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Abstract

Background: Mathematical models provide abstract representations of the information gained from experimental
observations on the structure and function of a particular biological system. Conferring a predictive character on a
given mathematical formulation often relies on determining a number of non-measurable parameters that largely
condition the model’s response. These parameters can be identified by fitting the model to experimental data.
However, this fit can only be accomplished when identifiability can be guaranteed.

Results: We propose a novel iterative identification procedure for detecting and dealing with the lack of
identifiability. The procedure involves the following steps: 1) performing a structural identifiability analysis to detect
identifiable parameters; 2) globally ranking the parameters to assist in the selection of the most relevant
parameters; 3) calibrating the model using global optimization methods; 4) conducting a practical identifiability
analysis consisting of two (a priori and a posteriori) phases aimed at evaluating the quality of given experimental
designs and of the parameter estimates, respectively and 5) optimal experimental design so as to compute the
scheme of experiments that maximizes the quality and quantity of information for fitting the model.

Conclusions: The presented procedure was used to iteratively identify a mathematical model that describes the
NF-�B regulatory module involving several unknown parameters. We demonstrated the lack of identifiability of the
model under typical experimental conditions and computed optimal dynamic experiments that largely improved
identifiability properties.

Background
Biological systems are mainly composed of genes that
encode the molecular machines that execute the functions
of life and networks of regulatory interactions specifying
how genes are expressed, with both operating on multiple,
hierarchical levels of organization [1]. Systems biology
aims at understanding how such systems are organized by
combining experimental data with mathematical modeling
and computer-aided analysis techniques [1,2].
The modeling and simulation of biochemical networks

(e.g. metabolic or signaling pathways) has recently
received a great deal of attention [3-5]. The modeling
framework selected depends both on the properties of
the studied system and the modeling goals. Lauffenbur-
ger et al. [4,6] organized the models in terms of three
main groups, depending on their level of detail: determi-
nistic, probabilistic and statistical.

Currently, the most typical approach to representing
biochemical networks is through a set of coupled deter-
ministic ordinary differential equations intended to
describe the network and the production and consump-
tion rates for the individual species involved in the net-
work [7]. The conceptual framework selected for the
construction of rate equations enables models to be
further classified as generalized mass-action-based mod-
els and power-law models [8].
Unfortunately, with model details come parameters,

and most parameters are generally unknown, thereby
hampering the possibility for obtaining quantitative pre-
dictions. Modern experimental techniques, such as time-
resolved fluorescence spectroscopy or mass-spectrome-
try-based techniques, can be used to obtain time-series
data for the biological system under consideration. The
goal of model identification is then to estimate the non-
measurable parameters so as to reproduce, insofar as is
possible, the experimental data. Although apparently
simple, non-linear model identification is usually a very
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challenging task, due to the usual lack of identifiability,
either practical or, in the worst case, structural. In fact,
several authors have reported difficulties in assessing
unique and meaningful values for the parameters from
given sets of experimental data since broad ranges of
parameter values result in similar model predictions (see
for example, [9-12]).
This problem has motivated the development of itera-

tive procedures for model identification, such as those
proposed by Feng and Rabitz [13], who, using a closed-
loop strategy, attempted to estimate how to stimulate
and how to observe a system for identification purposes.
Kremling et al. [14] and Gadkar et al. [15] suggested
alternative identification procedures that involve some
type of experimental design, to either calculate stimuli
profiles or to select species whose concentration mea-
surements would maximally benefit model calibration
and/or model discrimination.
It is important to note, however, that, in most cases,

only a limited number of components in the network
can be measured, usually far fewer components than
incorporated in the model; only specific stimuli are
available, and the system may only be stimulated in
very specific ways (for example, via sustained or pulse-
wise stimulation); the number of sampling times is
usually rather limited, and finally, the experimental
data are subject to substantial experimental noise.
These constraints, together with the dynamic and typi-
cally non-linear character of the models under consid-
eration result in identifiability problems, i.e. in the
impossibility of providing a unique solution for the
parameters.
Our research describes a novel general iterative identi-

fication procedure, extending the one originally outlined
in Balsa-Canto et al. [16], that addresses model identifi-
cation under these typical constraints and which aims to
reduce the effects of the lack of identifiability.
With this aim in mind, the iterative identification pro-

cedure presented here involves the following steps:

• Analysis of structural identifiability. This step,
which is often disregarded, evaluates whether the
parameters may be assigned unique values from a
given pair model and observables, under ideal
experimental conditions, and assesses - when this is
possible - the reformulation of a given model or the
implementation of an iterative procedure for model
calibration.
• Global ranking of parameters. This step helps
decide which parameters are the most relevant to
model output. In the case of lack of structural iden-
tifiability, global ranking may be used to make deci-
sions as to reformulate the model or which
parameters to estimate.

• Model calibration using global optimization meth-
ods. The model calibration problem can be formu-
lated as a non-linear optimization problem.
Unfortunately, since it is usually the case that several
sub-optimal solutions are possible, the use of global
optimization methods is necessary to somehow guar-
antee that the best possible solution is located.
• Practical identifiability analysis. Complementary to
the structural identifiability test, the practical iden-
tifiability analysis enables an evaluation of the possi-
bility of assigning unique values to the parameters
from a given set of experimental data or experimen-
tal scheme, subject to experimental noise. In this
paper we distinguish between two types of practical
identifiability analyses: firstly, the expected quality of
a given experimental scheme is analyzed a priori
using what we call the expected uncertainty of the
parameters; and secondly, the quality of the para-
meter estimates for a given set of experimental data
using robust confidence intervals is analyzed a
posteriori.
• Optimal experimental design via dynamic optimi-
zation. The purpose of this step is to design dynamic
experiments with the aim of maximizing data quality
and quantity (as measured by the Fisher information
matrix) for the purpose of model calibration.

To illustrate the difficulties that may be faced when
identifying a nonlinear dynamic biological model and
the performance of the proposed identification proce-
dure we consider the mathematical model that describes
the NF-�B regulatory module proposed by Lipniacki et
al. [9].

