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Abstract

Lately the problem of connectivity in brain networks is being approached frequently by graph theoretical analysis. In several
publications based on bivariate estimators of relations between EEG channels authors reported random or ‘‘small world’’
structure of networks. The results of these works often have no relation to other evidence based on imaging, inverse
solutions methods, physiological and anatomical data. Herein we try to find reasons for this discrepancy. We point out that
EEG signals are very much interdependent, thus bivariate measures applied to them may produce many spurious
connections. In fact, they may outnumber the true connections. Giving all connections equal weights, as it is usual in the
framework of graph theoretical analysis, further enhances these spurious links. In effect, close to random and disorganized
patterns of connections emerge. On the other hand, multivariate connectivity estimators, which are free of the artificial links,
show specific, well determined patterns, which are in a very good agreement with other evidence. The modular structure of
brain networks may be identified by multivariate estimators based on Granger causality and formalism of assortative mixing.
In this way, the strength of coupling may be evaluated quantitatively. During working memory task, by means of
multivariate Directed Transfer Function, it was demonstrated that the modules characterized by strong internal bonds
exchange the information by weaker connections.
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Introduction

It is more and more acknowledged that progress in under-

standing of information processing in the brain depends to the

large degree on evaluation of temporal and spatial patterns of

connections between neural populations. The evidence has

accumulated that coupling between neural populations serves

brain function integration involving the transient synchronization

between distant and specific neural populations e.g.: [1], [2].

The problem of the determination of the connectivity structure

in the brain has been a subject of intense research in the last years.

The methods used for estimation of connectivity include bivariate

methods such as: correlation, coherence, Mutual Information

(MUI), Synchronization Likelihood (SL), Transfer Entropy or

multivariate methods such as Directed Transfer Function [3] and

Partial Directed Coherence (PDC) [4]. The above mentioned

multivariate methods based on Granger causality principle supply

the spectral information and the information about directionality

of interaction (so called effective connectivity). Among bivariate

methods: correlation (directionality can be found from the time

delay of cross-correlation function), coherence (directionality can

be found from the phase of coherence) and Transfer Entropy have

a potential to indicate the directionality, but in many cases this

information is neglected. Usually connectivity patterns obtained by

bivariate methods are characterized by a very dense structure,

without the distinct topographical features and hence they require

further analysis.

In the last years, for the analysis of connectivity based on EEG

data, graph theoretical analysis has been widely applied. The

formalism introduced by Watts and Strogatz [5] and developed

further in e.g. [6] or [7] involved determination of the measures

characterizing networks. The most commonly used among them

are: node degree, clustering coefficient and characteristic path

lengths of networks. These parameters served for distinguishing

regular or random network from the ‘‘small world’’ organization,

which is characterized by a high clustering coefficient and a short

path length.

Multiple EEG and also MEG studies, involving graph

theoretical approach, for different experimental paradigms point-

ed out to the presence of ‘‘small world’’ structures in the brain e.g.:

[8], [9], [10], [11], [12], however quite often the obtained pattern

of connections hardly differed from randomness.

It seems that the time is ripe to ask: 1) what we can learn from

graph theoretical analysis based on bivariate measures, beside the

degree to which network is ‘‘small world’’ or random and 2) how

well the results going beyond random or ’’small word’’ dilema

obtained by this methodology correspond to the evidence obtained

from other sources: e.g.: coming from anatomical, imaging, and

inverse solution studies.

Inspecting the works based on bivariate measures and graph

theoretical analysis, it is difficult to find the correspondence to the

imaging and electrophysiological evidence. As an example may

serve the finger movement experiment [10], where no statistically

significant changes in network parameters depending on frequency
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were found between resting and motor state and no lateralisation

was observed (lateralisation in this context means that the biggest

changes in brain activity occur at the side contralateral to the

hand/foot performing the movement). Another example of the

lack of correspondence between networks configuration obtained

by bivariate measures of connectivity (followed by the graph

theoretical analysis) and other evidence, stems from studies

involving sleep EEG, where no significant changes in network

parameters were found for different sleep stages [8], [11].

