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Abstract

Cancer neoantigens are peptides that originate from alterations in the genome, transcriptome, or proteome. These peptides can
elicit cancer-specific T-cell recognition, making them potential candidates for cancer vaccines. The rapid advancement of proteomics
technology holds tremendous potential for identifying these neoantigens. Here, we provided an up-to-date survey about database-based
search methods and de novo peptide sequencing approaches in proteomics, and we also compared these methods to recommend
reliable analytical tools for neoantigen identification. Unlike previous surveys on mass spectrometry-based neoantigen discovery,
this survey summarizes the key advancements in de novo peptide sequencing approaches that utilize artificial intelligence. From a
comparative study on a dataset of the HepG2 cell line and nine mixed hepatocellular carcinoma proteomics samples, we demonstrated
the potential of proteomics for the identification of cancer neoantigens and conducted comparisons of the existing methods to illustrate
their limits. Understanding these limits, we suggested a novel workflow for neoantigen discovery as perspectives.
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Introduction
The formation of tumors is primarily attributed to the accumu-
lation of genomic variations within cells. Each cell accumulates
approximately 15–50 mutations annually. Some advantageous
clones are retained through clonal selection, eventually evolving
into tumors. The diversity of mutations and clones makes tumors
highly heterogeneous [1–3]. Genomic mutations in tumor cells
produce self-antigens not expressed in normal cells. These anti-
gens, known as neoantigens or neoepitopes, fall under the cate-
gory of tumor-specific antigens [4, 5]. Neoantigens bind to major
histocompatibility complex (MHC) molecules within the cell as
peptides and are subsequently presented on the cell membrane
surface for recognition by T cells [6]. Unlike tumor-associated
antigens, neoantigens can evade central T-cell tolerance and do
not pose a risk to normal tissues [7–10].

Neoantigens are widely utilized in T cell-based immunothera-
pies, including T-cell receptor-engineered T cells (TCR-T) and can-
cer vaccines. Both approaches aim to generate antigen-specific T
cells to inhibit tumor growth [11, 12]. Notably, clinical trials for
neoantigen-based cancer vaccines are being vigorously conducted
[13–17]. These vaccines can be categorized into DNA vaccines,
RNA vaccines, peptide vaccines, cell-based vaccines, and viral
vaccines, depending on the platform [18].

One of the critical aspects in developing a cancer vaccine is the
identification of immunogenic candidate neoantigens capable of
eliciting a robust and specific immune response targeting tumor
cells [12]. Current methodologies predominantly rely on whole
genome sequencing (WGS) or whole exome sequencing (WES)
to detect cancer-associated variations at the DNA level [19, 20].
Subsequently, these identified variations undergo a series of bioin-
formatics pipelines, including Human Leukocyte Antigen (HLA)-
typing, HLA-affinity, and TCR recognition, to predict potential
neoantigens [21–23]. However, the accuracy of current machine
learning-based neoantigen prediction tools is typically around or
below 5% when applied to the neoantigen prediction of mutations
identified by WES in cancer [24–28]. It remains uncertain whether
DNA-level variants can be effectively translated into proteins,
which must be carefully considered in neoantigen prediction.

Proteomic technologies, primarily based on liquid chromatog-
raphy coupled with tandem mass spectrometry (MS) are increas-
ingly utilized in cancer research [29–32]. Importantly, proteomic
data are systematically curated and deposited in public databases
such as ProteomeXchange and PRIDE, significantly enhancing
the utilization and accessibility of proteomic information [33,
34]. Since proteins are the executors of biological functions, pro-
teomics offers distinct advantages over DNA and RNA sequencing.
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Proteomics can capture successfully translated mutations, RNA
alternative splicing products, gene fusion products, and proteins
translated from non-coding regions and circular RNAs [8, 35].
Neoantigen identification based solely on DNA or RNA sequencing
data may lead to the omission or misidentification of neoantigens.
Therefore, integrating proteomics into the pipeline for cancer
neoantigen screening is expected to enhance both the quantity
and accuracy of neoantigen detection.

Polyakova et al. have previously reviewed the unique advan-
tages of proteomics in identifying neoantigens and suggested
incorporating proteomics into the pipeline for neoantigen
discovery [36]. Verma et al. then combined multi-omics and
bioinformatics tools to create a framework for using proteomics
in neoantigen identification [37]. The framework utilizes the
patient’s paired WES and RNA-seq data as a reference database
for MS searches, thereby enabling the identification of neoanti-
gens. A recent review also discussed this framework, highlighting
the potential and challenges of using proteomics in neoantigen
vaccine design [38].

However, no review currently provides a detailed analysis or
comparison of the practical applications of this theoretical frame-
work. It remains theoretical, lacking comprehensive practical
solutions and tool recommendations. Additionally, they focus
only on database-based search methods, neglecting comparisons
with de novo peptide sequencing approaches in neoantigen
identification. The rapid evolution of artificial intelligence (AI)
has led to the creation of many advanced proteomics analysis
tools for de novo peptide sequencing. These tools overcome
the limitations of database-based search methods regarding
reference databases, making them more suitable for neoantigen
identification [39]. Nevertheless, no one has yet analyzed or
summarized the potential of these tools in cancer neoantigen
identification, nor explored how to integrate these tools into
pipelines for cancer neoantigen screening.

