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Abstract: Scorpionism is a global health concern, with an estimation of over one million annual
envenomation cases. Despite this, little is known regarding the drivers of scorpion venom potency.
One widely held view is that smaller scorpions with less-developed chelae possess the most potent
venoms. While this perception is often used as a guide for medical intervention, it has yet to be
tested in a formal comparative framework. Here, we use a phylogenetic comparative analysis of
36 scorpion species to test whether scorpion venom potency, as measured using LD50, is related to
scorpion body size and morphology. We found a positive relationship between LD50 and scorpion
total length, supporting the perception that smaller scorpions possess more potent venoms. We also
found that, independent of body size, scorpion species with long narrow chelae have higher venom
potencies compared to species with more robust chelae. These results not only support the general
perception of scorpion morphology and potency, but also the presence of an ecology trade-off with
scorpions either selected for well-developed chelae or more potent venoms. Testing the patterns of
venom variations in scorpions aids both our ecological understanding and our ability to address the
global health burden of scorpionism.

Keywords: venom; scorpions; LD50; potency; body size; chela morphology; telson morphology;
phylogenetic comparative analyses; defense mechanisms; evolutionary trade-off

Key Contribution: We conducted a comparative analysis, testing the relationship between the overall
size of scorpions and their morphological features, including the relationship between the chela and
telson of scorpions with their venom potency (LD50). We found that larger species of scorpions, with
robust pedipalps, are less venomous than small scorpions, with slender pedipalps.

1. Introduction

Envenomation, resulting from a scorpion sting, referred to as scorpionism [1], is a
major global public concern affecting Central America, South America, North Africa, the
Middle East and West Asia [2]. Approximately 1.2 million scorpion stings are estimated
to occur throughout the world each year, 3250 of which result in death [3,4]. Despite the
global burden of scorpionism, which is likely to be higher due to unreported envenoma-
tion events [5,6], surprisingly little is understood regarding the ecology and evolution of
scorpions and their venom. Such a gap in understanding and data can lead to inaccurate
treatment of scorpion envenomation, through misidentification of species [7] or the misuse
of antivenoms [8]. Furthermore, understanding the ecology and evolution of venoms can
aid in predicting envenomation risk and its treatment, as demonstrated by the efforts re-
lated to snakebites [9]. Ecological factors have been linked to severe scorpionism, including
climatic variations, venom metering and the overall morphology of the scorpion [10,11].
Understanding the ecological and evolutionary drivers of scorpion venom potency not
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only contributes to our fundamental understanding of these species, but also to our ability
to address the global burden of scorpionism.

The concept that larger scorpions have less potent venom compared to smaller scor-
pions is widely expressed in the media, and has been popularized by numerous sources,
such as in the Indiana Jones movie, where the main protagonist explicitly refers to this
by saying “When it comes to scorpions, the bigger the better” [12]. Apart from its use in
popular fiction, the concept of relying on the size of the morphological characteristics of
scorpions is used as a general medical guidance in many countries where scorpionism
is an issue [13,14], as most scorpions are difficult to identify at the species level by non-
experts [14–17]. Support for this general concept can be found in the high median lethal
dosage values (LD50), indicating venoms of lower potency, reported for larger species of
scorpions, such as Hadrurus arizonensis and Heterometrus laoticus [18–21]. However, such
general rules should be used with caution. For example, in Morocco, black scorpions are
often considered as the most lethal species [22], despite evidence that the color of scorpions
does not relate to lethality, and is usually determined by habitat [23]. However, unlike
color, body size may have a clearer potential mechanistic relationship with venom potency.

Scorpions possess the following two main means to capture prey and dissuade preda-
tors: their venomous stinging apparatus and their pedipalps [24]. While present in all
scorpions, their use varies across species, following a trade-off pattern [16]. Species that
primarily rely on venom, such as many species within Buthidae, often have long slender
chelae [5,24], while species with more powerful chelae, such as Opistopthalmus glabrifrons,
typically have comparatively less-developed stinging apparatus, with a smaller metasoma,
or less potent venom, as found by Lourenço [15]. From an evolutionary perspective, such
a pattern may emerge, as larger species that rely more on mechanical prey capture or
that avoid predators may have fewer selection pressures on the potency of their venoms.
Interestingly, not only has size been used as a medical indicator in envenomation cases [25],
the size of the pedipalps has been used to determine the lethality of scorpions [24,25].
However, despite popular support for these patterns, they have yet to be tested using
phylogenetic comparative methods.