Contrary to these findings the clear-cut changes in connectivity

during sleep were demonstrated in [13]. Similarly, in working

memory (WM) task studied by means of synchronization likelihood

and graph theoretical analysis [12] no correspondence to known

imaging [14], [15] and electrophysiological [16] evidence was

found. It seems surprising that the localization of the cortical

sources and known interactions between them are not reflected in

connectivity patterns studied by theoretical graph analysis based

on bivariate measures of connectivity. Although the anatomical

connections form a very dense matrix, the physiological evidence

indicates that in specific tasks only some very specific connections

are active. In our opinion the reasons of these discrepancies merits

the attention.

Recently there appeared publications raising important ques-

tions concerning methodology standing behind the graph theo-

retical analysis application to EEG and MEG signals. They

involved in particular the influence of common source ([17], [18],

[19]), the problem of volume conduction ([17], [18], [20]), choice

of threshold ([20]) and the effect of network size [21].

Herein we shall try to approach some of these problems. In our

opinion the crucial topic here is the choice of the connectivity

estimator, which takes into account the influence of the common

source. In most works applying graph theoretical analysis

connectivity was estimated pair-wise. The difference between

multichannel and pair-wise approach to the problem of estimation

of connectivity patterns was considered in: [22], [23]. The results

pointed out unequivocally that the pair-wise estimation of

connectivity produces spurious connections. In the following we

shall compare connectivity patterns obtained by means of bi-

variate measures with these obtained by means of multivariate

estimator by means of: simulations, analysis of experimental

signals and examples from the literature.

Methods

We shall only briefly describe the methods of connectivity

estimation used in this paper, since they can be found in the

literature e.g.: [24], [25], [26].

Lately, for estimation of connectivity quite often synchroniza-

tion likelihood [27] has been used. Synchronization likelihood (SL)

relies on construction of vectors from given time series by time-

delay embedding. The SL describes a chance that pattern

recurrence present in the embedded vector constructed from time

series X coincides with the pattern recurrence in the embedded

vector of signal Y. The concept of synchronization likelihood is

closely related to the definition of Mutual Information (MUI)—

measure based upon the correlation integral [28]. The difference

is, that SL is normalized.

To estimate the connectivity in the framework of multivariate

formalism, we shall use the Directed Transfer Function [3]. The

Directed Transfer Tunction (DTF) is a measure based on the

Granger causality concept. It is defined in the framework of

multivariate autoregressive model (MVAR). The model is

simultaneously fitted to all channels of the set. DTF describes

causal influence of channel j on channel i at frequency f according

to the formula:

DTFj?i(f )~
Hij(f )
�� ��2

Pk

m~1

Him(f )j j2
ð1Þ

where Hij(f) is an element of the transfer matrix of the MVAR

model. The above equation defines a normalized version of DTF,

which takes values from 0 to 1 producing a ratio between the

inflow from channel j to channel i to all the inflows to channel i.

Time varying connectivity may be described by the Short-time

Directed Transfer Function (SDTF). It is a modification of DTF,

which may be applied when multiple repetitions of experiment are

available. Then the combination of ensemble averaging with a

short sliding window makes possible to estimate dynamic

propagation [26], [29], [30].

For the identification of the community structures of the

network the method of assortative mixing was introduced [31]. In

the framework of assortative mixing approach the element Ekl of

the connectivity matrix E is defined to be a fraction of edges in a

network that connects a vertex of group k to one of group l. In our

case indexes k and l do not refer to the channels present in the

definition of DTF, but to the groups defined in the framework of

assortative mixing. (These groups encompass integrated DTFs as

will be explained below). In an undirected network matrix E is

symmetric in its indices Elk = Ekl, while in directed networks it may

be asymmetric. Mixing is highly assortative when the diagonal

elements of matrix E are significantly higher than the off-diagonal

ones. It corresponds to the situation of strongly connected

modules, with weaker bonds between these modules.

In our case the elements of matrix E are represented by the

propagations (DTFs) either inside the module (Ekk), or between the

modules (Ekl). The E matrix is calculated according to the formula:

Ekl~
X

n[channels
in module k

X

m[channels
in module l

DTF(n?m) ð2Þ

where DTF(nRm) denotes average value of DTFnRm(f) in the

given frequency range. For SL, matrix E calculated in a similar

way is symmetric. The resulting matrices were normalized in such

a way that the sum of all its elements is equal to 1.