Methods
Model building
A mathematical model has three important functions:
first, it helps to better understand the biological phe-
nomenon studied; secondly, it enables experiments to be
specifically designed to make predictions of certain char-
acteristics of the biological system that can then be
experimentally verified; and finally, it summarizes the
current body of knowledge in a format that can be easily
communicated. Devising such a model involves a num-
ber of steps (Figure 1), commencing with a definition of
its purpose and finishing with a preliminary working
model.
The purpose of the model will condition the selection

of the modeling framework and the information that
should be included in the model. Only elements that
might have an impact on the questions to be addressed
by the model should be included. In this regard, account
should be taken of the fact that reaction models can
only include a small subset of all reactions taking place
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within a cell. Thus, assumptions must be made about
the extent to which the species included in the model
evolve independently of the species excluded from the
model, and also about the species that are crucial for
the purpose of the model. At this stage it is possible to
define the network architecture and decide which type
of modeling framework may be the most appropriate
(deterministic generalized mass action based models,
power-law models, stochastic models, partial differential
equations, etc.)
In the next step, an initial mathematical model struc-

ture (or battery of model structures) is proposed. New
experimental information must then be used to verify
hypotheses, and to discriminate, if possible, among dif-
ferent model alternatives. The candidates will often
depend on a number of unknown non-measurable para-
meters that can be computed by means of experimental
data fitting (identification).
This crucial step provides the mathematical structure

with the capacity to reproduce a given data set, make
predictions and discriminate among different model
candidates.
The last step is validation, which essentially means

reconciling model predictions with any new data
observed. This process is likely to reveal defects, in
which case a new model structure and/or new (optimal)
experiment is planned and implemented. This process is
repeated iteratively until validation is considered to be
complete and satisfactory.
Note that the success of this model-building loop

relies on being able to perform experiments under a suf-
ficient number of conditions to extract a rich ensemble
of dynamic responses, to accurately measure such
responses and to iterate in order to improve the predic-
tive capabilities of the model without a significant cost.
Since model identification is a task that consumes

large amounts of experimental data, an iterative

identification procedure is proposed which is intended
to accurately compute model unknowns while reducing
experimental cost.

Optimal identification procedure
The proposed iterative identification procedure is
depicted in Figure 2.
If there are several model candidates two extra steps

should be included in the loop, one to analyze structural
distinguishability among candidates and the other to
design experiments for model discrimination [17].
Mathematical model formulation
We will assume a biological system described by the
vector of state variables x(t) Î X ⊂ nx , which is the
unique solution of the set of nonlinear ordinary differ-
ential equations:

x f x u= ( , , ) t (1)

where x ux= ∈ ⊂d
dt U nu,  corresponds to the exter-

nal factors and θ Î Θ ⊂ n is the vector of model

parameters where Θ is the feasible parameter space.
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where t s
e o, regards the sth sampling time for observa-

ble o in experiment e. Thus every experimental (mea-
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Structural identifiability analysis
Once the structure of the state-space representation,
Eqns. (1)-(3), has been established, the structural iden-
tifiability problem is concerned with the possibility of
calculating a unique solution for the parameters while
assuming perfect data (noise-free and continuous in
time and space). Structural identifiability is thus
related to the model structure and possibly to the type
of stimulation and independent of the parameter
values.
There are, at least, two obvious reasons to asses struc-

tural identifiability: first, the model parameters have a
biological meaning, and we are interested in knowing
whether it is at all possible to determine their values
from experimental data; second, is related with the pro-
blems that a numerical optimization approach may find
when trying to solve an unidentifiable model.
There are a few methods for testing the structural

identifiability of nonlinear models [18,19]: the similarity
transformation approach [20], differential algebra meth-
ods [21,22] and power series approaches [23,24]. Unfor-
tunately there is no method amenable to every model,
thus at some point we have to face the selection of one
of the possibilities. All of them present limitations
related to the non-linearity and the size of the system
under consideration, meaning by size the number of
state variables, the number of parameters and the num-
ber of observables. Probably the most easy to apply, pro-
vided one uses a symbolic manipulation software, are
the power series expansions methods. In this regard two
possibilities have been developed: the Taylor series and
the generating series.
Details of the Taylor series approach can be found in

[23]. The approach is based on the fact that observa-
tions are unique analytic functions of time and so all
their derivatives with respect to time should also be
unique. It is thus possible to represent the observables
by the corresponding Maclaurin series expansion and it
is the uniqueness of this representation that will guaran-
tee the structural identifiability of the system. The idea
is to establish a system of non-linear algebraic equations
on the parameters, based on the calculation of the Tay-
lor series coefficients, and to check whether the system
has a unique solution. The generating series approach
[24] allows to extend the analysis to the entire class of
bounded and measurable stimuli. In this case the series
is generated with respect to the stimuli domain. The
method requires the model to be linear in the stimuli as
follows:

x f x f x= +
=
∑0

1

( , , ) ( ) ( , , ) t u t ti i

i

nu

(3)

y x= g( , , ) t (4)

The observables can be expanded in series with
respect to time and stimuli in such a way that the coef-
ficients of this series are g(x, θ, t = 0) and the Lie deri-
vatives:

L L t
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where Lfg is the Lie derivative of g along the vector
field f, given by:
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with fj the jth component of f.
If s(θ) regards the vector of all the coefficients of the

series, a sufficient condition for the model to be identi-
fiable is that there exists a unique solution for θ from s
(θ), similarly to the Taylor series method. Note also
that power series approaches assume that all the infor-
mation on the progress of the observables is contained
in the germ, i.e. the infinite set of power series coeffi-
cients evaluated at t = 0+. If the derivatives are zero,
then the germ is said not to be informative and no
conclusions about identifiability can be directly drawn.
Later observations (t > 0) could give more information
and restrict the set of feasible values of θ. Probably the
major drawback of the power series approaches is that
the necessary number of power series coefficients is
usually unknown. For the Taylor series approach an
upper limit has been shown for bilinear and polyno-
mial systems [25,26]. Additionally Margaria et al.
(2001) [27] showed that for the combination of the
Taylor series and the differential algebra approaches,
nx + 1 derivatives are sufficient for the case of rational
systems with one observable. However there are not
bounds for a general non-linear system. In addition,
solving the non-linear system of equations resulting
from the power series approaches is usually not a tri-
vial task, particularly when the number of parameters
is large and the number of observables is reduced. We
therefore propose using the following identifiability
tableaus to easily visualize the possible structural iden-
tifiability problems.
The tableau represents the non-zero elements of the