In this paper, we provided an updated survey of AI-assisted
de novo peptide sequencing methods and their applications in
neoantigen discovery. We also examined methods for implement-
ing and recommending tools for neoantigen identification using
both proteomics database search techniques and de novo peptide
sequencing approaches. Importantly, we conducted a case study
analysis on liver cancer samples to compare existing methods and
showcase the potential of proteomics in neoantigen identifica-
tion. This analysis also revealed the limitations of current meth-
ods. Finally, we proposed a novel proteomics-based workflow for
neoantigen identification, which holds promise for accelerating
the development of clinical cancer vaccines.

Materials and methods
We can calculate the H-index in Web of Science (https://
webofscience.clarivate.cn/):

1) Access Web of Science and select “Title” in the search bar
dropdown menu.

2) Enter the article title you are looking for and initiate the
search.

3) Click on the article title from the search results to open its
detailed record.

4) Click on the “Citations” link to view the citations for the
article.

5) On the citations page, click on the “Citation Report” button
to generate a comprehensive report.

6) In the citation report, set the publication years filter to 2020–
24 to focus on the most recent citations.

7) The H-index for the selected period will be displayed in the
citation report.

Case study:
1) Construct the variant reference database of HCC

First, we downloaded all mutation information related to liver
cancer from the Cosmic database (https://cancer.sanger.ac.uk/
cosmic). Subsequently, the human standard protein reference
sequence was downloaded from the Ensembl database (https://
www.ensembl.org/) and modified the protein sequence according
to the mutation information. Finally, the reference sequences of
mutant proteins related to liver cancer were obtained, totaling
262,654 mutant protein sequences. Meanwhile, we retained the
original Ensembl protein sequences as control.

2) Peptide identification

Download the HepG2 cell line and nine mixed samples data
from HCC patients from the PRIDE database (https://www.ebi.ac.
uk/pride/archive/projects/PXD036643). Analyze using MaxQuant
(2.4.2.0), with parameters consistent with those used in the orig-
inal paper [40] for the dataset, and use the variant reference
database of HCC as the reference database.

Use Casanovo with the default weight model to directly infer
each MS file. Summarize and deduplicate the results. Match the
results with the variant reference database of HCC to obtain
candidate neoantigens.

Cancer neoantigen screening pipeline in
silico
Classical methods for screening immunogenic neoantigens, such
as cDNA library screening, are time-consuming and costly [41–44].
The advent of next-generation sequencing and advancements in
bioinformatics analysis has laid a solid foundation for rapid and
high-throughput cancer neoantigen screening [45].

The in silico neoantigen screening process includes key steps
such as mutation calling, HLA typing, HLA affinity prediction, and
T cell recognition [23]. These steps and algorithms are designed
to mimic in vivo cellular immune processes (Fig. 1A). Initially,
the target protein is degraded into peptides by the proteasome
within antigen-presenting cells (APCs). Subsequently, MHC class
I molecules bind with the peptides in the endoplasmic reticulum
to form peptide–MHC (p-MHC) complexes. These complexes are
transported through the Golgi apparatus and presented on the cell
membrane. Finally, the p-MHC on the cell membrane is recognized
by CD8+ T-cell receptors, activating a cytotoxic T lymphocyte
(CTL) response. For exogenous proteins, APCs ingest and degrade
them into peptides, which are recognized by MHC-II molecules
and presented on the cell surface. These peptides are recognized
by CD4+ T-cells, which help enhance the cytotoxic effects of CTLs
[46]. The primary mechanism by which cancer vaccines inhibit
tumors relies on target antigens inducing strong and sustained
responses from CD4+ T helper cells and CTLs [47].

The HLA typing algorithms, such as OptiType [48], Polysolver
[49], and PHLAT [50], can achieve over 95% accuracy in HLA class
I typing. Polysolver and OptiType perform comparably and are
superior to PHLAT. Additionally, Polysolver can be applied at a
higher resolution (eight digits) [49, 51]. Both OptiType and PHLAT
can analyze RNA-seq data, with PHLAT also capable of performing
HLA class II typing (Table 1).

After determining the HLA typing, tools like MixMHCpred [52],
NetMHCpan 4.1 [53], and MHCflurry [54] are used to predict the
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Figure 1. The pipeline of cancer neoantigen screening in silico and the pathways of neoantigen generation. (A) The process of antigen presentation
by MHC class I/II molecules in APCs and the activation of T cell responses, along with the corresponding neoantigen screening tools for each step.
MHC class I molecules are responsible for endogenous antigen presentation and CD8+ T cell activation. MHC class II molecules are responsible for
exogenous antigen presentation and CD4+ T cell activation. (B) The mechanism of neoantigen generation includes genomic variations (SNVs, indels,
and gene mutations) and transcriptome alternative splicing variants, which make protein products diversified.

affinity between peptides and MHC-I molecules, identifying which
peptides are likely to be presented on the cell surface. In a bench-
mark experiment for MS MHC class I eluted peptides, NetMHCpan
4.1 demonstrated superior performance compared to other tools.
The median positive predictive values are as follows: NetMHCpan-
4.1: 0.8291, MixMHCpred: 0.7911, and MHCFlurry: 0.7256 [53]. Yet,
MHCflurry has a significant speed advantage, exceeding 7000 pre-
dictions per second, which is 396 times faster than NetMHCpan
4.0 [54]. For MHC-II molecule predictions, NetMHCIIpan-4.0 [53]
is available. Additionally, both NetMHCpan 4.1 and NetMHCIIpan
4.0 offer user-friendly web servers.