Considering the elements of matrix E we may deduce, if our

case corresponds to the situation of highly assortative mixing

Ekk.Ekl. If indeed it is so, we can say that the connectivity is

stronger inside the modules than between the modules.

Results

Let us first consider, by means of a simulation, a common

situation that the source emits its activity, which is registered at

several electrodes located at different distances. The simulation

scheme was designed in the following way: the signal in channel 1

was constructed from an experimental EEG (2560 samples long,

sampled at 128 Hz, highpass filtered with cutoff frequency 3 Hz)

plus a random noise. The signals in destination channels were

constructed by introducing delays and adding to each delayed

channel an extra noise (drawn from different random noise

generators). The connectivity patterns were estimated by means of

bi-variate coherences and by DTF.

The results of such simulation are illustrated in Fig. 1. It is easy

to see, that not only existing connections will be found by a bi-
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variate estimator, but also a lot of spurious connections emerge. In

the simulation coherences were used, however the results will be

practically the same for every bivariate estimator. The simulation

was performed for directed connectivity, but results hold as well

for undirected connectivity, since the same spurious connections as

the ones illustrated in Fig. 1, will be found for undirected

estimator, in virtue of common feeding to different channels.

In fact, it is easy to estimate the ratio of true to false connections.

Namely, when we register activity from a given source at N

electrodes, N true and N(N–1)/2 false connections may be found by

a pair-wise estimate. We should note that in the case of recording

activity by N electrodes from a given source number of false

connections increases as N2, whereas a number of true connections

increases only as N. When two or more sources are simultaneously

active, very dense and disorganized pattern of connections may be

found by pair-wise estimators, as reported in many papers, where

such estimators were used.

Herein we shall compare connectivity patterns obtained from

EEG data by means of coherences, SL and DTF for resting state

EEG and for working memory task (data are available at http://

brain.fuw.edu.pl/,kjbli/Data_pack_PLOSONE2013a.zip). In

Fig. 2 the connectivity patterns for frequency range 0.5 Hz to

40 Hz obtained by: DTF (MVAR fitted simultaneously to all

channels, model order 5), coherences and SL (delay time: 10

samples, embedding dimension: 10 samples) are shown for the

resting state EEG, eyes closed. In case of DTF the propagation

from the posterior electrodes is prominent. This kind of pattern

Figure 1. Simulation description and results. Top: simulation scheme, signal from channel 1 is propagating to the other channels with different
delays. Graphs—left: ordinary coherences; right: multivariate DTFs as functions of frequency. Propagation by DTF is shown from the channel marked
above to the channels marked at the left of the picture (on the diagonal power spectra). At the bottom obtained corresponding connectivity
schemes. Incorrect flows shown by broken lines.
doi:10.1371/journal.pone.0078763.g001

Figure 2. Connectivity patterns obtained for awake state, eyes
closed by: DTF (upper left), bivariate coherences (upper right),
SL (lower right), pattern obtained from SL by giving all
connections equal weight (threshold = 0.2).
doi:10.1371/journal.pone.0078763.g002
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might be expected in the light of previous studies on the group of

subjects [13] and from the known fact that in the resting state, eyes

closed the EEG activity is mostly generated in visual cortex [32].

In case of ordinary coherences the pattern is very dense and

almost uniform. For SL there are more connections in the frontal

than in the posterior region, which can be explained by the fact

that common feeding from posterior to frontal electrodes generates

multitude of false connections between frontal electrodes (compare

Fig. 1). When all connections found by means of SL (of intensity

higher than 0.2) were given equal weights a very dense pattern of

connections emerges (bottom left corner of Fig. 2). We have

applied threshold 0.2, to construct this plot, since for the lower

threshold the network would be so dense, that it would be

impossible to distinguish particular connections in the picture.

However, usually the thresholds applied in graph theoretical

analysis are lower — between 0.01 to 0.05 [9], [12]. Sometimes

the thresholds are adapted in such a way, that a resulting network

is fully connected and the number of connections per vertex is the

same for all subjects and conditions e.g.: [8], [11].