Jacobian of the series coefficients with respect to the
parameters. It consists of a table with as many col-
umns as parameters and with as many rows as non-
zero series coefficients, in principle, infinite, as shown
in Figure 3.
If the Jacobian is rank deficient, i.e. the tableau pre-

sents empty columns, the corresponding parameters
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may be unidentifiable. Note that since the number of
series coefficients may be infinite, unidentiability may
not be fully guaranteed unless higher order series coeffi-
cients are demonstrated to be zero.
If the rank of the Jacobian coincides with the number

of parameters, then it will be possible to, at least, locally
identify the parameters. In this situation a careful
inspection of the tableau will help to decide on an itera-
tive procedure for solving the system of equations, as
follows:

• The number of non-zero coefficients is usually
much larger than the number of parameters. In
practice this means that we should select the first nθ
rows that guarantee the Jacobian rank condition.
The tableau helps to easily detect the necessary coef-
ficients and to generate a “minimum” tableau.
• A unique non-zero element in a given row of the
minimum tableau means that the corresponding
parameter is structurally identifiable. If any, the
parameters in this situation can be computed as
functions of the power series coefficients and can be
then eliminated from the “minimum” tableau to gen-
erate a “reduced” tableau. Subsequent reductions
may lead to the appearance of new unique non-zero
elements and so on. Thus all possible “reduced”
tableaus should be built first.

• Once no more reductions are possible, one should
try to solve the remaining equations. Since it is often
the case that not all remaining power series coeffi-
cients depend on all parameters, the tableau will
help to decide on how to select the equations to
solve for particular parameters.
• If several meaningful solutions exist for a given set
of parameters, then the model is said to be locally
identifiable.

If the model turns out not to be completely identifi-
able, identifiability may be recovered by extending the
set of observables, however this may not be accessible in
practice. Alternatively one may consider fixing some
parameters [21] or to reformulate the model.
Global ranking of parameters
Observables will depend differently on different para-
meters and this may be used to rank the parameters in
order of their relative influence on model predictions.
Such influence may be quantified by the use of para-
metric sensitivities.
Local parametric sensitivities for a given experiment e,

observable o and at a sampling time t s
e o, are defined as

follows:
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They may be numerically computed by using the
direct decoupled method within a backward differentia-
tion formulae (BDF) based approach, as implemented in
e.g. ODESSA [28].
The corresponding relative sensitivities,
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local parameter influence or importance, that is to
establish a ranking of parameters. Brun and Reichert
(2001) [29] suggested several importance factors, that
may be generalized for the case of having several obser-
vables and experiments [16].
Of course, the values of the parameters are not

known a priori, and even when optimally computed,
optimal values are subject to uncertainty depending on
the type of experiments and the presence of experimen-
tal noise. Consequently, the ranking for a given value of
the parameters may be of limited value. Alternatively,
one may compute ranking for a sufficiently large num-
ber of parameter vectors in the feasible parameter
space.
The simplest approach is to apply a Monte Carlo sam-

pling. By sampling repeatedly from the assumed joint-
probability density function of the parameters and by
evaluating the sensitivities for each sample, the
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Figure 3 Minimum identifiability tableau for the generating
series method. A cross in the coordinates (i, j) indicates that the
corresponding non-zero generating series coefficient depends on
the parameter θj. Green crosses represent those parameters that can
be computed from a single equation of the system. Green circles
correspond to those parameters that may be uniquely identified, i.e.
only one solution exist. Red crosses represent possible identifiability
problems, i.e. sets of parameters that require more than 2 equations
to be identified if possible. Red boxes and arrows represent sets of
equations that result in an unique solution for the parameters.
Numbers represent the order in which the equations were solved.
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distribution of sensitivity values, along with the mean
and other characteristics, can be estimated. This
approach yields reasonable results if the number of sam-
ples is quite large, requiring a great computational
effort.
An alternative that can yield more precise estimates is

Latin hypercube sampling (LHS). This method selects
nlhs different values for each of the parameters, which it
does by dividing the range of each parameter into nlhs
non-overlapping intervals on the basis of equal probabil-
ity. Next, from each interval one value for the para-
meters is selected at random with respect to the
probability density in the interval.
The nlhs values thus obtained for the first parameter

are then paired in a random manner (equally likely
combinations) with the nlhs values for the second and
successive parameters. This method allows the overall
parameter space to be explored without requiring an
excessively large number of samples. The importance
factors will then read:
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where ND = nlhsnenons, δ
msqr and δmabs quantify how

sensitive a model is to a given parameter considering
δmabs interactions between parameters. δmax and δmin

indicate the presence of outliers and provide informa-
tion about the sign. δmean provides information about
the sign of the averaged effect a change in a parameter
has on the model output.
Ordering the parameters according to these criteria,

preferably in decreasing order, results in a parameter
importance ranking. This information may be useful to
decide on reformulating the model or to fix the less

relevant parameters to improve either structural or prac-
tical identifiability.
Note that the summations will, in general, hide the

different effects from the different experiments and
observables unless they are in the same order of mag-
nitude. Similar analyses may be performed for experi-
ments and observables, thus providing information on
the parameters that are more relevant to a particular
observable in a particular type of experiment.
Model calibration
Given the measurements, the aim of model calibration
or parameter identification is to estimate some or all of
the parameters θ in order to minimize the distance
among data and model predictions. The maximum-like-
lihood principle yields an appropriate cost function to
quantify such distance, which, for the case of Gaussian
noise with known or constant variance, reads as the
widely used weighted least-squares function:
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where  s
e o, collects the information related to a given

measurement experimental noise.
Parameter identification is then formulated as a non-