However, not all p-MHC complexes can be recognized by T cells.
Hence, researchers have further developed T-cell recognition tools
to predict the immunogenicity of peptides, such as PRIME [55],
DeepNeo-TCR [56], and TEIM-Res [57]. Additionally, integrated
analysis pipelines like pVACtools [21], MuPeXI [58], and OpenVax
[59] facilitate user operations by directly providing candidate
neoantigens based on somatic variant calling. Nevertheless, the

positive rate of neoantigen prediction through these pipelines
remains low [28].

In addition to improving the performance of these tools, the
source of neoantigens is also a crucial factor in neoantigen
screening. Neoantigens mainly originate from single nucleotide
variants (SNVs), insertions and deletions (indels), gene fusions,
RNA alternative splicing, and mutations in non-coding regions
(some of which have translation functions), among others
(Fig. 1B). SNVs refer to single nucleotide variations, which are
the most common type of variation [63]. Indels refer to insertions
or deletions of bases ranging from 1 to 10 000 bp in length and
are the second most common type of genetic variation [64, 65].
Gene fusions occur when two or more genes hybridize, often
due to chromosomal rearrangements or transcription-induced
expression of chimeric genes [66]. Alternative splicing is a regu-
lated process in which specific exons of a gene may be excluded
from the premature mRNA, or certain introns may be retained,
thereby increasing protein diversity [67]. Notably, up to 75% of
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Table 1. The tools of cancer neoantigen screening pipeline in silico

Name Application Input References

OptiType HLA-I typing WES/WGS/RNA-seq Ref. [48]
Polysolver HLA-I typing WES Ref. [49]
PHLAT HLA-I/II typing WES/RNA-seq Ref. [50]
MixMHCpred HLA-I affinity HLA type & peptide sequence Ref. [52]
NetMHCpan 4.1 HLA-I affinity HLA type & peptide sequence Ref. [53]
NetMHCIIpan 4.0 HLA-II affinity HLA type & peptide sequence Ref. [53]
MHCflurry HLA-I affinity HLA type & peptide sequence Ref. [54]
PRIME T cell recognition Peptide sequence Ref. [55]
DeepNeo-TCR T cell recognition Peptide sequence Ref. [56]
TEIM-Res T cell recognition CDR3 & peptide sequence Ref. [57]
pVACtools Comprehensive tool VCF file Ref. [21]
MuPeXI Comprehensive tool VCF file Ref. [58]
OpenVax Comprehensive tool VCF file Ref. [59]
NeoPredPipe Comprehensive tool VCF file Ref. [60]
TruNeo Comprehensive tool WES&RNA-seq fastq Ref. [61]
Seq2Neo Comprehensive tool WES&RNA-seq fastq Ref. [62]

the genome can be transcribed and potentially translated into
proteins, and 99% of cancer mutations occur in noncoding regions
[68, 69].

However, WES is limited to detecting variations at the DNA
level and cannot ascertain whether these variations are expressed
at the protein level. Similarly, RNA-seq data cannot confirm the
translation of transcripts or predict protein modifications and
variations. In contrast, proteomics directly examines the end
products of DNA and RNA variations, making it more suitable for
neoantigen detection.

Database-based search methods for protein
identification from proteomics data
Proteomics workflow and software
recommendation
Traditional proteomics strategies primarily include “top-down”
and “bottom-up” approaches. The bottom-up approach analyzes
proteolytic peptides, while the top-down method measures intact
proteins. Among these, the bottom-up method, also known as
shotgun proteomics, is widely used due to its high throughput and
sensitivity [31, 70–72].

Shotgun proteomics is an indirect measurement of proteins
through peptides derived from the proteolytic digestion of intact
proteins (Fig. 2). The critical steps in proteomics analysis are the
identification and quantification of proteins [73]. Initially, a refer-
ence database can be constructed based on the species, utilizing
resources such as the human protein reference sequences from
UniProt, Ensembl, and other relevant databases [74, 75]. These
reference sequences are then fragmented according to specific
rules to generate theoretical spectra. Next, candidate peptides are
identified by matching and scoring the actual spectra against the
theoretical spectra. Finally, the candidate peptides are assembled
for protein identification and quantification [76–78]. In certain
experimental methods, shotgun proteomics usually utilizes either
labeled or label-free quantification techniques. The most used
labeled method is tandem mass tag (TMT), a type of chemical
labeling. TMT offers high stability and good reproducibility but
has lower throughput and is expensive, making it suitable for
small sample cohorts [79, 80].