In Fig. 3 connectivity patterns obtained by means of DTF,

coherences and SL are shown for a working memory task for one

subject. The task involved memorizing and retrieval of the

sequences of letters; the description of the paradigm may be found

in [33]. Connectivity values were integrated in the 1–45 Hz

frequency range and in the epoch 0–3 s after presentation of the

stimulus. In case of DTF we can observe short-range propagation

from posterior and frontal sources. (In time-varying connectivity

patterns obtained by SDTF also long-range connections are

visible, but they appear only in certain moments [34], so they are

not visible in the picture integrated over whole epoch).

In case of coherences the connectivity structure is dense and

similar over the whole scalp. For SL the pattern bears some

similarity to DTF, but connections are present also in the central

region and they are stronger in frontal locations than in the

posterior ones. This pattern may be explained (as in the case

presented in Fig. 2) by connections produced by common feeding.

When the connections are given equal weights as is customary in

graph theoretical analysis, a very dense connectivity pattern

emerges.

One of the measures used in graph theoretical analysis is the

node degree. In case of directed connectivity the numbers of

outgoing and ingoing connections to the node may be estimated.

In order to define the threshold for significant connections

obtained by DTF we have applied bootstrap method [35]. The

threshold value differed to certain degree between channels, the

highest value which corresponded to 0.9 significance level, was

0.0454. We have fixed the threshold at the value 0.05 for all

channels and the same cutoff value was used for the SL data, since

the usual thresholds applied in SL studies are around this value.

The results are shown in Fig. 4. For the DTF outflows we can

see that the strongest nodes are located in the right parietal and

occipital locations, also in front, which is in agreement with the

position of sources found by means of imaging studies [14], [15].

The pattern of the inflows is mostly uniform and does not indicate

existence of the distinct sinks. For SL there are very small

difference between the strengths of the nodes, which may be

explained by the multitude of the connections (true and false)

produced by the bivariate measures.

For very sparse networks as the ones obtained by means of DTF

the classical measures such as clustering coefficient and path length

are not appropriate. However we may use more advanced

measures of modularity such as assortative mixing, which allows

for distinguishing the modules within which connections are dense,

but between them they are sparse. Inspecting Fig. 3 and Fig 4 we

may distinguished four main modules: frontal F involving

electrodes Fp1, Fp2, Fpz, F3, F4, Fz, F7, F8; central C: (C3, Cz,

C4, Cp5, Cp6) and two parietal—PL: (P7, P3, Pz, O1) and PR:

(P8, P4, Pz, O2).

The arguments for the choice of the above defined modules

were based on: obtained patterns of transmissions, node degrees,

the imaging [14], [15] and physiological evidence [36], [37], [38]

concerning the role of frontal and posterior structures.

In order to construct the matrix E we integrated DTFs in 4–

60 Hz frequency band and in the time epoch 0–3 s, and we

calculated the matrix E according to the eq. 2. The elements Ekk

corresponded to the connection strength inside the module, that is,

DTF values between close electrodes, belonging to the same group

e.g.: for parietal left cortex—connections between electrodes: P7,

P3, Pz, O1. Elements Ekl corresponded to the DTFs between

electrodes belonging to different modules. The same procedure

was applied in case of SL, the only difference was that in this case

elements Ekl = Elk. For both estimators the connections above the

threshold 0.05 were taken into account.

The results (integrated in whole frequency band) showing the

percentage of coupling strength (errors are included), are shown in

Table 1 and in Fig. 5 as a matrices of color boxes. On the diagonal

of the matrices the strength of coupling inside the module and off-

diagonal strength of coupling between the modules are illustrated.

It is easy to see that in the case of DTF, the coupling within the

modules is mostly stronger than between them. For SL strong

coupling between central and other regions may be observed,

especially between central and frontal module. Coupling within

and between parietal regions is weak. Strong coupling within

central module and between central and other modules may be

explained by the fact that the propagation from frontal and

posterior sources was directed toward that region which produced

a lot of spurious connections between central electrodes. The

results shown in Fig. 5 were obtained for one subject. In [34] the

assortative mixing was applied for DTF functions of 12 subjects

Figure 3. Connectivity patterns obtained for a working
memory task by DTF (upper left), bivariate coherences (upper
right), SL (lower right), pattern obtained from SL by giving all
connections equal weight (threshold = 0.2).
doi:10.1371/journal.pone.0078763.g003
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and the averaged results pointed out unequivocally that the

coupling within the modules is stronger than between different

modules.

