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Abstract

The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As 

prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 

can process extensive texts and large vision models (LVMs) such as the Segment Anything 

Model (SAM) can process extensive imaging data to enhance the efficiency and precision 

of radiation therapy. This paper explores full-spectrum applications of AGI across radiation 

oncology including initial consultation, simulation, treatment planning, treatment delivery, 

treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates 

powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises 
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to catalyze a shift towards data-driven, personalized radiation therapy. However, these models 

should complement human expertise and care. This paper provides an overview of how AGI can 

transform radiation oncology to elevate the standard of patient care in radiation oncology, with the 

key insight being AGI’s ability to exploit multimodal clinical data at scale.
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1. Introduction

An estimated 600,000 people in the United States die from cancer every year. Beyond 

surgery and chemotherapy (now augmented by immunotherapy), radiotherapy has proven 

as a standard and effective treatment option for nearly 50–70% of cancer patients. There 

exist diverse modalities for the delivery in radiotherapy: (1) brachytherapy involves the 

surgical implantation of radioactive sources into the patient to kill tumors1; (2) early external 

beam radiotherapy utilizes strong radioactive sources like Cobalt60 positioned at a distance 

from patients with collimators used to shape and direct beams2; (3) contemporary external 

beam radiotherapy utilizes medical linear accelerator to generate high-energy electron beams 

or photon beams via bremsstrahlung interactions, optimized for tumor targeting through 

treatment planning systems3; (4) particle therapy with protons or heavier ions produces 

conformal dose distributions with reduced exit doses, demonstrating efficacy in select 

cases.4–7

Radiotherapy treatment involves six basic stages: initial consultation, simulation, treatment 

planning, treatment delivery, treatment verification, and patient follow-up. The initial 

consultation includes a radiation oncologist reviewing the patient’s medical history 

including demographics, operative notes, pathology reports, radiology reports, lab results, 

discharge, and consults notes to determine the appropriateness of radiotherapy.8 Simulation 

precisely localizes the tumor using CT/MR imaging and customized immobilization devices 

to ensure reproducibility between fractions. In treatment planning, medical professionals 

delineate target and organ-at-risk volumes on simulation images.9 Medical dosimetrists 

and physicists design individualized treatment plans balancing tumor control and normal 

tissue toxicity.10–12 Treatment verification involves the evaluation of dosimetric and 

geometric accuracy for radiation safety.13,14 Qualified radiation therapists perform image-

guided radiation delivery as prescribed. Periodic patient follow-up monitors the progress 

and addresses any side effects. Longitudinal surveillance further guides the management 

of potential recurrence or residual disease.15,16 With the emergence of deep learning 

algorithms, radiotherapy is undergoing substantial transformation. Artificial intelligence 

(AI) achieves human-level accuracy in the auto-segmentation of organs-at-risk and tumor 

volumes from CT/MR images, which saves clinicians’ times spent on delineation.17,18 

Beyond auto-segmentation, AI-based algorithms were also implemented in tumor staging,19 

image registration,20,21 automatic treatment planning,22 quality assurance,23 outcomes 

prediction,24–27 as well as other areas.
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The introduction of the transformer architecture marked a significant milestone in the 

development of deep learning models, leading to remarkable advancements in terms of 

parameter size and model complexity.28 There has been an exponential growth in the 

scale of these models which were trained on massive amounts of text data. Notable 

examples of large language models (LLM) that have emerged include OpenAI’s generative 

pre-trained transformer (GPT), Google’s pathways language model (PaLM), etc. Some 

domain-specific LLMs can serve as virtual assistants, facilitating healthcare advice, medical 

decision support, and administrative tasks.29,30 Building upon the success of pre-trained 

large models in natural language processing (NLP), researchers have embarked on exploring 

pre-trained large models in the domain of computer vision. Large visual models (LVMs), 

such as vision transformers (ViT)31 and VideoMAE V2,32 exhibit exceptional accuracy in 

recognizing objects and scenes within images and videos. Researchers are exploring the 

potential of combining language and visual models to develop advanced AI systems that 

possess a more human-like understanding of the world.33 Since AGI models are trained on 

large and diverse datasets, AGI can achieve impressive zero-shot/few-shot generalization on 

unseen/limited datasets and perform various real-world tasks with proper prompts.

In this review, we will focus on the different aspects of radiation oncology and the emerging 

applications and potentials of AGI. The structure of this paper is as follows. In Section 2, we 

introduced the application of LLMs in radiation oncology, including the automatic selection 

of radiotherapy modalities, patient follow-ups, knowledge extraction from multi-center data, 

and standardization of clinical data. Section 3 presents how the LVMs and multimodal 

models shape the domain of medical imaging, and the potentials in radiation oncology. 