On the other hand, label-free quantification primarily includes
data-dependent acquisition (DDA) and data-independent
acquisition (DIA) techniques. Both are high-throughput methods

suitable for large-sample cohort detection [81, 82]. However, DDA
is gradually being replaced by DIA due to its low coverage and poor
reproducibility. DDA only performs secondary fragmentation and
MS2 detection on high-abundance precursor ions, whereas DIA
performs a full scan of all precursor ions and their fragmented
product ions [83, 84]. Due to the high heterogeneity of tumors,
multiple clones exist, and neoantigens vary in abundance. DDA
struggles to capture those low-abundance neoantigens. In a
cohort of 195 prostate cancer patients, DIA identified more
peptides and proteins than DDA, adding 17.3% to 57.3% of proteins
per patient [85]. This suggests that, in theory, the DIA technique
may be more effective for detecting cancer neoantigens.

Table 2 lists the commonly used software based on the
database search method. We used the Web of Science tool
to calculate the H-index for each software over the past 5
years (2020–24). Among these, MaxQuant [86] stands out with
the highest H-index of 91. MaxQuant is favored by many
researchers due to its strong performance and open-source
nature [87, 88]. In an analysis identifying HLA Class I allele-
specific peptides, four mainstream tools were evaluated. The true-
positive rate of peptide identifications made by each engine was:
Comet = 41%, MaxQuant = 59%, MS-GF + = 58%, and Peaks = 68%,
with Peaks leading the other software [89]. However, another study
demonstrated that MaxQuant is better suited for identifying low-
abundance proteins, aligning more closely with the requirements
for neoantigen identification [90]. Therefore, we recommend using
MaxQuant for examples and analysis.

Besides MaxQuant, widely used tools such as Mascot [91] and
MS-GF+ [92] are frequently employed for comparison analysis
[93–96]. Notably, MSFragger [97] utilizes a fragment-ion indexing
method, which increases its speed by over 100 times compared
to most existing database search-based tools. With an H-index of
45, it surpasses many classic software tools, demonstrating signif-
icant potential. In recent years, to accommodate the development
of DIA technology, MaxQuant, and MSFragger have extended their
capabilities to include components specifically for analyzing DIA
data, such as MaxDIA [98] and MSFragger-DIA [99].

Methods for the establishment of reference
databases
For MS-based neoantigen identification, it is essential to establish
a specific reference database. For instance, Li et al.
developed the Cancer Proteome Variation (CanProVar) database,
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Figure 2. Shotgun proteomics workflow. The actual spectra are obtained by protein cleavage and mass spectrometry, while the theoretical spectra are
obtained by interrupting the reference protein sequence according to the theoretical site of the corresponding cleavage method. Peptide identification
is achieved by matching and scoring theoretical spectra against actual spectra, and peptides are assembled to achieve protein identification.

Table 2. Database search software for proteomic analysis

Name Published year H-index in the
past five years

True-positive
peptide
identifications
rates [89]

Running time in
Escherichia coli
dataset (min)
[100]

Open source References

SEQUEST 1994 15 NA NA Yes Ref. [101]
Mascot 1999 43 NA NA Yes Ref. [91]
X!Tandem 2004 30 NA NA Yes Ref. [102]
pFind 2005 11 NA 57.9 Yes Ref. [103]
MaxQuant 2008 91 59% 464.5 Yes Ref. [86]
Peaks DB 2012 29 68% NA No Ref. [104]
MODa 2012 14 NA NA Yes Ref. [105]
Comet 2013 47 41% 236.0 Yes Ref. [106]
MS-GF+ 2014 36 58% 259.5 Yes Ref. [92]
MSFragger 2017 45 NA NA Yes Ref. [97]

which integrates information on human cancer-related variations
from multiple databases [107, 108]. This CanProVar database
is used instead of traditional reference sequence databases for
peptide identification. While this strategy can identify variant
peptides, it faces significant challenges, such as a restricted
search space. It is important to note that these cancer variant-
related databases only include DNA-level variants.

At the RNA level, alternative splicing events are frequent in
cancer and play a crucial role in tumor development and pro-
gression [109–112]. Variants generated by alternative splicing, as
important components of neoantigens, should be considered for

inclusion in the variant reference database [113]. For example, the
OncoSplicing database integrated all alternative splicing events of
cancers derived from the TCGA dataset, which can be considered
for inclusion [114]. Unfortunately, there is no available reference
sequence library (FASTA format) for alternative splicing variants.

An alternative method involves constructing a personalized
database for each patient using proteomeGenerator [115,
116]. This approach is viable only if the patient’s tumor
samples undergo both RNA sequencing and proteomic analysis
concurrently. The tool generates the reference database from
RNA sequences, following a two-step process: first, inferring



6 | Lou et al.

