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Purpose: Myopia in school-age children has become increasingly prevalent in industrialized 

countries, especially in Asia. A large population of school-age children still suffers from low 

visual acuity. We have developed a novel, safe and noninvasive training method to activate 

a pupillary constriction response during far accommodation that results in improved visual 

acuity.

Methods: Myopic children (n = 95) were treated for 3-minute sessions up to twice a week for 

12–106 weeks. We stimulated quick cycles of near/far accommodation by displaying a visual 

object on a LCD screen and moving the screen in cycles from a near (25 cm) to a far (70 cm) point 

and back, while keeping the retinal projection size and brightness of the object constant.

Results: Mechanistically, we noted pupillary constriction upon far accommodation in trained 

myopic children, which was not seen in normal subjects or in untrained myopic children. 

Eighty five percent (52/61) of trained myopic right eyes with two sessions weekly experienced 

improved visual acuity (VA) by more than 0.1 logMAR units with an average improvement 

of 0.30 ± 0.03 standard error of mean (SEM) logMAR units. With maintained training, most 

eyes’ improved VA stayed almost constant, for more than 50 weeks in the case of 12 long 

trained subjects.

Conclusions: This simple, short and safe accommodation training greatly improves the quality 

of vision in a large population suffering from refractive abnormalities.

Keywords: accommodation, visual acuity, myopia, pupil constriction, training regimen

Introduction
Myopia in school-age children has become highly prevalent in industrialized countries, 

especially in Asia, where it affects up to 50%–60% of school-age children.1–3 

Myopia in children may progress because of refractive correction.4 Various therapies 

have been attempted to slow down the progression of myopia in school children. 

Progressive addition lenses showed either no,5 or only marginal benefits.4,6–8Another 

therapeutic approach, to slow down the progression of myopia, has been the appli-

cation of pharmacological agents such as the nonselective muscarinic antagonist 

atropine. Although this treatment has been somewhat successful in slowing myopic 

progression, clinical side effects remain to be resolved.9,10 Surgical interventions, such 

as keratectomy (laser in situ keratomileusis (LASIK) and photorefractive keratectomy 

(PRK)), are used to improve refraction. Although these interventions often treat adult 

myopia successfully, they are inappropriate for a small subset of myopic children and 

techniques not indicated for general myopia in growing children.11,12 A large population 

of school-age children still suffers from low visual acuity (VA).
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Accommodation is the ability to change the focus of the 

eyes from distance to near (near accommodation) or near to 

distance (far accommodation);13 thus, accommodation allows 

the subject to maintain a sharp image of an object displayed at 

varying distances. Accommodation training improves VA fol-

lowing defocusing by inducing blur adaptation.14–16 Previous 

accommodation training has used standard objects of a fixed 

size, without compensating for changes in size and light 

intensity of their projected images onto the retina depending 

on the object-to-eye distance.17 Hence, when subjects adapt to 

a blurred image, they have also to adapt to changes in image 

size and light intensity, induced by the object at different 

distances from the eye. This may preclude the use of quick 

near/far accommodation cycles, as subjects complain of hav-

ing difficulty and discomfort when trying to focus as the object 

moves towards and away from their eyes rapidly.

Here, we investigate a novel method of accommodation 

training as a treatment for enhancing VA in myopic children. 

In order to train our subjects with quick cycles of near/far 

accommodation, we designed an apparatus that keeps the 

retinal projection size and brightness of the visual object 

constant by displaying the object on a liquid crystal display 

(LCD) screen and adjusting its size and brightness while 

moving it, in fast cycles, from a near (25 cm) to a far (70 cm) 

point and back. This set-up allows the subjects (in either mon-

ocular or binocular vision) to comfortably maintain a sharply 

projected retinal image of the quickly moving object during 

fast cycles of near and far accommodation. The majority of 

our treated children experienced significant improvements 

in VA with as little as two training sessions of 3 minutes 

duration per week.