Section 4 discusses the transformative potential of AGI in radiotherapy dose prediction 

and automatic treatment planning. Section 5 summarizes the deep learning methods in the 

generation of synthetic CT and talks about the potential of AGI models. Section 6 focuses 

on the application of deep neural networks in medical image registration. In Section 7, we 

explore the future directions of AGI in radiation oncology. The potential developments and 

bottlenecks in the field are discussed as well.

2. Clinical decision support and standardization

Since the advent of the transformer architecture, there has been a remarkable burgeoning 

in the domain of Natural Language Processing (NLP). A plethora of sophisticated 

models have emerged, ranging from early pre-trained BERT models,34,35 the Generative 

Pre-trained Transformer (GPT) series,36–38 PaLM 239 and recent open-source LLMs 

such as BLOOMZ40 and the Llama series.41,42 These architectures and domain-specific 

variants43–47 exhibit diverse capabilities in effectively tackling an extensive array of NLP 

tasks48–52 and downstream applications.53–57

Radiation oncology is a dynamic field, marked by nuanced clinical decision-making and a 

relentless drive for efficacy and precision. Within this intricate landscape, the application 

of LLMs can usher in a new era of enhanced patient care and clinical efficiency. With a 

proven record of success in diverse science domains,48,58–61 these models can sift through 

vast textual datasets to offer informed recommendations tailored to radiation oncology. In 

a seminary paper by Holmes et al.,57 researchers explored the capabilities of LLMs in 
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radiation oncology physics. The study benchmarked four LLMs against medical physicists 

and non-experts using an exam developed at Mayo Clinic. ChatGPT (GPT-4) outperformed 

other models and even medical physicists in some tests, highlighting the potential of LLMs 

in specialized fields like radiation oncology physics. The impressive accuracy of GPT-4, and 

to a lesser extent GPT-3.5, in answering questions on the topic of radiation oncology physics 

suggests that LLMs may be adequate for a wide range of applications in radiation oncology.

Fig. 1 illustrates the central role of LLMs in connecting data to clinical applications. For 

example, selecting the most appropriate radiation modality for each patient is a complex 

and time-consuming process in radiation oncology.62 Presently, oncologists often have to 

spend considerable time reviewing extensive clinical notes, which include a plethora of 

text documents like demographics, operative notes, pathology and radiology reports, lab 

results, and discharge and consults notes. These notes are frequently peppered with subtexts 

and templated information from the Electronic Medical Record (EMR) systems, making 

them cumbersome to navigate. The manual nature of this task not only requires significant 

labor but is also prone to human errors and inconsistencies in judgment. Advanced LLMs, 

fine-tuned specifically on radiation oncology datasets,63 can ameliorate this issue. Such 

models can rapidly parse through intricate clinical narratives to recommend the most 

suitable radiation modality, thereby enhancing both efficiency and the likelihood of optimal 

patient outcomes.

LLMs also can be pivotal in post-treatment scenarios. By analyzing patient feedback 

in clinical notes or electronic communications, they can identify patterns suggestive of 

complications or side-effects. Furthermore, they can generate detailed, patient-specific 

educational materials, offering insights into the radiation procedures they underwent, 

potential side effects, and the logic behind the selected treatment modalities.

In addition, radiation oncology practices often differ across institutions. LLMs can 

process diverse clinical notes, research findings, and treatment narratives from multiple 

institutions.48,55 This vast reservoir of knowledge can then be used to inform best practices 

or highlight innovative treatment approaches that have found success in particular settings.

Another long-standing problem in radiation oncology is poorly labeled structure names.64–69 

When analyzing data for a set of patients where the structure contours are required, we 

want to identify a particular set of structure contours. To do this, the structure name is 

usually used, however there is typically a lot of variation in the naming of a structure across 

patients and institutions, which makes the subsequent data analysis very cumbersome. For 

example, for one patient, prostate might be “prostate” and for another it may be “pstate”. 

For the femur head, the label may be “Femur_head_left” or “fem_head_l”. It is very time-

consuming and tedious to standardize the structure names and it is also prone to human 

errors.

This problem led to the development of a standard for labeling structure names. In 2018, the 

American Association of Physicists in Medicine (AAPM) created a task group (TG) report 

known as TG-263,70 which defined a standard for naming structures. However, even with 

a standard defined, clinics still often are slow to adopt the standard or choose not to. For 
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clinics that choose to adopt the TG-263 standard, data prior to 2018 remains poorly labeled. 