Comparison of connectivity studies conducted by means
of pair-wise methods followed by graph theoretical
analysis with multivariate studies

The illustrative problem, which has been studied by means of

different approaches, is a study of a finger movement task. It was

also approached by means of the graph theoretical analysis. The

self paced finger movements recorded by means of magnetoence-

phalographic (MEG) technique was analyzed by means of wavelet

analysis followed by calculation of correlations and graph

theoretical analysis (the network characteristics was considered in

the range of thresholds: 0.4#t#0.8) [10]. Connectivity in different

frequency bands was evaluated by means of correlation between

pairs of sensors. ‘‘Small world’’ topography was found, however

the specific parameter values such as clustering coefficient and

characteristic path length did not show statistically significant

differences between frequency bands and resting/motor state. In

the network topology (spatial distribution of highly connected

network nodes) no lateralisation was observed, although it is a well

Figure 4. Node degrees for DTF and SL coded by the dimensions of the circles. From left to the right: DTF outflows, DTF inflows, SL node
degree.
doi:10.1371/journal.pone.0078763.g004

Figure 5. The results of assortative mixing for four modules in the whole (4–60 Hz) frequency band. At the left for DTF, at the right for
SL. On the diagonal coupling within the modules, off-diagonal between the modules. For DTF the causal coupling from the module marked below
the column of boxes to the module marked at the left. In each box the strength of coupling is illustrated in color scale: dark red-the strongest, dark
blue-the weakest.
doi:10.1371/journal.pone.0078763.g005
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known phenomenon, confirmed in all studies dealing with motor

tasks. As the main difference between resting and motor activity

authors reported emergence of a new long range connections and

pivotal nodes in frontal and parietal regions in the gamma and

beta networks, although the global topological parameters of these

networks were not much affected by the change of the behavioral

state.

It is difficult to find the correspondence of this study with the

results obtained in other works concerning finger movement task.

The topographical and spectral features of the movement tasks

were studied thoroughly by Pfurtscheller [39], who found the

desynchronisation (decrease of power in alpha and beta band

during movement in the primary motor (MI) area contralateral to

the moving finger) and short burst of gamma activity in this

location. In the simultaneous fMRI/EEG study [40] contralateral

primary motor (MI) and primary sensory cortex activation was

reported from fMRI experiment. The inverse solution method

applied in the above study yielded the dipole localization in MI

consistent with fMRI results.

In the presence of the sources identified in the above studies one

may expect that the activity propagation from them should

strongly influence the topography of networks, mainly in the

central regions of the cortex, where the motor areas are located,

also the lateralisation of the brain activity (well known from

anatomical and experimental evidence) should have an impact on

connectivity. Nothing like that was observed in [10].

The EEG studies based on multivariate autoregressive model

(MVAR model orders 5–7), namely the effective connectivity

patterns obtained by means of Short-time Directed Transfer

Function [29], [41], [42] showed an excellent agreement with the

imaging and inverse solution studies. The phenomenon of

desynchronization in alpha and beta band [39] was visible as

the gap in the propagation in these bands from electrodes

overlying contralateral MI in respect to the moving finger. The

burst of gamma propagation from contralateral MI was accom-

panying movement and in case of movement imagination the cross

talk between MI and other sensorimotor structures was observed

(animations available at http://brain.fuw.edu.pl/,kjbli/DTF_

MOV.html). These results are in contradiction to findings of

Basset et al. [10] that dynamic properties of brain functional

networks during motor task are conserved over frequencies.

Synchronization likelihood, followed by graph theoretical

analysis, was applied for sleep studies by Leisted et al. [11]. The

number of connections per vertex of a graph was arbitrarily set to

5. The authors compared obtained network parameters with the

random graphs. The reported characteristic path lengths did not

differ from random graphs, clustering coefficients did differ, but no

dependence of their values on the frequency band was found. The

pattern of connections in the delta band was very dense and

disorganised and did not show any hubs (hub—node of the network

connected to many other nodes).