Table 3. Different methods for de novo peptide sequencing

Name Algorithm Published year Focus on missing peaks Still available Reference

Peaks Dynamic Programming 2003 No Yes, software Ref. [117]
NovoHMM Hidden Markov 2005 No No Ref. [118]
PepNovo Spectrum Graph Theory 2005 No No Ref. [119]
pNovo Spectrum Graph Theory 2010 No No Ref. [120]
Novor Decision Tree 2015 No Yes, software Ref. [121]
DeepNovo CNN + RNN 2017 No Yes, code Ref. [122]
PointNovo RNN + PointNet 2021 No Yes, code Ref. [123]
Casanovo Transformer 2022 No Yes, code Ref. [124]
GraphNovo Graphormer 2023 Yes Yes, code Ref. [125]
Spectralis CNN 2024 Yes Yes, code Ref. [126]

protein sequences from the RNA data, and second, employing
protein identification tools (e.g. MaxQuant) for peptide matching
and protein identification. The findings indicate that the self-
reference database can identify a greater number of non-
classical peptides compared to traditional reference databases
(e.g. Uniprot). However, this method must also discern cancer-
specific sequences, necessitating a control design in experiments.
Consequently, this approach is associated with higher economic
and computational costs.

Overall, the primary limitation of database search methods
is the completeness of the variation reference database. Given
the significant individual differences, relying on a single variant
database is impractical. Developing a comprehensive database
that includes both DNA and RNA variant information is essential.
A more effective approach involves using paired RNA-seq data
to construct a personalized self-reference database, which can
account for individual differences and include transcriptome
variant information. That allows for more precise detection of
neoantigens.

De novo peptide sequencing methods
based on AI for proteomics: state-of-the-art
With the rapid evolution of AI, de novo peptide sequencing
methods have also seen significant growth, introducing new
concepts to proteomics. Unlike traditional methods, de novo
peptide sequencing does not depend on a reference database
but generates sequences directly from the spectrum [39]. In
this section, we will provide a detailed discussion of several
representative tools (Table 3).

Classic machine learning used for de novo
peptide sequencing
The innovation in AI technology is closely linked to the devel-
opment of de novo peptide sequencing tools, with both fields
complementing each other. In the early stages of de novo peptide
sequencing methods, traditional machine learning or statistical
models were employed to analyze MS data (Fig. 3A). Represen-
tative tools include Peaks, NovoHMM, PepNovo, and pNovo [117–
120]. These methods typically use a spectrum graph or a modified
approach and generally consist of two main steps. First, the
original spectrum is transformed into a directed acyclic graph.
Second, dynamic programming algorithms are applied to identify
the optimal paths.

Another classical approach, Novor [121], employs two large
decision trees for de novo peptide sequencing. Specifically, it
designs a new scoring function to evaluate the quality of the
match between a peptide sequence and the input spectrum. This

scoring function utilizes one decision tree to learn its thousands of
parameters from a large peptide spectral library containing over
300 000 spectra.

The results showed that Novor achieved the highest recall
(0.548, 0.569, 0.411, and 0.635) in a test on four test datasets,
outperforming the commercial software Peaks. Detailed reviews
of machine learning-based de novo peptide sequencing methods
have been extensively covered elsewhere, so we will not reiterate
them here [127–130]. However, it should be noted that only Peaks
and Novor offer available software currently, while the other tools
are no longer in service.

Deep learning methods for de novo peptide
sequencing
Due to the inherent complexity of MS data, traditional machine
learning methods often fail to capture more nuanced features
effectively. In contrast, deep learning offers more sophisticated
networks that are better suited to handle such complex tasks
[131].

For instance, DeepNovo [122] demonstrated significant
improvements in peptide sequencing precision, surpassing
traditional machine learning approaches like Novor and Peaks.
The area under the curve of DeepNovo was 18.8%–50.0% higher
than Peaks, 7.7%–34.4% higher than Novor. The model is primarily
composed of two components: a convolutional neural network
(CNN) [132] module for extracting MS features and a recurrent
neural network (RNN) [133] for decoding these features into
sequences. This combination of CNN and RNN mirrors the
integration of image recognition (e.g. spectra) with natural
language processing (e.g. protein sequences). Given the superior
performance of long short-term memory (LSTM) networks in
sequence processing, Qiao et al. introduced PointNovo, which
integrates LSTM and PointNet [123, 134, 135]. They evaluated the
performance of DeepNovo and PointNovo using MS data from nine
species. The results indicated that PointNovo consistently out-
performed DeepNovo at the peptide level by a margin ranging
from 13.01% to 23.95%. Furthermore, their experiments showed
a notable decrease in performance when LSTM was omitted,
underscoring its critical role in the model.