Tons of these historical patient data in radiation oncology still need to be standardized 

if we want to take advantage of them for data mining. For this reason, researchers have 

investigated methods for re-labeling structure names.

Prospective methods typically employ search algorithms and look-up tables65 or machine 

learning.64,66–69 The inputs for machine learning approaches always include the structure 

names and structures converted to binary masks. Additionally, inputs may include CT 

information, dose information, or reduced information such as the structure volume. 

Typically, the inclusion of additional information leads to better results, however studies 

consistently show that the most significant factor in the accuracy of these models to correctly 

re-label structure names is the structure name itself.

We have tested GPT-4’s ability to re-label structure names on a per-patient basis for 50 

prostate patients (never previously seen by GPT-4). The prompt includes the structure 

names, the TG-263 guidelines, and a list of standard structure names (no patient 

information). Importantly, the prompt also includes institution-specific instructions or 

guidelines. Fig. 2 shows the results. These results are comparable to the prior reported 

studies, however there are important distinctions. In the prior reported studies, structure 

names are always treated as stand-alone, not as part of a set of structure names for the 

patient. In doing this, they lose important contextual information. Additionally, since GPT-4 

does not need to be trained, we may include rare structure names where very little data 

exists. All of the prior reported studies only test the performance for a small set of structure 

names. The generality of GPT-4 is far beyond existing AI-based methods and may allow for 

easy implementation across institutions.

In the evolving landscape of radiation oncology, LLMs serve as valuable tools, amplifying 

the depth and breadth of human expertise. They promise a synthesis of vast knowledge, 

aiding clinicians in their quest to offer unparalleled patient care. However, it remains 

imperative that these models work in tandem with human experts, ensuring a blend of 

computational efficiency with compassionate care.

3. Patient outcome prediction

The success35,71–77 of language models in the field of NLP also provides a revolutionizing 

paradigm for the advancement of the visual domain. The transformer architecture, in 

particular, has become building blocks for constructing LVMs.78–80 Notable instances 

include the Vision Transformer (ViT),81 Swin Transformer,82 VideoMAE V2,32 and 

others.83–86 These LVMs undergo pre-training using extensive image datasets, equipping 

them with the capability to capture the complexities of image content and extract intricate 

semantic information. This empowers them to be highly effective across a wide range of 

downstream applications.18,21,48,87–93

Recently, the emergence of the Segment Anything Model (SAM)78 has introduced a novel 

approach to tackling downstream tasks. Unlike traditional pre-trained visual models, SAM 

operates as a promptable image segmentation model.18 It utilizes prompts provided by users 
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to guide the model in accurately segmenting the desired areas. By skillfully engineering 

prompts, SAM is capable of addressing a broad range of downstream tasks effectively. 

Its remarkable zero-shot generalization capability underscores the pivotal role of prompt 

engineering in enhancing the efficacy of downstream tasks.

Transitioning from an unimodal framework to a multimodal one requires adjustments 

in both data and model aspects. In the realm of data, researchers commonly pivot 

towards creating multimodal-instruction text datasets. This can be achieved by either 

reconfiguring existing benchmark datasets94–97 or employing innovative self-instruction 

methodologies.94,98,99 On the model horizon, a prevailing approach entails the fusion of 

information from disparate modalities into LLMs, endowing them with robust reasoning 

capabilities. Existing studies have taken one of two paths: the direct alignment of 

multimodal embeddings with LLMs94–96 or the utilization of expert models to translate 

data from various modalities into a form assimilable by LLMs.100,101 Through these 

methodologies, these works reshape LLMs into multimodal conversational agents94,98,100 

and versatile task solvers94,95,97 by fine-tuning their performance based on multimodal 

instructions.

The progress in LLMs and LVMs has paved the way for large multi-modal foundation 

models, enabling the integration of language and visual modalities.102 This fusion of 

modalities holds promise for unraveling complex real-world situations and improving 

modeling capabilities. The convergence of unimodal large language and vision models 

has garnered significant attention, ushering in a new era of boundless potential. Radiation 

Oncology is an illustrative domain where multimodality plays a crucial role.57 The 

application of multimodality in radiation oncology involves harnessing diverse medical 

imaging data (including simulation CT and MR, functional MR, PET, among others) as 

well as complementary information sources (such as biosensor measurements, laboratory 

examinations, clinical notes, and so forth) to augment the precision and efficacy of radiation 

therapy (Fig. 3). Large multimodal foundation models demonstrate their significance 

in this domain by illuminating patterns, predicting treatment outcomes, and facilitating 

tailored therapeutic strategies. Beyond augmenting current processes, these models have the 

transformative potential to drive a data-driven shift in radiation oncology. Fig. 3 shows some 

applications of multimodal foundation models in this field.