Materials and methods
A novel accommodation  
training device
We designed a novel accommodation training device that con-

sists of a small (4˝) Thin Film Transistor (TFT)-LCD screen 

(Panasonic, Japan), which rests on a linear rail that allows it 

to be electronically moved forward and backward with the aid 

of a stepper motor (α step, AS55AA, Oriental Motor, Japan) 

(Figure 1A). This screen displays an object; in this study, 

a white circle on a black background (Figures 1A, 1B). 

A motion range of 45 cm was selected for this study from 

around minus 1.4 diopters at the far point (70 cm) to 

approximately minus 4 diopters at the near point (25 cm) of 

accommodation. The screen movements were controlled by a 

personal computer (Panasonic, Japan), allowing the operator 

to set the traveling speed of the forward and back movements 

as well as the dwell time at each end. The backward and 

forward movement of the screen is illustrated in Figure 1C. 

During testing, the screen was held for 0.3 second in the 

near and far end positions, at 25 cm and 70 cm respectively. 

It was moved at a velocity of maximally 100 cm/sec into the 

far position and maximally 100 cm/sec into the near position 

to create a blurred image on the retina of a subject estimated 

from the reports of dynamic accommodation.18,19 The position 

of the screen is constantly measured and interfaced with the 

computer to allow the recording of the motion of the screen 

over time, and to control the LCD screen. Using the positional 
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Figure 1A) A photograph of the accommodation training device, which consists of an 
LCD screen on a rail. The arrows indicate (a) the infrared camera, (b) the LCD screen, 
(c) the rail, (d) the infrared ray, (e) the half mirror, and (f) the chinrest, respectively. 
Figure 1B) This setup allows the researcher to project a visual object (here a ring) of 
apparent constant size and intensity onto the retina while moving the object forward 
and backward at a velocity of up to 1 m/sec. Figure 1C) Three typical accommoda-
tion cycles of an emmetropic child are plotted in this illustration. The blue histograms 
represent the typical changes in refraction over time ranging from the far point (70 cm) 
to the near point (25 cm). The red line at the bottom shows the screen position over 
time. Note that the refraction changes follow the position of the screen.
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data of the screen, the computer continuously adjusted the 

size of the circle in such a manner that its projection size 

onto the retina was kept constant.

At the 70 cm far point, the outer diameter of the circle 

used was 18 mm with 3 mm band width and at the near 

point 6.4 mm in diameter with a band width of 1 mm. The 

visual angle of this projection size to the retina was less than 

1 degree to match the size of the fovea. The eye position of 

each subject was adjusted to the object vertically (by moving 

the chinrest position) and horizontally (by moving the position 

of the device). During the training sessions the brightness of 

the circle was kept constant, however, due to the decrease 

in circle area (fewer illuminated pixels on the screen) the 

amount of light traveling into the eye remained the same at any 

position (140 candela/m2). The contrast ratio of the TFT-LCD 

screen was 250:1. To simultaneously measure the refraction 

(spherical refraction, SR) of the eye, a half-mirror (dichroic 

mirror; cut-off wavelength for transmission: 680 nm, and 

the wavelength for reflection: 780 nm) was placed between 

the eye and the screen at a 45 degree angle which projected 

into a ‘binocular open-field’ refractor (FR5000S Grand Seiko, 

Japan).20 The equipment could supply signals for the record-

ing of refraction, an image of the pupil, or a positional signal 

on the LCD screen every 0.1 second. Refraction data were 

collected every 0.2 seconds. The positional data of the screen 

was used to align the changes in refraction (collected every 

other 0.2 seconds) with the cycle of the screen movement 

(Figure 1c). The images generated by the refractometer also 

allowed us to measure the size of the pupil (diameter in mm) 

every 0.2 seconds. The pupillary size of both eyes during 

training was usually monitored and recorded with an infrared 

camera (WAT902H3, WAT, Japan) equipped with a varifocal 

lens (YU10x5R4A-SA2, Fujinon, Japan). An observer could 

advise subjects to keep their gaze at the target when their 

attention drifted off the monitor screen.