linear optimization problem, where the decision vari-
ables are the parameters and the objective is to mini-
mize J(θ) subject to the system dynamics in Eqns. (1)-
(3) and also, possibly, to some algebraic constraints that
define the feasible region Θ.
This problem has recently received a great deal of

attention in the literature. Jaqaman and Danuser pre-
sented a guide for model calibration in the context of
biological systems [30] noting that there are two
major issues in minimizing 13: first, the presence of
local minima and second, the lack of practical
identifiability.
To deal with first difficulty several authors have pro-

posed the use of global optimization methods [31-34],
since most of the model calibration problems related to
biological models have several sub-optimal solutions.
Recently suggested, in addition, was the use of sequen-
tial hybrid global-local methods [35,36] to enhance effi-
ciency, particularly for highly multimodal and large scale
systems.
Practical identifiability analysis
As already mentioned in the introduction, practical
identifiability analysis enables an evaluation of the pos-
sibility of assigning unique values to parameters from a
given set of experimental data or experimental scheme
subject to experimental noise. We distinguish between
practical identifiability a priori, which anticipates the
quality of the selected experimental scheme in terms
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of what we will call the expected uncertainty of the
parameters, and practical identifiability a posteriori,
which assesses the quality of the parameter estimates
after model calibration in terms of the confidence
region.
It is important to note that the major difference

between the two analyses is that, a priori, we have to
assume a maximum experimental error, whereas, a
posteriori, since the experimental data are already
available, the experimental error may be estimated
either through experimental data manipulation (when
replicates of the experiments are available) or after
model calibration using the residuals (i.e. the differ-
ences among model predictions and the experimental
data) [37].
Possibly the simplest approach to perform such ana-

lyses given a set of simulated (a priori) or real (a poster-
iori) experimental data is to draw contours of the cost J
(θ) by pairs of parameters. This will help detect typical
practical identifiability problems, such as strong correla-
tion between parameters, the lack of identifiability for
some parameters when the contours extend to infinity,
or the presence of sub-optimal solutions.
To quantify the expected uncertainty of the para-

meters and/or the confidence region, we rely on a
Monte Carlo-based sampling method [38-40]. The
underlying idea is to simulate the possibility of perform-
ing hundreds of replicates of the same experimental
scheme for a given experimental error. The model cali-
bration problem is solved for each replicate and the
cloud of solutions is recorded in a matrix. Note that, in
order to avoid convergence to local solutions, an effi-
cient global optimization method is required. The cloud
of solutions is assumed to correspond to, or to be fully
contained in, a hyper-ellipsoid. Principal component
analysis applied to the 0.95 - 0.05 interquartile range of
the cloud or matrix of solutions then provides informa-
tion on hyper-ellipsoid eccentricity (correlation between
parameters) and pseudo-volume (accuracy of the para-
meters). The analysis of the histograms of the parameter
solutions provides the mean value of the parameters (μ)
and either maximum expected uncertainty (a priori) or
the confidence intervals (a posteriori) for the parameters
(Cθ). See details in [40].
The obtained expected uncertainty of the parameters

will allow the different experimental designs to be
compared a priori, i.e. without performing any experi-
ment. The richest experiment, in terms of the quantity
and quality of information, will be the one with the
best compromise between pseudo-volume and
eccentricity.
The confidence intervals obtained for the parameters

will enable a decision to be made on the need to per-
form further experiments to improve the quality of the

parameter estimates and, thus, the predictive capabilities
of the model.
Optimal experimental design
A crucial aspect of experimental data is data quantity
and quality. As mentioned in the previous section, a
given set of data may result in practical identifiability
problems. This is why data generation and modeling
have to be implemented as parallel and interactive
processes, thereby avoiding the generation of data
that may eventually turn out to be unsuited for
modeling.
In addition, the use of model-based (in silico) experi-

mentation can greatly reduce the effort and cost of
biological experiments, and simultaneously facilitate
the understanding of complex biological systems
[41-44].
The model identification loop is complemented with

an optimal experimental design step. The aim is to cal-
culate the best scheme of measurements in order to
maximize the richness (quantity and quality) of the
information provided by the experiments while minimiz-
ing, or at least, reducing, the experimental burden
[38,40].
The richness of the experimental information may be

quantified by the use of the Fisher Information Matrix
(F) [37,45], which for the case of Gaussian known or
constant variance reads as follows:

 = ∂
∂

⎡
⎣⎢

⎤
⎦⎥

∂
∂

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
E

J J

m

T

y |

( ) ( )








(14)

where E represents the expectation for a given value
of the parameters μ presumably close to the optimal
solution θ*.
The optimal experimental design is then formulated

and solved as a general dynamic optimization problem,
see details in [40], that computes the time-varying sti-
muli profile, sampling times, experiments duration and
(possibly) initial conditions so as to maximize a scalar
measure of the Fisher Information Matrix subject to
the system dynamics (Eqn. 1 and 3) and to other alge-
braic constraints associated with experimental
limitations.
Regarding the selection of the scalar measure of the

F, several alternatives exist all of them related to the
eigenvalues of the F and thus related to the shape and
size of the associated hyper-ellipsoid. The most popular
are probably the D-optimality and E-optimality criteria,
the former corresponding to the maximization of the
determinant of the F and the latter corresponding to
the maximization of the minimum eigenvalue. From
previous studies [40] it may be concluded that the
E-optimality criterion offers the best quantity-quality
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compromise for the information, particularly for cases
where the parameters are highly correlated or the sensi-
tivities with respect to the parameters are highly
uneven; otherwise D-optimality may be more successful.