One pivotal part of radiation therapy workflow is the accurate prediction of patient 

outcomes, which include metrics like tumor control, toxicity levels, and overall survival 

rates.103 Patient outcome modeling plays a vital role in personalized cancer management 

across the spectrum of available treatment modalities and has specific applications in areas 

such as adaptive radiotherapy.104,105 Conventionally, this process demands the integration 

of diverse data types, including clinical, imaging, treatment, dosimetric, and biological data. 

The unstructured nature of clinical notes adds to the complexity, as it obliges clinicians 

to dedicate extensive hours to data extraction and analysis. Domain-adapted AGI models 

can dramatically transform this workflow by swiftly navigating through the clinical notes 

to extract relevant information. In doing so, these models contribute to the development 

of more robust predictive algorithms. Automation in this domain not only streamlines 
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operations but also holds the potential to increase the accuracy of outcome predictions, thus 

informing better treatment planning and elevating the standard of patient care.

The existing repositories of extensive datasets encompass a diverse range of valuable 

information. These encompass medical imaging, clinical notes, and survival data sourced 

from the Medical Information Mart for Intensive Care dataset (MIMIC-III),106 multimodal 

MRI data extracted from the Amsterdam Open MRI Collection (AOMIC),107 oncological 

data housed within The Cancer Imaging Archive (TCIA),108 cytopathological data 

obtained from SIPaKMeD and comparison detector datasets,109 alongside ophthalmological 

imaging datasets.110 Furthermore, genomic data can be found in the National Center for 

Biotechnology Information (NCBI)111 and various other sources. These comprehensive 

datasets provide researchers with an invaluable resource for conducting in-depth 

investigations and facilitating advancements in large foundational models.

In recent years, AI-based outcome models have made significant progress, such as acute skin 

toxicity for breast cancer,112 radiation pneumonitis for lung cancer,113 and overall survival 

for liver cancer,114 etc. However, the successful integration of outcome models into clinical 

practice is not solely contingent upon the accuracy of the models themselves. It also hinges 

upon the ability of clinicians to interpret and comprehend the specific decisions made by the 

models. Consequently, the interpretability and explainability of the AI or AGI models hold 

equal importance to their accuracy when considering their clinical implementation.

4. Automatic treatment planning

Radiation therapy serves as a key treatment strategy in clinical practice. Over recent 

years, its effectiveness has been remarkably enhanced, largely attributed to state-of-the-art 

modalities like Intensity-Modulated Radiation Therapy (IMRT) and Intensity-Modulated 

Proton Therapy (IMPT).115–120 This advancement has dual implications: It has improved 

treatment plan quality but has concurrently augmented the intricacy of these plans with 

longer planning duration and potential challenges in maintaining treatment accuracy. 

Clinicians often have to balance lots of planning-related parameters which necessitates 

intricate communications between dosimetrists and physicians to fine-tune the planning 

parameters. As a remedy to this, the research landscape is increasingly focusing on 

optimizing dose distribution and setting reasonable constraints.22,121–123 The overarching 

ambition is to efficiently and accurately generate an optimal dose distribution comparable 

to a manual plan based on previous treatment planning knowledge and ensure both time 

efficiency and uniform excellence, irrespective of the planner’s level of expertise.124,125

In clinical practice, one common strategy for enhancing the efficiency and quality of 

manual treatment planning involves reviewing prior cases deemed to be exemplary. In 

particular, parameters from these previous cases—such as beam configurations and dose-

volume histogram (DVH) objectives used in inverse planning—can be directly integrated 

into the current planning process or serve as benchmarks for decision-making.126,127 

Building on this concept, researchers have employed statistical models to distill specific 

attributes from these superior cases, utilizing the best of clinical acumen and knowledge. 

The initial class of methodologies focuses on predicting viable plan parameters, such 
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as DVH objectives to guide the optimization process. Approaches informed by artificial 

intelligence (AI) display remarkable advantages over conventional rule-based algorithms. 