In 2017, Google introduced the transformer architecture,
which revolutionized traditional sequence-processing methods
[136]. The transformer model consists of an encoder and a
decoder, incorporating a self-attention mechanism to compute
correlations between sequences in parallel. By integrating
positional encoding, it can simultaneously calculate the attention
between each position and all other positions, thereby capturing
global dependencies without information loss. Unlike LSTM,
which processes sequentially and may lose information in
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Figure 3. The co-evolution trajectory in the development of both the peptide de novo sequencing methods and AI algorithms. (A) the peptide de novo
sequencing methods have undergone a revolution from machine learning algorithms to deep learning algorithms (from left to right). (B) Performance
of the peptide de novo sequencing methods on different datasets: (i) the number of correct peptides identified by pNovo [120] was 181 and 612 in the
two datasets, which was better than PepNovo and peaks. (ii) Novor [121] outperforms peaks in recall on four datasets; (iii) Graphnovo [125] outperforms
other methods in recall on all three datasets.

long sequences, transformers excel in capturing long-range
dependencies. Consequently, the transformer has become the
dominant method for sequence tasks, with numerous successful
applications in biological sequence transformation [137–139]. For
instance, Yilmaz et al. developed a powerful de novo peptide
sequencing method, Casanovo [124], using the transformer
framework, trained on approximately 300,000 unique peptide
sequences. On nine test datasets, Casanovo outperformed
previous models, with a mean improvement of 0.373 and 0.310
in precision relative to DeepNovo and PointNovo, respectively.
Notably, Casanovo exhibits faster inference speed, processing 119
spectra per second on an RTX 2080, compared to DeepNovo’s
reported rate of 36 spectra per second and PointNovo’s 20 spectra
per second on the more powerful RTX 2080 Ti. This advantage is
attributed to the advanced architecture of the transformer.

Missing fragmentation and contamination are common
issues in MS data generation. To address missing peaks, Mao
et al. proposed GraphNovo [125], a two-stage de novo peptide
sequencing algorithm based on a graph neural network. This
algorithm comprises two components: GraphNovo-PathSearcher
and GraphNovo-SeqFiller. It focuses on finding the optimal path
(PathSearcher) in the first stage to guide the sequence prediction
(SeqFiller) in the second stage. PathSearcher generates a node
sequence (the source and target nodes), while SeqFiller outputs
an amino acid (AA) sequence. GraphNovo mitigates the missing
fragmentation problem primarily through the PathSearcher
component. The results showed that GraphNovo achieved an
overall recall of 0.786, compared to 0.61 for DeepNovo and 0.68
for PointNovo in missing peak data. When PathSearcher was used
to modify DeepNovo and PointNovo with the optimal path, their
recall improved to 0.742 and 0.760, respectively, approaching the
performance of GraphNovo.

A recently published tool, Spectralis [126], also addresses the
problem of missing peak fragments but employs a different
approach. It uses bin class predictions to improve peptide-
spectrum matches. Specifically, it creates discrete bins of 1

Dalton (Da) for sliding windows and introduces the AA-gapped
convolutional layer to recover the peptide sequence by reading
out the m/z differences of either series. The bin class prediction
was used to generate the Spectralis-score, which was then applied
to rank the existing predicted peptides. Additionally, the bin
reclassification model can correct predictions from Novor and
Casanovo, expanding the utility of these tools.

Method comparisons in a case study on
liver cancer neoantigen identification from
mass spectrometry data
To demonstrate the potential of proteomics in neoantigen iden-
tification, we conducted a peptide identification analysis using
MS data from the liver cancer cell line HepG2. The analysis was
performed with MaxQuant software, following parameter settings
consistent with those reported in the original publication [40].
Notably, we utilized a self-constructed reference database con-
taining 262,654 mutant protein sequences derived from all liver
cancer-related mutations in the Cosmic database (see Methods
and materials).

If a sequence is not matched in the original reference but
successfully matches in the mutated sequence database, it is
considered a neoantigen candidate. Our analysis identified a total
of 237 candidates.

We examined the mutation information of HepG2 (DepMap
ID: ACH-000739) in the CCLE database and found 152 mutation
entries [140]. Surprisingly, none of the identified neoantigen can-
didates overlapped with the known mutation sites in HepG2.
Further examination revealed that only two mutation entries
(NRAS_ p.Q61L and PREX2_ p.L50V) were included in our mutant
protein sequences database. Even the world’s largest and most
comprehensive databases of somatic mutations in cancer cannot
meet the need for personalized neoantigen identification. Nev-
ertheless, we observed 237 “new sequences” at the protein level
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that could not be captured by WES, underscoring the potential of
proteomics in neoantigen discovery.

To explore the differences between the database retrieval
approach and the de novo sequencing approach, we analyzed the
same data using both methods. We collected pooled samples from
nine HCC patients, each subjected to three technical replicates.
The MS data were divided into eight parts each time, resulting in
24 files. [40].

For the database search method, we used MaxQuant with
parameters consistent with the original study [40], employing a
mutant protein sequences database generated from the Cosmic
(see Methods and materials). For de novo peptide sequencing, we
used Casanovo. The final number of neoantigen candidates iden-
tified was 329 by MaxQuant and 252 by Casanovo (Fig. 4A). Only 13
candidates were common between the two methods (Fig. 4B). This
result exceeded our expectations: the de novo method identified
fewer candidates than the database search method, and their
consistency was poor.