Another example of the discrepancy of works based on graph

theoretical analysis with other evidence may be the work of Ferri

et al. [8] who similarly to [11] for the study of connectivity during

sleep and wakefulness used SL and graph theoretical analysis. No

significant differences were found between sleep stages. The only

difference between sleep and wakefulness was higher clustering

coefficient in sleep.

The above results are in the contradiction to the study of the

effective connectivity for wakefulness and sleep performed by

means of DTF for a group of 9 subjects [13]. In this study

dramatic differences in connectivity between sleep stages were

found. In wakefulness sources of EEG activity were predominant

in parietal or occipital areas (as in the case illustrated in Fig. 2). In

stage 1 there was an increase of propagation in the frontal area, in

stage 2 two sources of activity - frontal and parietal were active and

in the deep sleep the prominent source located over corpus callosum

was sending the propagating activity over a whole brain (see:

http://eeg.pl/DTF/dtf-mapping-versus-dtf). These results were

very repeatable for all studied subjects. They are compatible with

the physiological knowledge concerning sleep processes. The

pattern of connectivity for deep sleep shown in ref. [11] seemed to

be random, it did not show any hubs, any highly connected

network nodes.

The brain networks in wakefulness, eyes closed and open were

investigated in [43]. The local measures called centrality indexes

were considered. Strengths centrality was defined as a number of links

incident upon a node. This index showed increased importance of

frontal brain sites and a dcreased importance of parieto-occipital

brain sites during eyes closed state, which is rather surprising

result, taking into account preponderance of the parieto-occipital

region as strong source of activity during eyes closed state.

The EEG in eyes closed condition was also investigated in the

work [44]. The authors recognized the influence of common

source influence and they applied not only odinary (unpartial) but

also partial correlation in their studies. From their analysis

conducted on simulated and EEG data it followed that nework

properties are quite different for two kinds of correlations. In

particular number of over-identified links was much higher for

unpartial correlations. However the estimation of partial corre-

laions is cumbersome and computationaly expensive as the authors

admitted themselves. On the other hand elimination of the

influence of common source by calculation of estimators such as

partial coherences or DTF in the framework of MVAR is

straightforward.

Working memory task, so called 2Back check, relying on

memorizing and recollection of Greek letters was applied in [12] to

the group of less and better educated people. EEG data were

analyzed by means of SL followed by graph theoretical analysis.

Table 1. Assortative mixing values for four modules presented in Fig. 5.

DTF SL

F C PL PR F C PL PR

F 8% 12% 3% 3% F 7% 9% 5% 5%

C 3% 10% 3% 8% C 9% 7% 7% 7%

PL 0% 10% 7% 10% PL 5% 7% 4% 5%

PR 0% 7% 3% 13% PR 5% 7% 5% 4%

doi:10.1371/journal.pone.0078763.t001

Functional Brain Networks
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The authors considered the range of threshold values 0.01 – 0.05,

which corresponded to the number of edges 4–5. Between-group

differences based on the clustering coefficient and path length were

observed, but did not reach statistical significance. For less

educated people ‘‘small world’’ connectivity was found, for better

educated group the connectivity pattern was close to random in all

frequency bands No topographic differences or differences

concerning changes of connectivity in specific frequency bands

between resting state and working memory task were reported.

Two-Back check paradigm was also applied in the work of

Kitzbichler et al. [45] who estimated synchronization by means of

phase differences between MEG sensors. The threshold values

were based on predetermined connection density, which was

initialy fixed at 10%, but was also considered in the range of

values: between 2% and 20%. Local and global efficiency, node

degree and the geometrical network distance were estimated. The

main findings concerned increase of the long-range connections

for the more difficult (2-back tasks). For these tasks the decrease of

synchronization and close to random structure of the networks was

observed. Task dependent differences in networks organization

quantified by node degree, global and local efficiency and the

physical distance indicated more random network architecture for

more difficult task. The pattern of connections was very dense and

did not indicate the brain regions involved in the information

processing during working memory tasks. The stronger node

degrees (reported in the beta band) for more difficult task were

located mainly along the midline of brain.