Commonly known as Knowledge-Based Planning (KBP), these techniques anticipate 

possible dose distribution patterns for a new plan by drawing insights from historical, 

high-quality plans. While atlas-based KBP methods identify the most analogous patients 

in the plan database to ascertain the optimal starting parameters for inverse planning, 

model-based KBP methods deploy various computational models trained on previous plans 

to predict ideal parameters for the new case.128–130 The parameters generated by KBP 

can streamline the optimization process, cutting down on the number of trial-and-error 

adjustments, as they are inherently more aligned with ideal outcomes than those derived 

solely from planners’ experience. When it comes to describing the geometric relationship 

between organs-at-risk (OAR) and the planning target volumes (PTV), various metrics 

such as the overlap volume histogram (OVH), distance-to-target histogram (DTH), and 

out-of-field volume are commonly employed. These metrics can inform DVH predictions 

through machine learning techniques, including support vector regression (SVR).131–133 

One commercial embodiment of this DVH-KBP model is Varian’s RapidPlan.134 Contrary 

to DVH prediction alone, 3D-dose prediction preserves spatial specificity. Given that the 

DVH serves as a one-dimensional representation of the three-dimensional dose distribution, 

it inherently loses some spatial information during the translation. Consequently, identical 

DVH curves could originate from divergent dose distributions, potentially resulting in 

clinically meaningful disparities. Physicians typically utilize both DVH and raw dose data 

to assess the quality of treatment plans. Therefore, dose prediction could offer certain 

advantages that DVH prediction alone may not capture. Currently, deep learning algorithms 

have been proven to achieve expert-level 3D-dose prediction accuracy but with enhanced 

efficiency, even in advanced therapeutic modalities like helical tomotherapy and proton 

radiotherapy.89,135–138 Fig. 4 shows the workflow of deep learning-based dose prediction 

and clinical deployment for pencil beam scanning proton therapy.89 Moreover, predicted 

spatial dose distribution can be operationalized to generate clinically executable plans via 

dose-mimicking algorithms.139,140

In recent years, large foundational models such as ChatGPT and SAM have garnered 

substantial attention. As the burgeoning frontrunners in the AGI arena, these models 

offer tremendous promise for revolutionizing dose prediction in radiation therapy.37,78 

Current dose prediction paradigms, whether employing convolutional neural networks 

(CNN) or traditional machine-learning algorithms, often specialize in either particular 

types of clinical cases or specific anatomical locations.141 This specialization complicates 

their deployment and broad applicability in clinical environments. The majority of KBP 

methods rely on geometric and dosimetric parameters alone, which are either handcrafted 

or extracted through auto-encoder neural network. These approaches necessitate a large 

number of high-quality treatment plans. However, due to the inherent variability in plan 

quality across different medical centers, the presence of training data heterogeneity poses 

a major challenge when implementing data-driven solutions, especially for the outlier 

cases commonly existing in radiation oncology. It can be expected that the integration 

of the clinical, biological, and physics-based parameters obtained from multi-institutional 

data into AGI models will lead to notable enhancements in the robustness of AI-based 
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automatic treatment planning. As we know, AGI frameworks possess an innate versatility, 

enabling a singular model to tackle a multitude of tasks.142 This capability could facilitate 

the development of a unified AGI-based model for comprehensive dose prediction, 

substantially reducing the complexity of its clinical integration. Moreover, AGI exhibits 

robust cross-modality learning potential; for example, SAM can transfer the segmentation 

knowledge acquired from natural images to medical image analyses. A recent study on 

SAM in clinical radiation therapy shows that the natural images trained SAM can achieve 

clinically acceptable Dice score >0.7 for most OARs segmentation across four disease 

sites, demonstrating super generalization capabilities across different disease sites and 

different modalities that make it feasible to develop a generic auto-segmentation model 

in radiotherapy with SAM.18 Given the often-limited availability of training data for specific 

clinical scenarios or innovative techniques in clinical practice, AGI offers a robust solution 

for learning from a broad variety of knowledge. It permits fine-tuning based on a minimal 

dataset, generating reliable dose predictions. This is especially beneficial in cases of rare 

conditions or specialized techniques, such as MRI-based dose prediction, underscoring 

AGI’s transformative potential in radiation therapy treatment planning.143

5. Synthetic CT generation

Computed tomography (CT) is the primary imaging modality in the current practice of 

radiation therapy. It provides three-dimensional structural information of the patient for 

treatment planning, enabling electron density calibration required for dose calculation.144 

Synthetic CT offers the possibility of reducing the additional dose of CT scan and 

expanding the usage of other imaging modalities in adaptive radiotherapy, such as MR, 