While phylogenetic comparative methods are a relatively recent approach to under-
standing venom variation [26], studies measuring venom potencies have a rich history,
with numerous standardized measures of potencies, such as LD50, available across species
spanning the scorpion phylogeny. Here, we use this rich history to collate LD50 potency
values [20,27–44] and morphology measures [14,19,35,45–83] from the literature to test the
commonly held belief that larger scorpions, with more powerful chelae, are comparatively
less potent than smaller species. We predict that smaller species, with narrower chelae and
larger telsons, will have lower LD50 values, indicating higher venom potency.

2. Results

Our dataset consisted of 36 scorpion species with 62 measures of LD50, with all the
measures that met our criterion for inclusion using mammalian Mus musculus models
(S1). The lethality of the species within the dataset ranges from 0.16 mg/kg−1 for the
deathstalker Leiurus quinquestriatus to 1800 mg/kg−1 for the rock scorpion Hadogenes
granulatus. The median body size was 70 mm, ranging from 40.5 mm for the bark scorpion
Scorpion Centruroides noxius to 200 mm for H. granulatus. The chela ratio ranged from 0.7 to
6.2, with the most robust chelae found in the large-clawed scorpion Scorpio maurus and the
red scorpion Rhopalurus junceus, with the most slender chelae found in the deathstalker
Leiurus quinquestriatus.

We found that body length was positively correlated with LD50, with the larger
scorpions being associated with less potent venoms (Figure 1 and Figure S1 and Table 1).
The significant slope between log10 body length and log10 LD50 found in our analysis
corresponds to a change in LD50 of 187 mg/kg−1 across the 159 mm range of body length
in our dataset (Figure 1 and Figure S1 and Table 1).
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Figure 1. Relationship between log10 total length (mm) and log10 LD50 (mg/kg) for 62 measures of
LD50 across 36 species. The fitted line highlights the significant positive relationship between
log10 total length and log10 LD50, adjusted for the median chelae ratio value of 3.7 (β = 3.24,
pMCMC < 0.001). Selected species highlighted from left to right are highlighted by the hollow
yellow circles and are as follows: Scorpion Centruroides noxius; Scorpio maurus; Androctonus crassicauda;
Parabuthus transvaalicus; Hadogenes granulatus.

Table 1. Main models testing the role of body size and morphology on LD50. The modes (β) and
95% credibility intervals (lower CI and upper CI) of the posterior distributions are given for all fixed
and random terms in a model, with log10 of LD50 as the response variable. Fixed terms include the
continuous factors log10 of scorpion total length, the ratio of chela length to width (chela ratio) and
the ratio of telson length to width (telson ratio). Categorical fixed terms include the LD50 method of
injection (subcutaneous (SC), intravenous (IV), intraperitoneal (IP) and intramuscular (IM)), with
SC as the baseline. The random terms associated with phylogenetic relatedness (phylogeny (h2)),
intraspecific variation (species) and residual variation (residual) are also presented. For more details
on the parameters, see Materials and Methods. The model has 62 LD50 measures for 36 species.

β Lower CI Upper CI pMCMC

Fixed Terms
Intercept −4.82 −8.40 −1.68 0.004

Log10 body
length (mm) 3.24 1.57 4.99 <0.001

LD50 methodSC
IV −0.04 −0.35 0.29 0.81
IP 0.17 −0.36 0.73 0.88
IM 0.10 −1.05 1.35 0.52

