ξu
= β − s

1 − s − (β − s)u
.

The triangle inequality yields

|1 − s − βu + su| = |1 − (βu + s(1 − u))| ≥ |1 − |βu + s(1 − u)||

and
|βu + s(1 − u)| ≤ uβ + (1 − u)|s| ≤ max{β, |s|}.

The claimed inequality now follows. ��
Proof of Theorem 3 To avoid division by 0 let t > 0. Taking the generating function
for Yt from equation (9), we apply the change of variables u = e−λτ which gives

Yt (s) − β = − 1

at

∫ 1

e−λt
nt+ log u

λ

ξ

1 − ξu
du.
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Now recalling nτ = 0 for τ < 0 and multiplying both sides by at
nt

yields

at
nt

(Yt (s) − β) = −
∫ 1

0

nt+ log u
λ

nt

ξ

1 − ξu
du.

Noting that by monotonicity nt+ log u
λ

/
nt ≤ 1, which coupled with Lemma D2 shows

the integrand may be dominated. By assumption, the integrand converges, and there-
fore, using Lemma 1 and the dominated convergence theorem, we have

lim
t→∞

at
nt

(Yt (s) − β) = −
∫ 1

0
uδ∗/λ ξ

1 − ξu
du = −1

ξγ ∗ Bξ (γ
∗ + 1, 0)

= 1

γ ∗

[
1 − F

(
1, γ ∗

1 + γ ∗ ; ξ

)]
.

The final equality follows from applying (25) then (23). ��
Proof of Corollary 1 The first statement is given by applying Lemma D1(ii) to at/nt .
Then, taking the limiting generating function in Theorem 3, we firstly apply (23) then
(24) which yields generating function representation for γ ∗ = 0. The mass function
for γ ∗ = 0 is simply a logarithmic expansion. For γ ∗ > 0, we use the expression
given in Appendix A of Keller and Antal (2015) to obtain a series expansion for the
generating function in terms of s, and the coefficients of the expansion give the mass
function. ��
Proof of Corollary 3 The analysis involves expanding the limiting generating function
in Theorem 3 around its singularity at s = 1 and exactly mirrors that given in section
6 of Keller and Antal (2015) and so is omitted. ��
Proof of Theorem 4 The mean and variance can be obtained by using (11) with The-
orem 2 (the second moment dominates the mean squared in all divergent cases). For
the generating function, (10) gives

Bt (s) = exp [μat (Yt (s) − 1)] = exp

[
θ
at
nt

(Yt (s) − β + β − 1)

]

which coupled with Theorem 3 yields the result. The map in (10) is analytic so the
tail can be obtained by its expansion coupled with Corollary 3. ��

Appendix E: Maximum Likelihood Estimators for Distributions
Considered

Consider a data-set y = (y1, . . . , yN ) assumed to be a realisation of the random
vector Yt = (Y (1)

t , . . . ,Y (N )
t ) where all Y (i)

t are iid random variables representing the
metastasis sizes and let m = min(y). Then the maximum likelihood estimator (MLE)
ω̂ for a one parameter probability distribution P(Yt = y;ω) is
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ω̂ = argmax
ω

log(L(ω)) = argmax
ω

log(P(Yt = y;ω))

= argmax
ω

log

[ N∏
i=1

P(Y (i)
t = yi ;ω)

]

where L(ω) is the likelihood function and the joint distribution becomes a product
by independence. We derive the MLE under the assumption that the data is sampled
from a distribution whose tail follows the geometric distribution, the power-law case
is analogous but for the final step.

Assume for at least y ≥ m, thatP2(Yt = y; p) = C2 p(1− p)y . Let A = P(Yt < m)

(no indices are required as this quantity is assumed independent of the tail) then

∑
y≥m

P2(Yt = y; p) =
∑
y≥m

C2 p(1 − p)y = 1 − A 	⇒ C2 = (1 − A)(1 − p)−m .

The log-likelihood is now given by

logL(p) = N log(1 − A) − mN log(1 − p) + N log(p) + log(1 − p)
N∑
i=1

yi .

Setting ∂p logL(p) = 0, we solve to find the MLE

p̂ = N∑N
i=1 yi + N (1 − m)

.