Subjects
A total of 18 school-age children with myopia (subjective 

refraction (SR): -0.5 D) were recruited as a control group, 

in the setting of a private ophthalmology clinic. Progress of 

their VA (subjective refraction and uncorrected VA) and SR 

were measured twice: once at the beginning of the study; and 

once six or more months after the initial measurement. A total 

of 95 school-age children with myopia (SR: -0.5 D) were 

also initially recruited in the same setting and their spheri-

cal and cylindrical refractive errors were measured with a 

‘binocular open-field’ autorefractor (FR5000S Grand Seiko, 

Japan). The diagnosis of myopia (SR: -0.5 D) was based on 

a corrective eyeglass and all VA tests were performed by an 

independent assessor (orthoptist). They were not astigmatic 

(cylindrical refraction abnormality exceeding minus 1 D) and 

trained without corrective eyeglasses for 3 months or longer 

with 1–2 training sessions (each 3 minutes) weekly. Since 

the frequency of training was expected to influence VA 

improvement, these trained myopic children were separated 

into the following two different groups according to their 

frequency of training: children in group 1 were trained for 

2 brief sessions per week, whereas those in group 2 received 

training once each week. Children in both groups were 

trained for at least 12 weeks, and had no additional visual 

abnormalities.

Visual acuity measurements
All measurements were performed once a week between 

16:00–18:00 hours in order to minimize daily fluctuations 

of VA. For the measurement of VA at far distance (5 m), 

objects of decreasing size were displayed on a screen using a 

NIDEK TypeII SSC-300 chart. An examiner (an independent 

assessor) showed a Landolt ring using a remote control box 

to prevent any learning effects from subjects. The condi-

tion to pass each VA level required two correct answers in 

3 examinations. The logMAR scale was used to allow for a 

comparison of our results with other studies.21 For the mea-

surement of SR at far distance (3 m), a binocular open-field 

design FR-5000 (Grand Seiko, Japan) was used to minimize 

instrumental myopia. All results are given as mean ± standard 

error of mean (SEM).

The effect of a pinhole (hole diameter: 2 mm, 3 mm, 4 mm, 

5 mm) in front of the eye on VA was also examined. For this 

experiment, a pinhole ring plate was set in an eyeglasses 

frame and subjects kept their gaze on a Landolt ring through 

the hole. Cycloplegia was induced in one eye of 38 subjects 

by administering three drops of 1% cyclopentolate solution 

at 5 minute intervals to clarify whether spherical refractive 

errors measured by an open-field autorefractor were identical 

to cycloplegic autorefractive errors. All investigations and 

measurements performed in this study adhered to the tenets of 

the Declaration of Helsinki and were approved by the human 

experimentation committee of Kanagawa Dental College  

and Kikuna Yuda Eye Clinic. All subjects, and their parents, 

gave informed consent to take part after a full explanation of 

the nature and possible consequences of the study.

Results
We studied 187 school-age myopic children (age 6–12, of both 

genders). We found that spherical refractive errors (measured 

by an open-field autorefractor) and their uncorrected VA were 
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correlated with their SR (D) (Figure 2). The regression line of 

binocular open-field refractive errors was linear with 1.05 D/D 

of its slope, and was almost identical to the line of cycloplegic 

autorefractive errors.22 The gradient of the regression line, for 

the uncorrected VA, was 0.21 logMAR/D which was similar 

to data published by Laurance in 1926.23

Frequent accommodation training  
leads to improved visual acuity
Myopia of affected school-age children is most often 