Further analysis of Casanovo results showed that only six
mutant genes were detected consistently across all three tech-
nical replicates (Fig. 4C). The results indicate poor consistency
between technical replicate samples. Based on these findings, we
have concerns about the accuracy of Casanovo’s results. Addi-
tionally, we compiled a list of high-frequency mutated genes in
HCC from the Cosmic database and multiple study cohorts [141–
144]. The high-frequency mutated genes represent that they are
more likely to be detected in the population of HCC. The mutation
genes in the list are sorted by the frequency of detection in
the population from high to low. Using MaxQuant, we detected
only two high-frequency mutated genes (CPS1 and TNN) in nine
HCC patients, which seems unreasonable given the expected
mutation frequency. In contrast, Casanovo identified nine high-
frequency mutated genes, more consistent with the observed
mutation frequency in HCC populations (Fig. 4D). This demon-
strates the advantage of de novo peptide sequencing in identifying
neoantigens without relying on reference databases.

Whether using a de novo or database search method, we
checked their performance using the same liver cancer-related
variant reference database. MaxQuant, after strict false discov-
ery rate (FDR) control and filtering, identified 94 775 peptides.
FDR is typically controlled by incorporating decoy sequences into
the database, created by reversing target sequences and using
their scores to model probabilistic functions [145]. In contrast,
Casanovo lacks any evaluation mechanism to assess its accuracy,
resulting in 1 325 364 peptides. For the de novo method, even a
single amino acid error in the predicted peptide is fatal, and such
a peptide will not be considered. Only 252 neoantigen candidates
were matched in the reference database. Despite its limited search
space, MaxQuant identified 329 candidates with higher quality.
Therefore, it is essential to develop and evaluate new proteomic
pipelines to improve neoantigen identification accuracy.

Future perspective
Based on the results of the above comparative analysis, we
propose an improved workflow to enhance the application of
proteomics in neoantigen identification. Database-based search
methods generally offer high confidence but rely heavily on a
comprehensive reference sequence library. This can be achieved
by integrating large cancer-related mutation databases, such as
Cosmic, Cbioportal, CanproVar, and OncoSplicing [107, 114, 141,
146]. When only MS data are available, neoantigen identification
depends on a comprehensive reference sequence library of cancer

variants, which may limit the number of identified neoantigens.
However, if both MS and RNA-seq paired data are available
for the same patient, a self-reference database can be con-
structed, allowing for more accurate neoantigen identification.
In this scenario, while the theoretical spectrum step limits the
peptide space, a moderate number of neoantigens can still be
obtained.

In contrast, de novo peptide sequencing methods do not rely
on reference databases and generate sequences directly from
MS data. However, the accuracy of these generated sequences
requires further evaluation. Therefore, we propose using both
MS and RNA-seq paired data for neoantigen identification in de
novo peptide sequencing. This approach allows self-reference
sequences derived from RNA-seq data to serve as ground
truth, thereby improving prediction confidence. Consequently,
more high-confidence neoantigens can be identified (Fig. 5).
Specifically, peptides predicted by de novo peptide sequencing
tools are reverse-translated into codon sequences. Based on
the patient’s paired RNA-seq data, a cancer-specific sequence
reference library is generated. The codon sequences are then
aligned with the reference sequences to identify candidate
neoantigens. The advantage of this method is that it bypasses
open reading frame prediction and other steps, saving time and
enhancing accuracy.

Nanopore sequencing is an advanced technique that enables
real-time sequencing by inferring molecular composition based
on changes in electrical current as single molecules pass through
biological nanopores [147, 148]. It has been successfully applied
in DNA and RNA sequencing and has achieved commercialization
[149]. However, proteins, composed of 20 different types of amino
acids, have much higher structural complexity, making nanopore
protein sequencing significantly more challenging than nucleic
acid sequencing [150].

In 2021, Brinkerhoff et al. developed a method to pull a
DNA-peptide conjugate through a biological nanopore using a
helicase, successfully sequencing a synthetic peptide of 26 amino
acids with an average accuracy of 87% [151]. This method can
repeatedly measure the same peptide segment and distinguish
single amino acid changes in the protein sequence. Recent
research by Motone et al. has demonstrated the feasibility of
full-length sequencing of complete proteins using nanopore
technology, pushing the boundaries of this field [152]. In the
near future, we anticipate that this technology will be applied
to production practices, potentially revolutionizing traditional
proteomics and enhancing its role in neoantigen detection.

Discussion
Cancer vaccines, as emerging treatment methods, have garnered
significant attention in recent years, with numerous clinical trials
currently underway [153, 154]. However, the current screening
process for neoantigens has limitations, resulting in only a small
number of candidates demonstrating clinical efficacy [28]. The
emergence of proteomics offers new hope for neoantigen screen-
ing in cancer vaccines. Here, we propose a novel and feasible work-
flow for identifying neoantigens through proteomics, grounded in
both theoretical considerations and practical applications.