CBCT, and MVCT.104,145–148 Magnetic resonance imaging (MRI) simulation has superior 

soft-tissue contrast compared with CT and delivers no ionizing radiation, which plays 

a vital role in target and organs-at-risk delineation. To create a treatment plan, MRI 

images have to be registered onto CT scans for dose calculation. Traditional synthetic CT 

generation methods can be grouped into three categories: bulk density override, atlas-based, 

and voxel-based methods.149 In recent years, many deep learning approaches have been 

proposed to predict the synthetic CT for MR-only radiotherapy.150–155 There are mainly two 

categories, generator-only model, and generator and discriminator model. Han first proposed 

a deep convolutional neural network (DCNN) to model the MR-to-CT mapping using 

eighteen brain tumor patients.156 Other generator-only architectures, such as U-net,157,158 

Res-Net,159 multiple deep CNNs,160 deep embedding CNN,161 patch-based CNN,162 also 

have been used to estimate the electron density maps. The application of these methods 

extended from brain cancer156 to head and neck cancer,162 and prostate cancer161(see Fig. 

5).

Compared with the generator-only model, generative adversarial network (GAN) 

architecture involves two sub-models: a generator model to generate plausible data, and 

a discriminator model to determine fake from real data. Most researchers used the 

co-registered/paired MR and CT images as the training data of GAN and its variant 

models, such as GAN,163 conditional GAN,155 residual transformer conditional GAN,164 

compensation cycle GAN.165 To overcome the limitation of precisely aligned MR and CT 

images, some GAN models were developed to synthesize images from weakly paired, or 
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unpaired data.166–170 Cycle-consistent GAN model was used in the training of weakly 

paired CT and MR images.166 Zeng explored a hybrid GAN consisting of a 3D generator 

network and a 2D discriminator network, in which 3D generator was believed to model the 

3D spatial information across slices.168 Augmented cycle GAN was proposed to generate 

synthetic CT using unpaired data from multiple scanners in different centers.170 The model 

provided improved generalization performance and produced clinically acceptable synthetic 

CTs.170 Although the robustness and generalizability of the generation models were 

considered in recent studies,171,172 the question of these techniques in clinical application is 

how to evaluate the quality of synthetic CT without acquiring the ground truth CT.173 GANs 

suffer certain limitations, including mode collapse, wherein the generator fails to capture 

the entire distribution of the training samples, resulting in repetitive or constrained samples. 

Inadequate robustness of the discriminator in GAN may lead to poor outputs.174 Recently, 

diffusion model has emerged as a promising generative approach, demonstrating exceptional 

performance in synthesizing image data.175 It operates by progressively introducing 

Gaussian noise to the training data and subsequently learning to reverse the noising process 

to recover the original data. The medical imaging field has witnessed significant attention 

towards diffusion models.174,176,177 For instance, the Conditional Denoising diffusion 

probabilistic model (DDPM) has been successfully employed for the conversion between 

MRI and CT/CBCT images,174,176 as well as 4D CT generation.177 In comparison to 

GAN methods, diffusion models offer a higher level of control through a series of Markov 

processes, allowing users to manipulate image quality and produce state-of-the-art results. 

However, it is important to note that diffusion models can be computationally intensive 

and demand substantial training time.175 As far as we know, there are no studies using 

large foundation model to generate synthetic CT. The fine-tuning approach have been 

developed to facilitate the efficient adaptation of large pre-trained diffusion models to 

diverse downstream domains.178 The large foundation models may be trained using CT and 

MR data from multiple centers, disease sites, and patient populations, which may ensure the 

model’s robustness and generalizability.

6. Image registration

Image registration, which aims to find the spatial relationship between two or multiple 

sets of images, is usually formalized as the optimization of a function balancing the 

similarity between images in terms of intensity, topology, or both.179 Compared to rigid 

image registration (RIR), the deformable image registration (DIR), which attempts to find 

the voxel-specific spatial relationship between two or multiple sets of images, has far 

more flexibility than RIR, thus, it can be used in more complicated clinical scenarios 

such as images with large anatomical structure changes. DIR has been extensively used 

in radiation therapy such as automatic segmentation,180,181 mathematical modeling,182–185 

functional imaging,186–188 and dose deformation.189–195 Over the years, many conventional 

DIR approaches have been developed and adopted clinically. The conventional DIR 

approaches can be broadly categorized into two categories: parametric184,185,196 and non-

parametric197–200 models(see Fig. 6). The parametric model generates deformable vector 

fields (DVFs) as a linear combination of its basic functions. The B-spline model is an 

example of such parametric models, and it can handle the local change of a voxel by 
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linear regression from nearby voxels within a certain distance. This property significantly 

reduces the computation time and memory required. Yet, the results can only be used for 

CTs with some strict conditions, such as breath-holding or respiratory gating, which limits 

its wide applications in clinics. In contrast, non-parametric models such as demons-based 

methods calculate transformation vectors of all voxels, thus achieving more accurate DVFs, 

but requiring more computation time and memory than the parametric models.