progressive.3,24 We confirmed that the uncorrected VA 

of untreated myopic children (control group) declined 

over time (Figure 3a; 18 healthy children/18 right eyes, 

aged 6–12, both genders). The rate of decline was 0.33 ± 

0.05 logMAR/year, and was accompanied by progressive 

refractive disability (Figure 3b). Next, we aimed to improve 

VA of school-age myopic children using our novel accom-

modation training device. We tested for SR (D) of 95 healthy 

myopic children (183 eyes, aged 6–12, both genders), who 

trained on our accommodation device twice per week 

(3 minute sessions) for at least three months. Each session 

consisted of 30 seconds training of the left and the right 

eye separately, followed by 30 seconds training of both 

eyes after a 30 second rest. The individuals reported no 

discomfort while performing these near-far accommoda-

tions. VA was measured once per week before a treatment 

session as well as immediately after the treatment session 

throughout the entire treatment period. VA changes of 

Group 1 (2 training sessions per week) over the training 

period were calculated for each subject by regression 

analysis and plotted as the VA before (blue dots) versus the 

VA after (red dots) the training period (Figure 3c). VA of 

the treated cohort improved significantly over the course of 

the study. Of the 61 eyes studied, 85% (52/61) of the VAs 

were improved from the level prior training by more than 

0.10 logMAR units and 56% (34/61) by more than 0.20 

logMAR units (the average improvement of the 61 eyes was  

0.30 ± 0.03 SEM logMAR units, paired t-test P  0.001), 

with 12 cases improving by 0.5 logMAR units. Raw data 

from two typical treated eyes (whose VA improved over 

time) are shown in Figure 4. While most eyes improved with 

training, two eyes had no change in VA after training, and 

two eyes showed a mild decline of VA (the average value of 

decline was 0.05 logMAR/year). The rate of decline of VA 

in these eyes is still less (better) than that found in average 

untrained myopic children (0.33 logMAR/year). Eyes of 

most Group 1 children (41 of 61) who trained on our accom-

modation device for longer than 12 weeks had improved VA 

at the 12 week point (eg, #83 Figure 4a). A small number 

of the children (n = 11) showed no training response in the 

first 12 weeks and then an improvement by a 30 week point 

(eg, #65, Figure 4c). With maintained training twice a week, 

most eyes’ improved VA stayed almost constant, for more 

than 50 weeks in case of 12 long trained subjects (eg, #83, 

#65 Figures 4a, c). The average improved logMAR of the 57 

left eyes and the total 118 eyes were 0.28 ± 0.03 SEM and 

0.29 ± 0.02 SEM, respectively (paired t-test: P  0.001).

The eyes of patients in Group 2 (trained on the accom-

modation device once per week) also showed enhanced VA 

following training, although this improvement was not sub-

stantial (Figure 3e). Of the 33 right eyes, 48% (16/33) of the 

eyes were improved by more than 0.10 logMAR units, and 

27% (9/33) by more than 0.20 logMAR units. The average 

improvement of the 33 right eyes was 0.08 ± 0.03 SEM 

logMAR units (paired t-test, P = 0.06) and that of the left 

32 eyes was 0.13 ± 0.03 SEM logMAR unit (paired t-test,  

P  0.05). The average improved logMAR of the total 65 eyes 

(0.11 ± 0.02 SEM, paired t-test, P  0.001) was less than half 

of the improvement experienced by eyes in Group 1.

Potential mechanisms underlying  
training-induced enhancement  
of visual acuity
How did accommodation training stimulate improvement of 

VA in myopic children? VA is influenced by neural, retinal 

as well as optical properties of the eye, such as the lens and 

cornea and the length of the eyeball.13 We measured the SR 
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Figure 2 The relationship between uncorrected visual acuity (VA) and binocular 
open-field spherical refractive error (SR) with subjective refraction of 187 myopic 
school-age children. ( ) and ( ): Average values of uncorrected VA values in 
each 0.25 D interval from 0.5 D to 3.75 D and its regression line. Its slope was 0.21 
logMAR/D. ( ) and (—): Average values in each 0.25 D interval from 0.5 D to 3.75 D 
of bifocal open-field refractive error and its regression line. Its slope was1.05 D/D.  
( ) and ( ). Cycloplegic autorefractive error and its regression line. Its slope 
was 0.89 D/D.
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of the eye at each training session. The SRs of Group 1 eyes 

declined by -0.018 ± 0.001 D per week (SEM, n = 61) over 

the duration of the training period (eg, Figures 4b, 4d). This 

change was similar to the decline observed in the Group 2 

and in control myopic children (-0.021 ± 0.001 D per week). 