Chela ratio −0.26 −0.40 −0.11 0.005
Telson ratio 0.04 −0.15 0.20 0.63

Random Terms
Phylogeny (h2) 0.60 0.25 0.87

Species 0.01 0.00 0.46
Residuals 0.26 0.10 0.49

Significant values, which are highlighted in bold, are deemed to be those with 95% of the posterior estimate above
or below zero.
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For the morphological traits, we found a significant negative relationship between
log10 LD50 and chelae ratio, with species possessing more slender chelae being associated
with lower log10 LD50 values (Figure 2 and Figure S1 and Table 1). Our results show that
increasing the chelae ratio by one unit results in a 0.26 decrease in log10 LD50. Across the
full range of chelae ratios in our dataset, this corresponds to approximately an order of
magnitude decrease in LD50 (Figure 2 and Table 1).
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Figure 2. Relationship between chelae and log10 LD50 (mg/kg) for 62 measures of LD50 across
36 species. The fitted line highlights the significant negative relationship between the chelae ratio
value and log10 LD50 adjusted for the median log10 total length value of 70 mm (β = −0.26,
pMCMC < 0.01). Selected species are highlighted by the hollow red circles and from left to right are
as follows: Scorpio maurus; Hadogenes granulatus; Scorpion Centruroides noxius; Parabuthus transvaalicus.

For the telson ratio and the methods of injection for the LD50 test, we found no
significant relationship with log10 LD50. The phylogenetic signal associated with LD50 was
moderate to high in the analysis, with a h2 value of 0.60, and little variation associated with
the species (Table 1).

3. Discussion

Here, we found strong support for the widely held perception that larger scorpions,
with more robust chelae, are less potent than small species, with thin chelae. These results
follow the general observations that the most potent scorpion venoms are recorded in
smaller species, such as the bark scorpion Scorpion Centruroides noxius or the Brazilian
yellow scorpion Tityus serrulatus. Conversely, the highest LD50 values, and, hence, the
least potent scorpion venoms, are often found in some of the largest scorpion species.
For example, in our data, the largest species, the rock scorpion Hadogenes granulatus, is
associated with the least potent venom. Similarly, species with robust, well-developed
chelae, such as the Israeli gold scorpion Scorpio maurus, were also associated with some of
the least potent venoms. More potent venoms were found in species with narrow chelae,
such as the South African thick-tail scorpion Parabuthus transvaalicus.

From an ecological perspective, these results support the patterns expected to arise
from an evolutionary trade-off in investment between systems that can play similar de-
fensive and predatory roles [16,84]. For prey capture, scorpions are observed to either
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primarily rely on mechanically capturing and subduing their prey with their pedipalps or
only using them in a supportive role, with their venom primarily carrying out the function
of incapacitation [85–87]. Such a trade-off is particularly apparent in species with wide
chelae that can produce larger crushing forces, but have less-developed metasoma, such as
in the rock scorpion Hadogenes granulatus.

Interestingly, we did not find a correlation between the shape of the telson, which
houses the venom glands, and the venom potency. This highlights that, while there may be
an evolutionary trade-off between chelae development and venom potency, this trade-off is
not linked to the telson morphology. Instead, this suggests reduced selection in maintaining
high levels of potency in larger species with robust chelae, but not in the ability to deliver
venom. While snake species that no longer utilize venom for predation are found to have
reduced potencies and, in some cases, are no longer able to deliver venom [88], this does not
seem to be the case in scorpions. This retained ability to deliver venom in scorpion species
that no longer use venom for predation likely points to the important defensive function of
scorpion venoms. However, while our results do not support a trade-off between telson
morphology and venom potency, other features of the scorpion delivery system may be
associated with this trade-off, such as the metasoma. For example, Ref. [15] associated
the thickness of the metasoma with venom potency. This may highlight the relationship
between how frequently venom is used by a species and the fact that species that rely on
venom for predation require more well-developed metasoma.

Our results highlight how ecological drivers can select for venom potency. However,
the functional abilities of scorpion venoms are far more complex than the relatively one-
dimensional measure of lethality using LD50. For example, it would be predicted that
species with less-developed metasomas, such as the rock scorpion, may primarily retain
venoms for defensive purposes, with such venoms no longer being selected for lethality, but
for other attributes, such as inducing pain [89]. Conversely, while LD50 measures may be
more appropriate to capture the functional ability of species that primarily rely on venom
to incapacitate prey, other measures, such as the time taken to incapacitate, may be more
ecologically relevant for future studies [90].