Recently, several deep learning-based methods have been developed to speed up DIR 

in medical image analysis. According to the supervision used in model training, it can 

be broadly categorized as, supervised and unsupervised learning-based DIR approaches. 

For the supervised learning-based DIR methods, the ground-truth DVF is needed as the 

supervision. Yang et al.201 proposed a two-steps deep learning framework for predicting 

the momentum parameterization for the large deformation diffeomorphic metric mapping 

(LDDMM) model. The proposed deep learning framework consists of two auto-encoder 

networks with the same architecture, in which the first auto-encoder is used to estimate 

the initial patch-wise momentum and the second one further tunes the initial patch-wise 

momentum. Although the proposed method is much faster comparing to the conventional 

DIR approaches, the computational complexity is higher than a typical single-step deep 

learning network. Besides, since it has two cascade networks, the symmetrical error may 

accumulate as the layers go deeper. The supervised learning-based DIR for other disease 

cites have also been studied.202–204 Nevertheless, the generation of the ground-truth DVFs 

that are used for model training can be time-consuming as well, besides, the computed 

ground-truth DVFs may also be different from the real DVFs, thus introducing unexpected 

errors. Therefore, the unsupervised learning-based DIR approach which learns the similarity 

between the ground-truth image and wrapped image is more practical and favorable 

in clinical applications. Balakrishnan et al.205 proposed a UNet-like model termed as 

VoxelMorph to learn the DVFs from pairs of magnetic resonance images (MRIs) (i.e., 

moving images and fixed images), then the generated DVFs and moving images go through 

a non-learnable spatial transformation to form the final generated warped images that 

resemble the fixed images. The VoxelMorph can achieve comparable performance as the 

state-of-the-art conventional DIR methods, whereas it is orders of magnitude faster. Thus, 

it has been widely used in medical image analysis. Most of these methods have been 

proposed for MRIs, which typically have high-resolution and rich anatomical information, 

whereas in radiation therapy the commonly used image modality is CT with a relatively low 

resolution. Recently,21 have extended the unsupervised learning-based DIR to CT modality 

and yielded fast and accurate results. Overall, the deep learning-based DIR approaches 

greatly speed up and improve the accuracy of the DVF generation. However, although they 

enjoy better generalizability than the conventional demon or spline-based DIR methods, 

they are still limited to one or a few disease sites. Besides, they require large, balanced 

and well-processed (e.g. data value follows Gaussian distribution, all data with a uniform 

size and etc.) dataset to train, which is apparently an unrealistic assumption for real-world 

clinical applications. Thus, a generalized and large model is at demand to address the 

challenges. With the advent of large multimodal foundation models, there has been a 

surge in the development of AGI-based image processing models, most notably represented 

by SAM, which has consequently accelerated research into the capabilities of AGI for 
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image segmentation task18 and has been extended to other related vision tasks. The general-

purpose nature of AGI models makes them particularly well-suited for complex tasks like 

multi-modal image registration. Preliminary research reveals that SAM-enabled systems can 

perform real-time, accurate tracking and mapping of reference points in deformable images. 

For example, SAM has been shown to be effective in tracking respiratory motion within lung 

images. This capacity for continuous, point-to-point tracking has promising implications for 

its broader adoption in medical image registration scenarios.206

7. Discussion and conclusion

In this review, we have outlined how AGI can revolutionize radiation oncology, enhancing 

healthcare standards. The key insight lies in AGI’s capacity to leverage large-scale 

multimodal clinical data. Among the six stages of the radiotherapy workflow, initial 

consultation, simulation, treatment planning, treatment delivery, treatment verification, 

and patient follow-up all involve visual and linguistic information. The processing and 

comprehension abilities of AGI in relation to visual and linguistic information have the 

potential to provide support throughout every stage of radiotherapy. This could result in 

improved radiotherapy safety and precision, enhanced efficiency, and favorable patient 

outcomes. However, the realization of AGI’s potential in radiotherapy necessitates seamless 

integration with existing medical systems, and the performance of AGI is limited by its 

dependence on domain-specific knowledge. To surpass this limitation, future efforts should 

prioritize broadening the scope of knowledge by integrating diverse and comprehensive 

clinical datasets, utilizing inter-disciplinary approaches, and encouraging interdisciplinary 

collaborations with clinical experts in radiation oncology.