Thus, the improved VA in virtually all trained children was 

not due to improvements in the refractive error of the eye. 

In fact, VA was improved or maintained in trained eyes 
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Figure 3 Accommodation training-induced improvements in visual acuity (VA) and spherical refractive error (SR) of eyes of school-age myopic children. 
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plot). Figure 3A and 3B 18 control myopic school-age children that did not undergo training, Figure 3A:  VA in untreated myopic children decreases (more positive) several months 
after initial measurement (paired t-test; P  0.001 in right and left eyes). Figure 3B The relationship between VA and SR at initial measurement and after several months in untreated 
myopic children. There was a significant shift in the distribution of SRs in this group (factorial ANOVA; p  0.001 in right and left eyes). Figure 3C and 3D 61 myopic children  
(61 right eyes, 57 left eyes) in Group 1 (2 training sessions per week). Figure 3C VA of myopic eyes was improved (more negative) following frequent accommodation training 
for three or more months (paired t-test; p  0.001 in right and left eyes). Figure 3D the relationship between VA and SR at initial measurement and after several months in 
eyes of frequently trained myopic children. There was a significant shift in the distribution of SRs in this group (factorial ANOVA; P  0.001 in right and left eyes). Figure 3E 
and 3F 34 myopic children (33 right eyes, 32 left eyes) in Group 2 (one training session per week). Figure 3E  VA of myopic eyes was improved following training once per 
week for three or more months (paired t-test; P = 0.06 in right eyes, P  0.01 in left eyes and all eyes). Figure 3F The relationship between VA and SR at initial measurement 
and after several months in eyes of myopic children trained once per week. Factorial ANOVA; P  0.05 in left eyes and in total eyes, P = 0.18 in right eye.
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despite the further deterioration of the spherical refractive 

error (Figures 3d, 3f).

Another mechanism to improve VA is to decrease the 

size of the pupil. Therefore, we measured the diameter 

of the pupil during our near-far accommodation task 

(Figure 5). Children with normal vision, ie, emmetro-

pia (EM, n = 12 right eyes), show a dilation of their 

pupils by 15% (±3.6% SEM; from 4.6 ± 0.2 mm to 

5.3 ± 0.1 mm SEM) when step accommodating from the 

near (30 cm) to the far (3 m) point of focus. A similar 

12.4% (±2.0% SEM; from 4.7 ± 0.1 mm to 5.2 ± 0.2 mm 

SEM) increase in pupil diameter was also observed 

in untrained myopic children (UM, n = 23 right eyes). 

However, trained myopic children (TM) with improved 

VA demonstrated a constriction of their pupils of 5.6%  

(±1.7%; from 5.1 ± 0.2 mm to 4.8 ± 0.2 mm SEM) during 

far accommodation (n = 15 right eyes; Figure 5a). The 

trained group also demonstrated pupillary constriction 

from 3.9 mm to 3.5 mm diameter during binocular obser-

vation when they moved their target from a large Landolt 

ring (Snellen’s fraction 0.1) to a smaller one adjusted to 

their best VA (Figure 5b). A pinhole test showed that a 

4 mm pinhole significantly improved VA and a further 

reduction of the pinhole to 3 mm was even more effective 

(Figure 5c).

The pupillary constriction was further corroborated by 

a phase shift of the pupillary diameter size relative to the 

changes in spherical refractive error during accommodation 

(Figure 6b). In other words, the pupillary diameter was 

minimal at the far point of accommodation. This result 

was confirmed by the video analysis of the pupils from 

trained 27 myopic children with improved VAs; all of them 

displayed pupillary constriction during far accommodation 

in the training.