Further to the type of potency measure used, accounting for the species on which
the venom is tested may also provide further understanding of potency variation across
scorpion species. As the data used in our analysis consist of potency measures tested
on mammalian models, more ecologically relevant test models that reflect each scorpion
species’ diet may allow more detailed analyses of the drivers of scorpion venoms and
composition to be conducted [26,91]. Studies have indicated some level of prey specificity
in scorpion venom [92]; however, very few studies have tested scorpion venoms against
their typical targets. The inclusion of such ecologically relevant test models would allow
for the use of similar evolutionary distance metrics to those used in studies of snake
venoms [26,93], to test and account for potency variation associated with prey specificity.
Such models may also shed further light on the lack of a relationship found here between
the route of venom injection and the potency. While it has been found, in studies of snake
venoms, that the measures of LD50 using intravenous routes of injection are lower, the lack
of such a relationship here may potentially be due to the fact that the scorpion venoms
were selected to act on invertebrate prey, where the intravenous injection of venom was
not selected for. However, as the potency measures used here were tested on mammalian
model species, our results likely reflect the expected potency of scorpion venoms from a
human medical perspective.

Our results also support the use of general scorpion morphology as a broad indicator
for assessing the potential potency of a species. Such general indicators, particularly for
clearly identifiable features, such as pedipalp size, may aid in envenomation cases where a
species has not been identified, an issue that is common in many tropical and sub-tropical
regions [94]. However, caution should be taken when using such general rules, as there is a
large degree of variation in potency across the general patterns found in our analysis. For
example, Scorpio maurus and Androctonus crassicauda are relatively similarly sized species,
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yet, despite Androctonus crassicauda being slightly larger, it is orders of magnitude more
potent compared to Scorpio maurus. Hence, the use of these general indicators should be
firmly based on more regional-specific information regarding the species that are likely to
be associated with an envenomation event [95].

4. Conclusions

While potency is often the primary focus in understanding scorpionism risk, under-
standing the link between scorpion ecology and venom composition, and their associated
envenomation symptoms [96], is likely to help in developing suitable envenomation reme-
diation strategies. Testing fundamental patterns associated with the drivers of variation
in scorpion venoms will not only allow for a clearer understanding of the ecology and
evolution of venoms in scorpions, but will also provide a clearer path in understanding
how to address the global issue of scorpionism.

5. Materials and Methods

To test our hypothesis, we collated data on venom potency and morphological features
from the available literature. We performed an initial Web of Science search for scorpion
potency and morphology data using the following search terms: “scorpion(s)”, “scorpion
venom”, “scorpion venom potency”, “medically significant scorpions”, “lethality”, “median
lethal dose”, “scorpion LD50”, “pedipalp measure”, “total body size”, “chela size”, “chela
length”, “chela width”, “telson measure”, “telson length” and “telson width”. Further
citations within key sources were also used in conjunction with the search terms.

For venom potency, we used median lethal dose (LD50), which was administered by
intravenous (IV), subcutaneous (SC), intraperitoneal (IP) or intramuscular (IM) routes. We
only included dried venom LD50 values, which reported the body mass of the test species
and converted all units to mg of dried venom to kg of test subject.

For morphological measurements, we used scorpion total body size (mm) and the
length and width (mm) of the chela and telson from reported values and from diagrams
and photos where scale bars were present. For measurements for the length of the chela,
we used maximum distance from the tip of the tarsus (Figure 3X(a) to the base of the tibia,
where it meets the distal end of the patella (Figure 3X(b). The width of the chela was
measure at the widest points of the tibia (Figure 3X(c,d). For the telson, the length was
measured as the maximum distance between the base of the vesicle (e) and the distal end
of the aculeus (f), and the width was measured at the widest point of the vesicle (between
points g and h).

As morphological measures were not available for Centruroides limpidus, we used val-
ues available from Centruroides ruana. These were described to have identical morphological
features as each other.