The power-law case is analogous. There C1 = 1−A
ζ(ω,m)

, where ζ is the Hurwitz zeta
function. No closed form expression is found for the MLE and instead we have the
approximation (Clauset et al. 2009)

ω̂ ≈ 1 + N

[ N∑
i=1

log

(
yi

m − 1
2

)]−1

.

This was used for the estimates given in Sect. 6.

Appendix F: Proofs for Section 7

In order to prove Theorem 5, we require the following lemma regarding the moments
of the birth–death process:

Lemma F1

E(Zm
t ) = λ

(1 − βe−λt )

m∑
k=0

k!S(m + 1, k + 1)

(
eλt − 1

λ

)k

,
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where S(m, k) are Stirling numbers of the second kind. Hence, as t → ∞,

E(Zm
t ) = m!emλtλ−(m−1) + O(e(m−1)λt ).

Proof of Lemma F1 Recall the generating function for the birth–death process (2)
whose power series representation has coefficients given by (3). The moment gener-
ating function is MZt (s) = Zt (es) and hence

Zt (e
s) − Zt (0) =

(
1 − βS−1

t

)
(St − 1)

∑
j≥1

S
− j
t es j .

Thus for m ≥ 1

E(Zm
t ) = ∂ms Zt (e

s)|s=0 =
(
1 − βS−1

t

)
(St − 1)

∑
j≥1

S
− j
t jm .

Since
∑

j≥1 S
− j
t jm = Li−m(S−1

t ), we can use (21) and thus arrive at our first result.
Note S(m,m) = 1 and so focusing on the leading order in t , the summand with k = m

is m!
(

eλt−1
λ

)m

= m!emλtλ−m + O(e(m−1)λt ), which proves the claim. ��

Proof of Theorem 5 In the deterministic case, we have

E((YDet
t )m) = 1

at

∫ t

0
nτ e

mλ(t−τ) dτ.

The moments for stochastic mutant growth are obtained from the moment generating
function MYt (s) = Yt (es). The moments are therefore

E((Y Stoch
t )m) = ∂ms MYt (0) = 1

at

∫ t

0
nτ ∂

m
s Zt−τ (e

s)|s=0 dτ.

Hence, using the second statement in Lemma F1, we have

E((Y Stoch
t )m)

E((YDet
t )m)

= m!
λm−1 + O(e−λt )

which is the desired result. ��
Proof of Theorem 6 Immediately from (8), we see

P(Yt > xeλt |Yt > εeλt ) = P(Yt > xeλt )

P(Yt > εeλt )
=

∫ t
0 nt−τP(Zτ > xeλt ) dτ∫ t
0 nt−τP(Zτ > εeλt ) dτ

.

It is enough to examine the numerator. As, from (3),

P(Zt > k) = (1 − βS−1
t )S−k

t , k ≥ 0
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we have∫ t

0
nt−τP(Zτ > xeλt ) dτ =

∫ t

0
nt−τS

−�xeλt �
τ dτ − β

∫ t

0
nt−τS

−�xeλt �−1
τ dτ. (31)

Here, �a� denotes the integer part of a and is necessary as P(Zt > k) is defined on
the non-negative integers. Focusing on the first term from the right hand side of (31)
and using the definition of Sτ (4) gives

∫ t

0
nt−τ exp

(−�xeλt�(log(1 − βe−λτ ) − log(1 − e−λτ ))
)
dτ.

Now, we change variables to s = xeλ(t−τ) and note that the resulting integrand can

be dominated by
n

λ−1 log(s/x)
λs eλ(1−s) which is integrable for all nτ under consideration

(by Laplace transform arguments, Schiff 1999). Hence, by the dominated convergence
theorem, we can conclude

lim
t→∞

∫ t

0
nt−τS

−�xeλt �
τ dτ = λ−1

∫ ∞

x
nλ−1 log(s/x)

e−λs

s
ds.

The second integral from the right hand side of (31) can be treated analogously and
yields an identical result with β as a prefactor. Hence,

lim
t→∞

∫ t

0
nt−τP(Zτ > xeλt ) dτ =

∫ ∞

x
nλ−1 log(s/x)

e−λs

s
ds = μ−1m(x,∞),

and the claimed result follows. ��
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