Discussion
Here we described a novel, simple, non-invasive and safe 

method to enhance visual acuity in myopic children. We used 

a novel accommodation training device to introduce quick 

cycles of near/far accommodation by displaying a visual 

object and moving it in cycles from a near (25 cm) to a far 

(70 cm) point and back, while keeping the retinal projection 
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(EM) (n = 12 right eyes) and untrained myopic children (UM) (n = 23 right eyes) do not respond to step accommodation changes with a change in their pupil size. Figure 5B 
The pupil diameter of the trained group who correctly recognized a Landolt ring at VA 0.1 (0.1) in Snellen’s VA test table by binocular observation was 3.90 ± 0.10 mm (n = 22 
right eyes). Those recognizing a smaller Landolt ring at their best VA (Best) had adjusted their VA to 3.50 ± 0.08 mm (n = 44). Figure 5C The effects of four pinholes on VA were 
examined using diameters of 2 mm (2), 3 mm (3), 4 mm (4), and 5 mm (5), and were compared to the VA without pinhole (control (C)). The average improved VA (logMAR) value 
was −0.05 ± 0.04 (n = 18 right eyes) with a pinhole of 5 mm, −0.07 ± 0.04 (n = 18 right eyes) with a pinhole of 4 mm, −0.15 ± 0.03 (n = 18 right eyes) of 3 mm, −0.21 ± 0.04  
(n = 18) of 2 mm respectively.  All statistical analyses were performed by two-tail paired Student’s t test
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size and brightness of the object constant. By keeping the 

retinal projection size of our object constant we enabled our 

school-age children to follow the moving object at high speed 

without difficulty or discomfort. Our subjects showed pupil 

constriction during near accommodation before training onset, 

but at the end of the 12 weeks training period most children 

also constricted their pupils during far accommodation. This 

unusual pupillary regulation is probably the mechanism that 

underlies the improved VA, and this is supported by the train-

ing-induced pupillary constriction upon far accommodation 

shown in Figure 5.

Our method produced effective accommodation training 

in sessions of less than 3 minutes duration twice a week. 

The brevity of the training, and relative comfort experi-

enced while training, encouraged many of our school-age 

myopic children to continue this regimen over a period of 

more than 3 months. The improved VA stayed almost con-

stant with maintained training; in case of 12 long trained 

subjects for more than 50 weeks (eg, Figures 4A, 4C). 

Our preliminary study suggested that trained subjects with 

improved VAs could see a 20/20 object with less corrective 

glasses than those estimated by their refraction. This result 

suggests that the training may also improve the corrective 

level of eyeglasses. Since the training showed no adverse 

effect, we propose this method as a useful treatment for  

school-age myopic children. We attribute these improvements 

in VA to the regular training sessions, because in children 

who stopped training, the beneficial effect was gradually 

attenuated and lost within a few months. This attenuation 

of improved VA following the conclusion of training on 

our device occurs sooner than it does after completion of 

training on NeuroVision (another device commonly used to 

correct vision)25,26 suggesting that our training mechanism 

may be different from NeuroVision. Several months after 

training had been completed, the VA of trained children was 

found to be comparable to that of untrained myopic children; 

however, the VA of trained children improved again once 

they resumed training (data not shown). Improvement in VA 

may be related to changes in the spherical refractive error, but 

our measurements of the SR at each training session revealed 

that the decline of this parameter (-0.018 D/w) was common 

to all three groups (group 1, group 2, and the control group), 

suggesting that it was independent of the training. This 

decline was similar to the values of progressive decline in SR 

reported in myopic children in Singapore (-0.88 D/year) and 

in Japan (-0.81 D/year).27,28 Declining VA and SR in myopia 

have been linked to excessive growth of the eyeball in a large 

number of cases. Our training did not prevent this excessive 

growth, as the increase in eyeball length was 0.010 mm/w in 

Group 1 and 0.012 mm/w in Group 2. The increase of other 

ocular dimensions were small, 0.058 mm/year in the ante-

rior chamber depth and less than 0.01 D/year in the corneal 

curvature. Since the thickness of the lens scarcely changes 

during the growth period, increases in axial length may be 

the main component underlying the decline in SR.24,27 Hence, 

the improved VA in virtually all our children was not due to 

improvements in the SR of the eye. To the contrary, VA was 

improved and then maintained by continuing the training 

despite the further deterioration of spherical refractive error 

(Figures 3, 4). The continuous training may compensate a 

decreased VA level, caused by the decline of the refractive 

error, to keep the improved visual acuity level, because the 

decline of spherical refractive error increased the accommo-

dative amplitude of the subject during training, that resulted 

in a retained, improved, VA level.14–16

Another mechanism to improve VA is to decrease the 

size of the pupil, which results in an increased depth of 

focus29,30 and a decreased spherical aberration.31,32 Pupil 

size regulation has been mainly studied in response to light 

stimulation but not in response to far accommodation; 