Results and Discussion
The NF-�B regulatory module
NF-�B is implicated in several common diseases, espe-
cially those with inflammatory or auto immune com-
ponents, such as septic shock, cancer, arthritis,
diabetes and atherosclerosis [46]. Mathematical models
connected to experimental data have played a key role
in revealing forms of regulation of NF-�B signaling
and the underlying molecular mechanisms. Commen-
cing with the original model proposed by Hoffmann et
al. [47], several models have been proposed that
include additional feedback loops, cross-talk with other
pathways and NF-�B oscillations, as detailed in the
recent reviews by Lipniacki and Kimmel, [48] and
Cheong et al., [49].
The model considered in this work was proposed by

Lipniacki et al. [9]. This model presents several modifi-
cations with respect to the original by Hoffmann et al.
[47]. Basically, while the original model accounts for
the interplay among three isoforms of the inhibitory
proteins I�Ba, I�Bb and I�B�, Lipniacki et al. consider
the inhibitory roles of I�Ba and A20, incorporate new
assumptions about the IKK activation and introduce
the nuclear-cytoplasmic volume ratio.
The model involves two compartment kinetics of the

activators IKK and NF-�B, the inhibitors A20 and
I�Ba and their complexes. It is assumed that IKK
exists in any one of three forms: neutral (IKKn), active
(IKKa) or inactive (IKKi). In the presence of an extra-
cellular signal such as TNF, IKK is transformed into
its active (phosphorylated) form. In this form it is cap-
able of phosphorylating I�Ba, and this leads to its
degradation. In resting cells, the unphosphorylated
I�Ba binds to NF-�B and sequesters it in an inactive
form in the cytoplasm. As a result, degradation of
I�Ba releases the second activator, NF-�B. The free
NF-�B enters the nucleus and upregulates transcrip-
tion of the two inhibitors I�Ba and A20 and of a large
number of other genes including the control gene
cgen. The newly synthesized I�Ba again inhibits NF-
�B, while A20 inhibits IKK by catalyzing its transfor-
mation into another inactive form in which it is no
longer capable of phosphorylating I�Ba.
The scheme of the pathway is illustrated in Figure 4.

The corresponding mathematical model consists of 15
non-linear ordinary differential equations with 30 para-
meters as follows [9]:
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where IKKn represents the cytoplasmic concentration
of neutral form of IKK kinase; IKKa, the cytoplasmic
concentration of active form of IKK; IKKi, the cyto-
plasmic concentration of inactive IKK; I�Ba, the cyto-
plasmic concentration of I�Ba; I�Ban, the nuclear
concentration of I�Ba; I�Bat, the concentration of
I�Ba mRNA transcripts calculated per cytoplasmic
volume V; (IKKa/I�Ba), the cytoplasmic concentration
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of complexes IKKa and I�Ba, equivalent notation is
used for all the complexes; TR is a logical variable
representing the presence or absence of signal; kv is
the ratio of cytoplasmic to nuclear volumes.

Results/Discussion
In their paper, Lipniacki et al. (2004) fixed some of the
model parameters by using values from the literature. To fit
the unknown parameters, they used experimental data from
previous works by Lee et al. [50] and Hoffmann et al. [47]:

 = [ , , , , , , , , ,

, , , ]

t t c c c k k k k

k i e i

a a prod

deg a a
T

1 2 3 4 5 1 2 3

1 2 1

(15)

Lipniacki et al. concluded that several different sets
of parameters are capable of reproducing the data.
This lack of identifiability may originate either in the
structure of the model and observables selected (lack
of structural identifiability) or in the type of experi-
ments performed and the experimental noise (lack of
practical identifiability). Our aim was to determine the
origin of the problem and to use the model identifica-
tion loop presented here to improve the quality of the
parameter estimates.

Structural identifiability analysis
To perform the analysis we take into account that Lee
et al. [50] considered wild-type cells subject to a persis-
tent TNF signal and collected data for A20 mRNA
(A20t), total IKK (IKKn+IKKa+IKKi), activated IKK
(IKKa), total cytoplasmic I�Ba (I�Ba +(I�Ba/NF-�B)),
I�Ba mRNA (I�Bat) and free nuclear NF-�B (NF-�Bn),
and also that Hoffmann et al. [47] measured the
responses of the free nuclear NF-�B (NF-�Bn) and the
cytoplasmic I�Ba (I�Ba +(I�Ba|NF-�B)) in wild-type
cells under persistent and pulse-wise TNF stimulation.
It should be noted here that, due to the additive charac-
ter of the weighted least-squares function (13) and the
Fisher information matrix (14), we will regard an experi-
ment as the combination of the measurements corre-
sponding to all observables under a given stimulation
even if they may not be measured simultaneously in
practice.
The following is assumed:

• Only the concentrations measured by Lee et al.
[50] and Hoffman et al. [47] are at our disposal.
• Initial conditions correspond to those for wild type
cells after resting.
• The TNF stimulus is activated.
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Figure 4 The NF-�B module. Network model as in [9]. The notation corresponds to that used in the mathematical model. Kinetic constants are
indicated in blue; TR regards a logical function which is 1 when the signal is activated and 0 otherwise; kv represents the nuclear-cytoplasmic
volume ratio.
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• Only the set θ in Eqn. are considered all the other
parameters are assumed to be fixed, see details in
Table 1.

The size of the model under consideration, the num-
ber of observables and the number of parameters make
the application of the similarity transformation and the
differential algebra approaches rather complex, thus the
power series expansions will be used here.
In a first approximation to the structural identifiability

problem the Taylor series approach was applied. From
the analysis of the resultant tableau it is possible to
asses that i1, k1, c3a and i1a are structurally identifiable.
Unfortunately the complexity of the remaining equa-
tions prevents to draw clear conclusions for the rest of
parameters.
The application of the generating series approach

resulted, as expected, in a simpler system of equations.
In fact it was possible to obtain as many coefficients as

necessary to guarantee full rank Jacobian, the corre-
sponding (full) tableau is presented in the Additional file
1: Supplemental Figure S1. Following the approach
described before we obtained the minimum and the
reduced tableaus (Additional file 1: Supplemental Figure
S2) to demonstrate that the model is structurally identi-
fiable (for the subset of parameters under considera-
tion). Details are presented in the Additional file 1.
Figure 5 shows a summary of the steps followed with
the minimum tableau to solve the algebraic set of equa-
tions on the parameters. Since the parameters are struc-
turally identifiable the origin of the difficulties found by
Lipniacki et al. (2004) must be the lack of practical iden-
tifiability. In many practical situations this lack of iden-
tifiability originates in the lack of sensitivity of the
observables with respect to the parameters. This can be
assessed by performing a global sensitivity analysis and a
ranking of parameters.