For the analysis, we log10 transformed LD50 and body size values, as they resulted
in a more normal distribution of model residuals. As body size is expected to be related
to the length and width of both the chela and telson, we used length–width ratios to give
mass-independent indices of their morphology. As short thick chelae are associated with
delivering higher forces compared to long thick chelae [84,97], we divided the length of
each chela by its width. Hence, this chela ratio ranged from high values, representing
long thin chelae, to low values, representing short thick chelae. For the telson, we also
divided the telson length by its dorsoventral width to give values ranging from high
values, representing narrow elongated telsons, which are expected to be associated with a
less-developed telson [98], to lower values, representing more bulbus telsons, which are
expected to be associated with more developed use of venom [98].

To test our hypotheses, we fitted Bayesian phylogenetic mixed models (BPMM), using
the MCMCglmm package [99] in R version 4.0.4 (Team 2016). These models allow for
the inclusion of multiple explanatory variables as fixed effects, and random effect terms,
which can be used as variance terms [99]. We controlled for pseudoreplication, due to
shared ancestry between species, by using the animal term, and for the phylogenetic
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relationships between scorpions from our dataset using a phylogeny from the Open Tree
of Life project [100]. The animal term uses a distance matrix of the phylogenetic distance
between species to control for the expected similarity in trait values [99]. We calculated
the relative variance attributable to the animal term as h2 [101], which can be interpreted
in a similar fashion to the phylogenetic lambda value. A h2 value close to 1 indicates a
Brownian model of trait evolution, while a value close to zero indicates independence
between trait values [101]. In order to include multiple measures of LD50 for each species
in our analysis, we also used a random term for species, similar to previous comparative
models of venom variation across taxonomic groups [26]. Significance for a fixed term is
determined when the 95% credibility interval (CI) does not cross zero [99]; however, we also
included pMCMC values, which are a Bayesian alternative to p-values, with significance
interpreted when pMCMC < 0.05 [99].
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Figure 3. Measurements taken from diagrams and photos with scale bars. (X) shows measurements
for the length (a to b) and width (c to d) of the chela. (Y) shows the length (e to f) and width (g to h) of
the telson. (a) represents the distal point where the pedipalpal patella meets the tibia; (b) is the most
distal point of the pedipalpal tibia; (c) and (d) are the widest dorsoventral points on the pedipalpal
tibia; (e) is the posterior end of the venom vesicle; (f) is the distal end of the aculeus; (g,h) are the
widest dorsoventral points of the telson.

We fitted all models using standard non-informative priors, with the burn-in, thinning
and number of iterations determined to ensure effective sample sizes exceeded 1000 for
all parameter estimates. We tested for convergence using the Gelman–Rubin statistic over
three separate chains [102].

As we found LD50 and body length to have log-normal distributions, we log10 trans-
formed these variables. Such a transformation also allows us to fit a power–law relationship
between LD50 and body length of the form LD50 ~ (body length)a. Such power relation-
ships are typically associated with scaling relationships with body size [103], and have
also been found to be associated with body size and venom properties in studies of snake
venom [26]. We tested for collinearity between the independent factors using a series of
regressions, finding no significant correlations between them (Supplementary Figures S2
and S3). We controlled for the effect of route of injection by including it as a fixed factor (SC,
IM, IV, and IP), along with the two random terms accounting for phylogenetic variation
(“animal” term) and species-level variation (“species” term). In our model, we included
log10 (LD50) as the response variable, with log10 (body length), chela ratio and telson ratio
as the independent variables. All data and analysis code are available in the Supplementary
Files S1–S3.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/toxins14030219/s1, Figure S1: Three dimensional plot of the
relationship between the two significant the independent effects of log10 transformed Body size and
Chela ratio with log10 transformed LD50. (for 62 observations for 36 species); Figure S2: Relationship
between Chela ratio and log10 body length demonstrating no significant relationship between the
variables (Slope = −0.002, p = 0.89 for 62 observations for 36 species); Figure S3: Relationship between
Telson ratio and log10 body length demonstrating no significant relationship between the variables
(Slope = −0.01, p = 0.45 for 62 observations for 36 species); File S1: Dataset containing measures
of LD50, morphological measures and references for the data used in the analysis; File S2: Script
outlining the analysis; File S3: Phylogeny file required for comparative analysis.
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