This results may be compared with connectivity study [33]

concerning working memory task, which relied on memorization

of the letters and relations between them and then retrieval of this

relation. The retrieval of relations was considered to be difficult

task in comparison to the memorization. The connectivity was

calculated by means of DTF function and the significant

differences between easy and difficult tasks were determined

according to procedure proposed in [46]. For more difficult task

the increase of long range connections were found, but contrary to

[45] these long range connections were well specified and the

patterns of connectivity were far from randomness. Namely in the

theta and alpha bands they were directed from the frontal toward

posterior regions. In the gamma band the propagation from right

parietal to frontal region was observed. Also increase of short-

range connectivity was found in right parietal region.

The dynamic changes of connectivity during working memory

task were studied by means of SDTF in [34]. In this study the

patterns of dynamical connectivity were established; the anima-

tions showing the time-varying pattern of connectivity are

available at: http://brain.fuw.edu.pl/,kjbli/Cognitive_MOV.

html. The results of DTF and SDTF studies, in excellent

agreement with the evidence from imaging and electrophysiolog-

ical experiments, showed fronto-parietal regions involvement in

working memory processes. Moreover the SDTF study revealed

strong coupling within frontal and parietal regions. The coupling

between these two centers occurred only during certain short

epochs. The ratios of the strength of short-range to long-range

connections were of the order of 1.5 [34].

The above described connectivity patterns obtained for working

memory tasks may be confronted with the other evidence. The

neuroimaging experiments showed the involvement of frontal and

parietal regions in working memory task [14], [15]. Right

prefrontal and bilateral parietal cortex were shown to be active

in tasks with nonspecific stimuli (lacking conceptual content, like

letters) [37], [38]. Moreover, an increase in the magnitude of

frontal theta oscillations and increased frontal-posterior theta

coherence reflect the executive functions of working memory

system [16]. Kawasaki and Watanabe [47] showed that the

gamma-band increase in the frontal and parietal regions is

associated with manipulation of visual mental representations,

particularly successive ones. The above quoted evidence is in

excellent agreement with the connectivity patterns found by means

of DTF and SDTF. Results obtained in [33] and [34] corroborate

other evidence and enrich the knowledge concerning working

memory processes by supplying the information on directionality

of transmissions, ratio of short to long connections and the

dynamics of the processes.

Good topographical agreement of connectivity patterns ob-

tained by DTF is connected not only with the absence of spurious

connections, but also with the fact that DTF is practically not

influenced by the volume conduction. DTF (as well as PDC) is

based on phase difference betweensignals of the multivariate set.

Volume conduction as a propagation of electromagnetic field

doesn’t generate phase difference on the electrodes. The fact that

DTF is not influenced by the zero phase propagation was

demonstrated by means of simulation (http://en.wikipedia.org/

wiki/Brain_connectivity_estimators). The fact that methods based

on phase differences are immune to volume conduction was

recognized e.g. in [48]. We can see that the second important

problem – influence of volume conduction - raised in methodo-

logical publications concerning the difficulties encountered in

graph theoretical analysis may be solved by application of proper

multivariate method.

Discussion

The above results show that by giving the equal weights to all

connections between electrodes we lose some information, but we

gain the possibility to use graph theoretical analysis in its classical

form introduced in [5]. What do we learn from this analysis? We

learn that in most cases there exists some ‘‘small word’’ structure in

connectivity. What else do we learn? By the inspection of the

works where graph theoretical analysis was used, we can say that

the formalism gives us usually very general information, namely, it

does not give the information where the centers of activity,

presumabely indicated by a ‘‘small word’’ structure, are localized.

The localization of nodes of high degree or high local efficiency

usually does not give information consistent enough to indicate the

centers engaged in a given task. The attempts to find the frequency

dependence of the connectivity usually give results, which have no

correspondence with the other electrophysiological information.