however, it has been shown during near accommodation in 

aged presbyopes.13,19,33 There has been no report on pupillary 

size regulation during far accommodation of school-age 
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Figure 6 Pupillary size changing with accommodation. Figure 6A Both emmetropic 
children (EM) and untrained myopic children (UM) showed more than a 10% increase 
in pupil size during far accommodation (movement of the object from 25 cm to 
70 cm). This reaction was reversed to a 12% decrease of pupil size in trained myopic 
children (TM). Figure 6B This pupillary constriction was further corroborated by a 
phase shift of the pupillary diameter size relative to the changes in refractory index 
during accommodation. This reverse reaction induced by the training was statistically 
confirmed between EM (n = 30 eyes) and TM (n = 10 eyes) and between TM and UM 
(n = 8 right eyes) (ANOVA, P  0.001 and P 0 .005).
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myopic children. Pupillary constriction increases the depth 

of focus and decreases a spherical aberration, thus it is 

possible that pupillary constriction can improve a blurred 

image at a far site on the retina of myopic children as well 

as at a near site of a presbyopes. In fact, the pupil diameter 

of the trained children, with improved VAs, decreased in far 

accommodation at 3 m; and our pinhole test revealed that VA 

was also improved by wearing a 4 mm pinhole ring plate and 

further improved by a 3 mm pinhole. These results indicate 

that the observed pupil constriction from 3.9 mm to 3.5 mm 

in our children might indeed improve the VA by increasing 

depth of focus29,30 and reducing spherical aberration.31,32 

This was confirmed by the pupillary constriction during far 

accommodation shown in our simultaneous measurements 

of pupil size and spherical refractive error (Figure 6b). 

This pupil constriction during far accommodation is a 

new finding. As pupil constriction is more effective on the 

VA improvement in small size pupils,29,30 our preliminary 

analysis suggested that the VA improvement of myopic 

children with small size pupils might be better than those 

with large size pupils.

What mechanism elicits miosis during far accommo-

dation? Pupillary constriction is usually seen during near 

accommodation with convergence. But, myopic pupil size 

seems to increase steadily up to the age of about 2033 and 

it appears that accommodative miosis below the age of 

20 is reduced or absent.19,34,35 Furthermore, under some 

circumstances, accommodative miosis may be reduced or 

absent.36,37 These results suggest that near accommodation or 

convergence may not influence the pupil response of school-

age myopic children to far accommodation. What elicits 

pupillary constriction during far accommodation in our train-

ing system? Our training system, similar to a Badal optical 

system,15 has the following specific characters: 1) the retinal 

image size is constant during accommodation, inducing only 

blur information to be available to drive the response;38 and 

2) a refractive error and pupil diameter continuously respond 

to the diopter change induced by the movement of the target. 

The target was accelerated from a near point (25 cm) to a 

point 30 cm from the eye to reach a maximal speed, 1 m/sec, 

and then moved at a constant speed 1 m/sec to a 65 cm point 

and finally it was slowed down from the 65 cm point to stop 

at the far point, 70 cm. During the movement from 30 cm 

to 65 cm the diopters of a subject to the target moving at a 

speed 1 m/sec changed with time according to a following 

equation; D (t) = 1/(0.3 + 1xt) where t is time (sec). The 

changing rate of diopters dD/dt was shown as a following 

equation dD/dt = 1/(0.3 + 1xt)2 indicating the speed was about 

11.1 D/sec at a 30 cm point (t = 0) and 6.3 D/sec at a 40 cm 

point (t = 0.1 sec). Since the accommodation response-time 

from -4D to -2D of 0.76 sec in emmetropic children and 

0.93 sec in myopic children, an average dD/dt was 2.5 D/sec 

in emmetropic children and 2.1 D/sec in myopic children.18 

The average dD/dt (8.7 D/sec) from a 30 cm to a 40 cm was 

more than 3 times greater than the response speed, suggesting 

a blurred image may be elicited by the training. Under the 

cue-poor conditions of Badal stimulation, some individuals 

can exercise a greater degree of voluntary control over both 

accommodation39–41 and pupil diameter.42 Figure 5b also indi-

cates that a blurred image may induce pupillary constriction. 