Ranking of parameters
The parameters were ranked globally considering three
different experimental schemes for wild-type cells. The
first experiment corresponded to a persistent TNF sti-
mulation and the second and third experiments corre-
sponded to 1 h and 2 h pulse-wise TNF stimulations.
Since it is often argued that ranking will depend on the
range of parameters selected, several different tests had
to be performed.
However, deciding the range of parameters is often a

quite difficult task. In practice large bounds are defined
so as to somehow guarantee that the real solution will
lie within. Unfortunately, this approach often results in
very large flat areas in the search space that make cali-
bration extremely difficult. In addition, global analyses

Table 1 Nominal value for the parameters in the NF-�B
regulatory module

Parameter Nominal value (θ*) Comments

a1 0.5 Fixed

a2 0.2 Fixed

t1 0.1 To be identified

a3 1 Fixed

t2 0.1 To be identified

c1a 5 × 10-7 Fixed

c2a 0.0 Fixed

c3a 4 × 10-4 To be identified

c4a 0.5 To be identified

c5a 1 × 10-4 Fixed

c6a 2 × 10-5 Fixed

c1 5 × 10-7 Fixed

c2 0.0 Fixed

c3 4 × 10-4 Fixed

c4 0.5 Fixed

c5 3 × 10-4 To be identified

k1 2.5 × 10-3 To be identified

k2 0.1 To be identified

k3 1.5 × 10-3 To be identified

kprod 2.5 × 10-5 To be identified

kdeg 1.25 × 10-4 To be identified

NF 0.06V Fixed

kv 5 Fixed

I1 2.5 × 10-3 To be identified

e2a 0.01 To be identified

i1a 1 × 10-3 To be identified

e1a 5 × 10-4 Fixed

c1c 5 × 10-7 Fixed

c2c 0.0 Fixed

c3c 4 × 10-4 Fixed

t2 c3a c4a c5 k1 k2 i1k3 kprod kdeg i1ae2at1
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Figure 5 Identifiability tableau for the NF-�B model.
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may lead to wrong conclusions, since the probability of
considering sets of parameters that are far from the real
sets increases rapidly. Whenever possible, one should
use knowledge about the system to define reasonable
bounds.
For this particular example we selected a reference

parameter vector ̂ taking into account the fact that
the behavior of the experimental data is oscillatory
under persistent TNF activation:

[ , , , ] ; . ;

[ , ,

     

  

t t c k e k

c c k

a a prod

a

1 2 4 2 2
4

3 5

0 01 1 10= = = × −1   

11 3 1 1, , , , ] ;   k k i ideg a = × −1 10 3

The reference was then used to select different bounds
for the parameters. Three different tests were per-
formed: i) within the range ( 0 2ˆ , ˆ i i ), where ̂ i corre-
sponds to the reference value of the ith parameter in
the set θ; ii) within the range ( 0 5ˆ , ˆ i i ) and iii) within
the range ( 0 10ˆ , ˆ i i ), i.e. considering that we may have
underestimated, in a maximum of two, the order of
magnitude of the parameters with respect to the refer-
ence. We remark that a sample of 10000 elements was
used for every case.
Results obtained for all cases for the criterion δmsqr are

presented in Figure 6 together with the mean value over
all ranges. From the ranking it may be concluded that
the observables are significantly sensitive to c3a, c4a,
kprod and kdeg and almost insensitive to e2a, t2 and t1,
indicating possible practical identifiability problems.
In general, different ranking criteria may lead to dif-

ferent conclusions. In this example all criteria drive
same results regarding the lack of influence of e2a, t2
and t1 (see Additional file 1: Supplementary Figure S3).
As already mentioned before, the summations over

experiments and observables may hide some relevant

information. For example, from Figure 6 it is not possi-
ble to asses the effect of using pulse-wise stimulation or
what are the parameters that are more relevant to the
different observables evolution. To analyze this informa-
tion we considered the sensitivities for the range
( 0 5ˆ , ˆ i i ) (closest to the mean behavior) in more detail.
Results are depicted in Figure 7.
From the figures it may be concluded that certain

observables become more sensitive to certain parameters
under short pulse-wise stimulation (Experiment 2). This
is the case, for example, when looking at the sensitivities
with respect to c3a, c4a or i1. Note that only the mea-
surements of total cytoplasmic I�Ba provides informa-
tion about i1 and i1a and also the fact that we obtain
almost no information about t2, t1 and e2a.
It is important to underline that for the case of i1,

experiments under sustained stimulation appear not to be
relevant whereas the model becomes more sensitive to c5
or k2 under sustained stimulation. It can thus be expected
that using an experimental scheme combining a sustained
stimulation experiment with (optimally designed) pulse-
wise stimulation experiments will increase overall sensitiv-
ity and thus improve identifiability properties.
Taking into account the results the vector of para-

meters θ is partitioned into two new vectors θ� and 
as follows:

 = [ , , , , , , , , , ]c c c k k k k k i ia a prod deg a
T

3 4 5 1 2 3 1 1 (16)

 = [ , , ]t t e a
T

1 2 2 (17)

The components of θ� will be now considered in the
next steps of the identification loop, the components in
 will remain fixed to a nominal value since their pre-
sence for model calibration will be a clear source of
practical identifiability problems.

Practical identifiability analysis
To establish a basis for comparison we first consider the
problem as addressed by Lipniacki et al., i.e. with all
parameters in set θ and the experimental scheme avail-
able from Lee et al. [50] and Hoffmann et al. [47], to be
referred to henceforth as ES1. The results obtained for
the identifiability analysis will be considered as reference
(and denoted by REF).
For this purpose we can perform a battery of hun-

dreds of in silico experiments (1000 experiments in this
research) under such experimental conditions, getting
experimental data with zero-mean Gaussian noise with
unknown varying variance but with a maximum corre-
sponding to 10%.
To perform the quantitative analysis according to the

Monte Carlo approach the model calibration problem
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Figure 6 Ranking of parameters for the NF-�B example .
Parameters are ordered by decreasing δmsqr using the mean rank as
reference.
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was solved for all sets of data by using the recently
developed global optimization method based on Scatter
Search (SSm, [51]) and with bounds for the parameters
of (0 10ˆ , ˆ i i ).
Table 2 summarizes the results obtained confirming

what was already expected from the ranking of para-
meters. The lack of influence of some parameters on
the observables induce lack of practical identifiability.
The mean value obtained for the parameters is far
from the nominal. This is especially notorious for t1,
t2 and e2a but also for k2, k3, kprod, kdeg for which the
relative distance is over the 20%. If we take a look at
the illustrative examples of the confidence intervals in
Figure 8 we may observe three different situations.