For database search methods, constructing a reference
database is a crucial step. Two approaches can be used: a compre-
hensive cancer variant reference database and a self-reference
database. A comprehensive cancer variant reference database
requires prior knowledge of mutation sequences relevant to
human cancers. Given the vastness of the human genome, it
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Figure 4. A case study of neoantigen identification in HCC patients. (A) Sample information on liver cancer and the workflow of neoantigen identification.
(B) Venn diagram of identified neoantigen candidates under two methods. (C) Venn diagram of identified genes in three technical replicates by Casanovo.
(D) The detection of high-frequency mutant genes in HCC under two methods. The list on the right shows the highly mutated genes in different HCC
cohorts.
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Figure 5. The proteomics-based neoantigen identification workflow. The process of neoantigen identification based on MS includes both database-
dependent and database-independent methods. Depending on the type of data input, different analysis processes are selected, resulting in varying
numbers of identified neoantigen candidates. The method of database search depends on a comprehensive reference sequence library or self-reference
sequence library (RNA-seq data). Database-independent methods require a self-reference sequence library as validation: The sequences obtained by
reverse transcription of the predicted peptides were matched with the cancer-specific sequence library obtained from RNA-seq data to obtain neoantigen
candidates.

is nearly impossible to establish an accurate and comprehensive
mutation-related information database. This limitation hinders
personalized neoantigen screening for patients. For example,
when identifying neoantigens using MS on HepG2 cells, only two
mutation entries for HepG2 are recorded in the COSMIC database.
Therefore, using the patient’s paired RNA-seq data to establish a
self-reference database is more relevant and feasible.

De novo peptide sequencing methods not only address the
issue of database construction but also have the potential to
identify peptide sequences beyond prior knowledge, making them
more promising for neoantigen identification tasks [39]. As AI
evolves, various de novo peptide sequencing methods have been
developed alongside the emergence of different algorithms. In
the early stages, traditional machine learning algorithms were
prominent, with tools such as PEAKS, NovoHMM, PepNovo, pNovo,
and Novor.

With the rise of deep learning, researchers have found that
deep learning methods are more capable of handling complex
tasks compared to traditional machine learning methods [131,
155, 156]. The advent of various deep neural network architec-
tures, such as CNN, RNN, and transformer, has led to the devel-
opment of corresponding tools, including DeepNovo, PointNovo,
and Casanovo. In addition to iterative algorithm updates, it is
crucial to address specific real-world problems. For instance, tools
like GraphNovo and Spectralis have been designed to tackle the
issue of missing fragments in MS data, significantly enhancing the
accuracy of de novo peptide sequencing predictions. Recent deep
learning-based de novo peptide sequencing tools offer not only
high prediction accuracy but also trainable pre-trained models.
This flexibility allows users to adjust the model for different
scenarios and data characteristics, leading to better prediction
results. However, compared to the commercial software, these
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deep learning-based de novo peptide tools are not user-friendly.
They require substantial computing resources, and users must
have a solid understanding of deep learning to apply them effec-
tively.

Meanwhile, an analysis of liver cancer cases using both
database search and de novo peptide sequencing methods reveals
that the de novo peptide sequencing approach holds a higher
potential for cancer neoantigen identification. This approach
addresses the issue of mutation database incompleteness and can
generate peptide segments beyond existing knowledge. However,
it exhibited poor reproducibility in the three technical replicate
samples. That could be attributed to the inherent limitations of
the DDA technique or issues with the accuracy of the de novo
peptide sequencing method. At present, there is no systematic
study assessing the performance differences between DDA and
DIA in detecting neoantigens, which represents a promising
area for future research. Additionally, these de novo peptide
sequencing models exhibit significant performance variations
across different species’ MS data (Fig. 3B). For instance, Casanovo
performs the worst on the human dataset in a test set of nine
species [124]. Therefore, it is necessary to fine-tune these models
using high-quality human datasets to enhance their performance
in human MS data. Since the analyzed samples do not provide
ground truth, we cannot assess their accuracy. Therefore,
we propose constructing a self-reference database using the
patient’s paired RNA-seq data as a baseline to aid in neoantigen
identification (Fig. 5). Nonetheless, we remain optimistic that the
accuracy of de novo peptide sequencing methods will overcome
current challenges, enabling better application in neoantigen
identification.

Conclusion
To elucidate the potential applications of proteomics in neoanti-
gen identification, this paper reviewed the representative meth-
ods and tools for proteomic analysis, and their development
trends, and recommended reliable analytical strategies and tools
for neoantigen identification. Additionally, we compared these
methods in a case study analysis on HepG2 cell line and nine
mixed liver cancer proteomics samples to demonstrate the poten-
tial of proteomics in neoantigen identification. This analysis also
uncovered some limitations of existing methods, so we proposed
an improved, feasible analytical workflow for neoantigen identi-
fication. In the future, proteomics is suggested to be integrated
into standard neoantigen identification pipelines to enhance the
efficiency of neoantigen screening, thereby facilitating the matu-
ration of clinical cancer vaccines.

Key Points

• We offer a comprehensive overview of proteomics in the
discovery of neoantigens, along with detailed identifica-
tion methodologies and tool recommendations.

• We survey recent developments in de novo peptide
sequencing methods, highlighting their potential in
neoantigen identification.

• We provide a comparative analysis of the use of pro-
teomics for neoantigen identification, demonstrate the
potential and existing drawbacks of proteomics in
neoantigen identification, and propose a novel workflow.
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