As far as we know, LLMs, like GPT-3, are trained on text from multiple sources which 

include web pages, internet-based books, and Wikipedia. The LVMs are trained on the 

natural image datasets. Vision-language models are typically trained on multi-modal datasets 

harvested from the web in the form of matching image/video and text pairs. Although 

AGI generalized human cognitive abilities faced with unfamiliar tasks, most of the AGI 

models were not designed to provide high-quality clinical applications. To fine-tune these 

LLMs, LVMs, or vision-language models with high-quality medical data holds promising 

potential. By incorporating such data, AGI models can benefit from a broader range of 

clinical scenarios, leading to improved accuracy and performance in the applications of 

radiation oncology.

One of the challenges is the data standardization. The inconsistency of structure names 

in radiotherapy poses a significant challenge when employing automated methods. As 

AAPM task group 263 reported, it is important to follow a standardized target and 

organs-at-risk naming rules for AGI training, data sharing between multi-centers, and 

quality assurance.207 Data sharing presents an additional challenge in building a large, 

high-quality medical training dataset due to factors like privacy concerns, legal and ethical 

restrictions, and standardization obstacles to disseminating individual patient records. 

Data sharing has become increasingly prevalent in some fields of medical research, 

especially among genomics researchers and groups conducting systematic reviews and 

meta-analyses. Investigators still have concerns about sharing individual patient data from 
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clinical trials.208 Data interpretation in radiotherapy poses a notable challenge that warrants 

careful consideration to ensure meaningful analysis. This challenge arises from the inherent 

complexities of the clinical data, treatment uncertainties, and errors/-variations in data 

recording. Integration of heterogeneous data in radiotherapy, including patient consultation, 

clinical examinations, medical imaging, treatment plans, verification records, machine logs, 

and patient outcomes, presents difficulties due to variations in formats, resolutions, etc. To 

tackle the issue of interpretability, researchers have explored various methods that employ 

chain-of-thought reasoning to elucidate the outputs produced by large vision and language 

models.57,209 Additionally, novel benchmarks have been developed, such as ScienceQA, 

which focus explicitly on providing detailed stepwise rationales to explain model choices.210 

These efforts hold promise for further improvement, particularly by incorporating user 

feedbacks to enhance the interpretability of the interpretations generated by the large 

foundation models.211

Interdisciplinary collaboration teams play a vital role in ensuring the clinical applications of 

AGI models. These teams offer diverse perspectives and expertise, enabling comprehensive 

feedback throughout the development and validation stages. Involving end-users, such 

as radiation oncologists, and medical physicists, in the development process through 

user-centered design methodologies.48 It ensures that the AGI models meet the domain-

specific needs and preferences, enhancing the usability and acceptance of the models. The 

involvement of professionals from diverse disciplines ensures a comprehensive approach to 

address precision, ethical considerations, and regulatory compliance. In addition, developing 

AGI models that collaborate with medical professionals, rather than replacing them, offers 

several advantages. This approach allows for the maximization of AGI benefits while 

avoiding the resistance of medical professionals and optimizing their workload. With the 

development of AI, radiotherapy staffs prioritize continued education using AI to preserve 

their skills, such as manual segmentation ability.212 The introduction of AGI models will 

shape the evolving role of medical professionals in the radiotherapy department. With 

AGI handling micro/macro processes, the focus of radiotherapy staffs’ work will shift 

towards verifying the model performance quality. As a result, the continued education of 

radiotherapy staffs will need to adapt accordingly.

AGI holds great promise for radiotherapy, offering advancements in patient consultation, 

image registration, structure segmentation, radiation dose prediction, auto-treatment 

planning, patient outcomes prediction, etc. However, challenges remain regarding clinical 

datasets, regulation, and interdisciplinary collaboration considerations. Despite these 

challenges, the opportunities presented by AGI in enhancing radiation oncology and 

improving clinical automation are significant. This review aims to serve as a reference and 

catalyst for further exploration in this rapidly evolving field, stimulating advancements and 

discussions for the benefit of healthcare.
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Fig. 1. 
Large Foundational Models for Radiation Oncology. The left half of the revised figure 

represents the existing challenge at hand, while the right half portrays the proposed solution 

provided by the large foundational models in radiation oncology.
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Fig. 2. 
The accuracy of GPT-4 in re-labeling structure names according to the TG-263 report.
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Fig. 3. 
Large Multimodal Foundation Models for Radiation Oncology. Here we use a brain tumor 

case as an example and incorporate a visual representation of all data sources.
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Fig. 4. 
AI based treatment planning workflow. a) KBP method b) Dose Prediction method. The 

dotted box means an improved enhancement for the workflow.
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Fig. 5. 
Synthetic CT generation using deep learning.
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Fig. 6. 
AGI for Image registration.
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