Due to the lack of influence on the observables, for
the case of t1 the objective function seems to be noisy
and therefore the solution is hard to find even for
global optimization methods and for e2a the objective
function seems to be flat therefore the optimization
method may achieve any solution in the allowed
range but with a significant tendency to get trapped
in the bounds. For the case k2 and all other para-
meters, with influence on the observables, there is
one unique solution and the solver is able to find it
in all runs.
Results obtained justify the fact addressed by Lipniacki

et al (2004)., the origin of multiple equivalent solutions
is the poor practical identifiability originated in the lack

Experiment 2: 1h TNF stimulation

Experiment 3: 2h TNF stimulation

Experiment 1: Sustained stimulus
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of influence of some parameters in the available
observables.
If we compare the results with the ones obtained con-

sidering only the set θ�, Table 3 shows a significant
improvement regarding both the μ value, the relative
distance to the nominal and the expected uncertainties.
The following should be remarked:
c3a and c4a can be already be appropriately estimated.

The μ value is less than a 1% relative distance to the
nominal ("real”) value. In addition the expected uncer-
tainties are less than a 10% which is in the order of the
experimental error. As a consequence c3a and c4a can
be removed from the subsequent steps in the identifica-
tion procedure for the remaining parameters, denoted

as , μ value is within the 5% of the nominal but the
uncertainties for most of the parameters are over the
20% and over the 50% for kprod and kdeg. Taking a look
at the eccentricity values by pairs of parameters we will
found out that in fact kprod and kdeg are the most corre-
lated pair with an eccentricity value of 14.7.

Optimal experimental design
In order to improve the identifiability properties of 
we considered a parallel-sequential optimal experimen-
tal design, in such a way that the information reported
by the experimental scheme ES1 was taken into account
by introducing the experiments in the Fisher Informa-
tion Matrix (Eqn. 14). New experiments were designed
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Figure 8 Practical identifiability analysis for the full set θ. Illustrative examples of the histograms of the solutions achieved with the Monte-
Carlo based approach for t1, e2a and k2 under the experimental scheme ES1.

Table 2 Practical identifiability analysis for the experimental scheme ES1 with (0 10ˆ , ˆ i i ) represents the nominal
value for the parameters; δREF is the parameter mean value computed by the Monte-Carlo based approach; δREF is the

relative distance between the mean and the nominal computed as  REF
REF

= −100 | * |
*

 


, C REF
 corresponds to the

predicted maximum uncertainty of the given parameter and RC REF
 represents the uncertainty with respect to μREF in

%.

Parameter θ* μREF δREF (in %) C REF
 RC REF

 (in %)

t1 0.10 1.77 1680 1.79 100.7

t2 0.10 6.16 6060 3.03 49.1

c3a 4.00 10-4 4.00 × 10-5 3.09 2.80 × 10-5 6.90

c4a 0.50 0.50 0.60 0.08 15.9

c5 3.00 × 10-4 3.07 × 10-4 2.49 1.02 × 10-4 33.1

k1 2.50 × 10-3 2.45 × 10-3 2.04 5.34 × 10-4 21.7

k2 0.10 0.13 33.3 0.08 60.2

k3 1.50 × 10-3 1.18 × 10-3 21.1 8.08 × 10-4 68.3

kprod 2.50 × 10-5 3.25 × 10-5 29.9 3.19 × 10-5 98.3

kdeg 1.25 × 10-4 1.63 × 10-4 33.4 1.62 × 10-4 99.9

i1 2.50 × 10-3 2.40 × 10-3 3.85 6.38 × 10-4 26.5

e2a 0.01 4.74 × 10-3 374 5.30 × 10-3 110.9

i1a 1.00 × 10-3 9.74 × 10-4 0.75 2.42 × 10-4 24.3
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within the following experimental constraints:

• Initial conditions correspond to those for wild type
cells after resting.
• The TNF stimulus is activated and may be pulse-
wise. In order to make the experiments more easily
implementable in practice a maximum of two pulses
is allowed.
• The maximum number of sampling times will be
15 and they may be optimally located.
• The experimental noise corresponds to a maxi-
mum variance of the 10%.
• The reference value for the parameters in the F
(Eqn. 14) corresponds to the μES1 (Table 3).

Regarding the F based criteria for optimal experimen-
tal design, the D- and E-optimality criteria are the
usually preferred ones. For this particular example, and
attending to the eccentricity values corresponding to
ES1, E-optimality seemed to be the most suitable, since
this promotes the simultaneous reduction of the
expected uncertainty and the eccentricity.
The new experiment consists of performing two

pulses and 15 optimally located sampling times (see Fig-
ure 9). Detailed analysis of the identifiability properties
are incorporated in the Additional file 1: Supplemental
Tables S1 and S2 showing how the addition of the opti-
mally designed experiment led the mean value μES2 to
practically coincide, less than 1% relative error, with the
nominal θ* value. In addition the expected uncertainty
has substantially improved as compared to the expected
uncertainties found for the experimental scheme ES1. It
should be remarked that now the worst case is of

around the 32% whereas for ES1 it was of around 60%,
in addition the maximum eccentricity, which again cor-
responds to the pair kprod - kdeg, has been substantially
reduced, to a value of 8.2.
The estimations of k3, i1 and i1a are now satisfactory

with less than 0.5% error with respect to the nominal
value and expected uncertainties of around the 10%.
Next step is to compute a new optimal experimental
design for the remaining parameters by using μES2 as a
reference.
Table 4 presents a summary of the results for the

overall process, revealing that the addition of a new
optimally designed experiment further improved results.
The maximum expected uncertainty corresponds to c5
with a value of around 17% which is quite reasonable.
In addition the maximum eccentricity is now of 5.6,
thus being the correlation among the parameters sub-
stantially reduced from the first experiment. Figure 9
presents the resulting set of experiments, both experi-
ments make use of the maximum allowed number of
pulses. And although the location of the pulses is rather
similar in both experiments, the duration of the pulses
is significantly different. It should be noted that the
experiments are designed in sequence, the information
from previous experiments is considered at the time of
designing a new experiments, this enables the possibility
of obtaining complementary information from the dif-
ferent experiments which reduces correlation among
parameters.
Figure 10 shows the evolution of the expected

uncertainties for all parameters throughout the identi-
fication procedure and Figure 11 presents the compar-
ison of the ellipses for the most and the lest