These reports suggest that the blur stimulation by our system 

could elicit pupillary constriction during far accommoda-

tion. This hypothesis was supported by the training with a 

slow speed movement of the object (0.09 m/sec) which did 

not elicit pupillary constriction during far accommodation. 

The fact that monocular vision training elicited pupillary 

constriction as well as binocular vision training also confirms 

the hypothesis. Furthermore, it was harder to induce a pupil-

lary constriction during far accommodation the training 

with a fixed object size indicating that the training with 

our device to keep a retinal image size of a object constant 

may be essential to elicit a pupillary constriction during far 

accommodation.43

Subjects could not get a clear image from the object 

moving at a high speed indicating that the training in high 

speed may induce blur adaptation. Blur adaptation after 

distance fixation with various diopters improved unassisted 

VA of myopic observers by up to 0.27 logMAR without 

changing their pupil size.14–16 Blur adaptation induced 

by the use of our training device may also improve VA. 

Furthermore, since our dynamic training induced pupil con-

striction during far accommodation, the training may add 

such a pupil constriction effect to an improvement by the 

blur adaptation; which may enable some subjects to improve 

VA by over 0.5 logMAR. These high improvements were  

seen mainly in relatively severe myopic children (-2D) 

(Figures 3C, 3D). It may be due to their accommodative 

amplitude in the training which was larger than that of children 

with less severe myopia. Since the brain and visual system are 

highly plastic, sizeable performance improvements have been 

documented in various aspects of vision after training.42,44–46 

The repetitive training on our device might induce the gradual 

improvement of visual acuity and keep the improved VA level 

shown in Figure 4a and 4c through brain and visual plasticity. 

But the training could not slow down myopic progression. 

Since the mechanism to increase axial length has not been 
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clarified and there has been no useful therapy to slow down 

school age myopic progression, this problem remains to be 

resolved by future study.

Another possible mechanism to improve VA by this 

training is the learning effect. We reduced this effect while 

using the VA test instrument instead of a VA test sheet 

by indicating a symbol in the center of a screen which an 

examiner showed with a remote control box. This VA test was 

performed only once per week and was common in Group 1 

and Group 2. However, as shown in Figure 3, increasing the 

training sessions from once per week (Group 2; Figure 3E) 

to twice per week (Group 1; Figure 3C) improved VA from 

0.11 logMAR to 0.29 logMAR. These results indicated that 

the VA improvement may mainly be due to the training, and 

not the learning effect.

In conclusion, myopia in school-age children is 

progressive and their VA decreases 0.33 logMAR/year 

(Figure 3A), but our novel training method results in the 

significant improvement of VA in school-age subjects with 

myopia by blur adaptation and enhancement of iris func-

tion, and the improved VA remained almost constant with 

maintained training. This in turn controls pupil size, lead-

ing to increased depth of focus29,30 and decreased spherical 

aberration of the trained eye.31,32 The induction of pupillary 

constriction during far accommodation indicates that the 

training may also enhance blur adaptation to correct a blurred 

image, resulting in further improvement of VA. This simple, 

quick, comfortable and safe eye training will greatly improve 

the quality of vision in a large population suffering from 

refractory abnormalities. This development of a personal 

accommodation training device would allow many more 

myopic school-age children to enhance their VA and keep 

their improved VAs using a convenient method. Future work 

will address the efficacy of this method in improving the 

vision of adults with myopia, which has a prevalence 25% 

to 50% in the United States and Europe.47,48
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