In multiple papers applying graph theoretical analysis the main

finding was a presence of ‘‘small world’’ connectivity in brain

networks. Can we identify ‘‘small world’’ structure by means of

multivariate measures? Unfortunately, the notion of ‘‘small world’’

structure is ill defined for networks identified by multivariate

methods, since in the formalism of graph theoretical analysis it is

assumed, that every vertex should be connected to the other one at

least by one path and small number of steps. This assumption does

not hold for multivariate effective connectivity, since the networks

are very sparse. It is possible to relax the assumption of full

connectivity by introduction of global efficiency, which is an

inverse of the shortest path length [7]. Then for disconnected

nodes one assumes zero efficiency. However the networks

obtained by multivariate methods are usually so sparse that

overwhelming part of the connections will take zero value and the

global efficiency and clustering coefficient will be always very low.

However, for quantification of networks we can adopt more

advanced analysis based on assortative mixing. This approach

takes into account the directedness and strengths of connections

and allows for finding coupling inside and among the modules.
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The application of this method to the connectivity determined by

means of DTF indicated, that for the working memory task the

strength of connections inside the modules tends to be stronger

than between modules.

The above results show that even when we abandon the exact

definition of ‘‘small world’’ networks we can, by multivariate

analysis of EEG, identify tightly coupled brain modules, which are

communicating between themselves by less dense connections.

The above approach allows to identify these modules topograph-

ically and to estimate quantitatively the ratios of the strength of

short- range to long- range connections.

Inspecting results of connectivity analysis by DTF we observe

that obtained networks are far from randomness, they may be

called deterministic in the sense that they show clear and

repeatable structure with well defined sources of activity and

distinct (albeit varying in time) patterns of connections. We are not

criticizing the approach of graph theoretical analysis in general,

because it is a very useful method for analysis of large networks of

neurons—real or simulated, also its application to anatomical

connections, which form a very dense network, is well justified. We

are challenging its application to connectivity patterns obtained

from pair-wise connectivity obtained from scalp recorded signals.

In a given behavioral condition only some specific connections are

active and randomness found in many works is an artifact of the

method.

Conclusions

In our opinion there are two fundamental problems with

application of graph theoretical analysis for connectivity estima-

tion. The first one is connected with the fact that application of

bivariate methods followed by giving all connections equal weights

leads to the dense, disordered, similar to random patterns of

connections, from which some ‘‘small word’’ properties may be

possibly extracted with some effort. Graph theoretical analysis is

used with the aim to find some order in the disorganized structure

of connections usually found by bivariate methods. Equal weights

are given to all connections (even these very weak ones, without

statistical significance), in order to comply with the requirements of

graph theoretical analysis assuming that the networks should be

fully connected (each node of the network should be connected

with each one at least by one path). In the procedure of giving

equal weights to all connections the information on the brain

connectivity structure is further blurred, namely important

information coded in the weights of connections is lost. Sometimes

weighted graphs are considered, however in case of connectivity

computed by bivariate measures the overall connectivity pattern is

still blurred.

The second problem, which is a consequence of the first one, is

that graph analysis based on bivariate measures supplies, in fact,

very limited information, concerning only the degree to which

brain networks are more or less random, more or less ‘‘small

world’’. The attempts to find some topographical or spectral

information usually yield the results, which have no correspon-

dence with the evidence coming from other techniques. Therefore

we may conjecture that conventional graph analysis based on pair-

wise connectivity doesn’t give the reliable information on spectral

and topographical features of brain connectivity.

The multivariate estimators, which are free from spurious

connections, provide very sparse, specific, well determined

patterns of brain connectivity. Moreover, these patterns are

compatible with the known anatomical, imaging and electrophys-

iological evidence. More examples of the agreement of the

multivariate causal measures of brain connectivity with the other

evidence may be found in: [46], [49], [50]. Therefore we may

conjecture that neural networks are deterministic in the sense that,

for a given task, they reveal specific, well determined patterns of

connections.

Multivariate methods offer rich information about the connec-

tivity including its dynamical aspects. They allow to: 1) identify

topographical location of centers of increased connectivity, 2)

estimate quantitatively intra-modular and inter-modular coupling

and 3) find the time-varying patterns of connectivity. Summariz-

ing: we may conjecture that the connectivity structure of brain

networks is far from randomness and that multivariate methods

and especially methods based on Granger causality should be

recommended for connectivity studies.
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