Table 3 Practical identifiability analysis for the experimental scheme ES1 with (0 10ˆ , ˆ i i ) represents the nominal
value for the parameters; μES1 is the parameter mean value computed by the Monte-Carlo based approach; δES1 is the

relative distance between the mean and the nominal computed as  REF
ES

=
−

100
1 



*

*
, C ES


1 corresponds to the

predicted maximum uncertainty of the given parameter and RC ES


1 represents the uncertainty with respect to μES1 in

%.

Parameter θ* μES1 δES1(in%) C ES


1 RC ES


1 (in %)

c3a 4.00 × 10-4 4.00 × 10-5 0.02 2.20 × 10-5 5.40

c4a 0.50 0.50 0.66 0.046 9.07

c5 3.00 × 10-4 3.01 × 10-4 0.26 1.23 × 10-4 40.8

k1 2.50 × 10-3 2.49 × 10-3 0.46 5.01 × 10-4 20.1

k2 0.10 0.10 1.97 0.04 44.0

k3 1.50 × 10-3 1.49 × 10-3 0.95 5.00 × 10-4 33.7

kprod 2.50 × 10-5 2.60 × 10-5 2.90 1.40 × 10-5 53.7

kdeg 1.25 × 10-4 1.29 × 10-4 3.41 7.80 × 10-5 60.8

i1 2.50 × 10-3 2.49 × 10-3 0.26 4.22 × 10-4 16.9

i1a 1.00 × 10-3 1.00 × 10-3 0.27 1.82 × 10-4 18.1
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correlated pairs of parameters (detailed plots of the
expected uncertainties by pairs of parameters are
shown in the Additional file 1: Supplemental Figures
S4 and S5).

Conclusions
It has been largely recognized that solving the solution of
parameter identification problems becomes harder with the
size of the problem, particularly when the ratio between the
number of observables and experimental data and the
number of parameters is low, since these induce multimod-
ality and lack of structural and/or practical identifiability.
This research describes an iterative identification pro-

cedure for non-linear dynamic biological models that is
intended to improve parameter identification, i.e. to
reduce the dimensionality of the problem when possible
and to improve identifiability properties, and therefore
to avoid premature (and probably wrong) conclusions
about the explanatory and predictive capabilities of a

0

1

T
R
(t

)

0 4000 8000 12000
Time (s)

0 4000 8000 12000
0

Time (s)

T
R
(t

)

1

Experiment 1: 
Sustained stimulation

Experiment 2: 
Pulse-wise stimulation

Experiment 3: 
Optimal pulse-wise experiment

0 4000 8000 12000
Time (s)

Experiment 4: 
Optimal pulse-wise experiment

0

T
R
(t

)

1

0

T
R
(t

)
1

0 4000 8000 12000
Time (s)

Figure 9 Experiments performed throughout the identification procedure.

Table 4 Summary of the practical identifiability analysis
for the successive experimental schemes: a) Predicted
maximum uncertainty of the given parameter in %, b)
Relative distance between the mean and the nominal
value of the parameters in %.

a) ES1 b) ES1

c3a 5.40 c3a 0.02

c4a 9.07 ES2 ES3 c4a 0.66 ES2 ES3

c5 40.8 32.3 16.9 c5 0.26 0.38 0.6

k1 20.1 18.0 10.7 k1 0.46 0.19 0.18

k2 44.0 14.9 7.85 k2 1.97 0.51 0.25

k3 33.7 5.47 k3 0.95 0.10

kprod 53.7 23.8 13.2 kprod 2.90 0.42 0.05

kdeg 60.8 26.3 15.6 kdeg 3.41 0.44 0.03

i1 16.9 10.4 i1 0.26 0.12

i1a 18.1 8.94 i1a 0.27 0.40

Underlined values represent the worst value for the given experimental
scheme. Bold face values represent the best value achieved for each
parameter at the end of the identification procedure.
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particular model. The procedure involves the following
steps: structural and practical identifiability analysis, glo-
bal ranking of parameters, parameter estimation using
efficient global optimization techniques and optimal
experimental design.
As an illustrative example, we considered parameter

estimation of the model describing the NF-�B module
proposed by Lipniacki et al. [9]. Using the identifiability
tableau based on the generating series coefficients, the
possibility of simultaneously estimating the entire set of
parameters was revealed. With the support of the global
ranking of parameters we were able to predict the insen-
sitivity of the observables to some of the parameters and
the consequent lack of practical identifiability. After fix-
ing such parameters we proceeded throughout the iden-
tification procedure. The practical identifiability analysis
for the available experimental schemes indicated high
correlation between some pairs of parameters in the
subset and large expected uncertainties for the para-
meters. The final stage was to design two new optimal
experiments that were able to substantially improve the
quality of the parameter estimates. This case study
clearly reveals the usefulness of the proposed identifica-
tion procedure to improve efficiency and robustness
during model development in systems biology.
The methodology described here has been implemen-

ted in a software toolbox, AMIGO, which is available
from the authors upon request.

Additional file 1: Further details on the application of the
identification procedure to the mathematical model of the NF-�B
regulatory module. Additional file 1 presents further details on the
analysis of the structural identifiability, the ranking of parameters, the
optimal experimental design and the corresponding identifiability
analysis for the of NK�B example.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1752-0509-4-11-
S1.PDF ]
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