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Aneurysmal subarachnoid hemorrhage (aSAH) is an important type of stroke with the

highest rates of mortality and disability. Recent evidence indicates that neuroinflammation

plays a critical role in both early brain injury and delayed neural deterioration after aSAH,

contributing to unfavorable outcomes. The neutrophil-to-lymphocyte ratio (NLR) is a

peripheral biomarker that conveys information about the inflammatory burden in terms

of both innate and adaptive immunity. This review summarizes relevant studies that

associate the NLR with aSAH to evaluate whether the NLR can predict outcomes and

serve as an effective biomarker for clinical management. We found that increased NLR

is valuable in predicting the clinical outcome of aSAH patients and is related to the

risk of complications such as delayed cerebral ischemia (DCI) or rebleeding. Combined

with other indicators, the NLR provides improved accuracy for predicting prognosis

to stratify patients into different risk categories. The underlying pathophysiology is

highlighted to identify new potential targets for neuroprotection and to develop novel

therapeutic strategies.

Keywords: aneurysmal subarachnoid hemorrhage, neutrophil to lymphocyte ratio, neuroinflammation,

cerebrovascular disease, immune response, biomarkers

INTRODUCTION

Aneurysmal subarachnoid hemorrhage (aSAH) is the leading cause of death in stroke patients,
with a mortality rate of∼40–50% (1, 2). More than 30% of survivors may develop severe disability
and delayed neurological dysfunction due to complications such as delayed cerebral ischemia
(DCI) and rebleeding (3). The progression of aSAH is individualized and rapid, so accurate risk
stratification and prognosis prediction is challenging (4). A growing body of research has found
that neuroinflammation and immune disorders after aSAH may play an important role in both
early brain injury (EBI) and delayed neurological injury (5). Neutrophils and lymphocytes are
vital inflammatory cells and participate in many pathogenic processes (6), such as endothelial
injury, blood–brain barrier (BBB) destruction, microcirculation disturbance, and vasospasm (7).
The dynamics of inflammatory cells and cytokines in the periphery can also contribute to systemic
inflammatory response syndrome (SIRS) (8) and immunosuppression (9), which can perhaps
increase the risk of infection (10).
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The neutrophils-to-lymphocyte ratio (NLR) is a parameter
that reflects inflammation and is regarded as a predictor of
cardiovascular disease, pancreatitis, tumors, and other diseases
(11). At present, several studies have shown that an increase in the
NLR can predict adverse outcomes in patients with intracerebral
hemorrhage (ICH) (12, 13). Because aSAH has a disease model
similar to that of intracranial hemorrhage (14), the NLRmay have
the potential to assist in the prediction of the prognosis of aSAH.

The purpose of this review is to summarize existing evidence
on the relationship between the NLR and aSAH and evaluate
whether the NLR can be used to predict outcomes and as an
effective biomarker for clinical management.Wewill also provide
important insights into the underlying pathophysiological
mechanisms and discuss the limitations of the current studies to
make recommendations for future research.

PATHOPHYSIOLOGICAL MECHANISM

Neuroinflammation in aSAH
After aneurysm rupture, the blood enters the subarachnoid space
and spreads to the brain through the cerebrospinal fluid (CSF).
Erythrocytes degrade and release many bioactive and potentially
toxic molecules (15), destroying blood vessels and initiating
an inflammatory cascade reaction (16). Inflammation regulated
by complex pathways plays a pivotal role in both neurological
impairment and destruction (17). Microglia are resident immune
cells in the central nervous system (CNS) and react rapidly
to inflammation-associated neurological injuries (18). When
activated by toll-like receptor 4 (TLR4), microglia switch to a pro-
inflammatory phenotype (M1) and secrete a large number of pro-
inflammatory chemokines and cytokines, such as interleukin-6
(IL-6), interleukin-1β (IL-1β) (19), tumor necrosis factor-alpha
(TNF-α), and nitric oxide (NO) (20). These inflammatory factors
can increase the expression of specific cell adhesion molecules
(CAMs) on the luminal surface of endothelial cells (ECs), recruit
macrophages and neutrophils to bind ECs, and enter the CNS
(21). After migrating to the subarachnoid space, neutrophils are
essential in clearing extravascular hemoglobin through the Hp–
Hgb complex, and this process is a response to hemorrhage that
promotes neural stability and recovery (22, 23).

The acute neuroinflammatory response influences delayed
events such as rebleeding and DCI after aSAH (24, 25). The
recruitment of neutrophils and lymphocytes damages the blood
vessel wall, resulting in the thinning of the aneurysm wall and
coagulation dysfunction (26, 27). Recent studies have highlighted
the role of the neuroinflammation of the microvasculature
in DCI (28). Inflammation disrupts the balance between
endogenous vasodilators and vasoconstrictors, especially the

Abbreviations: aSAH, aneurysmal subarachnoid hemorrhage; NLR, neutrophil-

to-lymphocyte ratio; EBI, early brain injury; DCI, delayed cerebral ischemia;

BBB, blood–brain barrier; SIRS, systemic inflammatory response syndrome; CSF,

cerebrospinal fluid; CNS, central nervous system; TLR4, toll-like receptor 4; IL-

6, interleukin-6; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-alpha; NO,

nitric oxide; CAMs, cell adhesion molecules; MMP-9, matrix metalloproteinase-9;

PSGL-1, P-selectin glycoprotein ligand-1; MPO, myeloperoxidase; mRS, Modified

Rankin Scale; ANS, autonomic nervous system; SNS, sympathetic nervous system;

HPA, hypothalamic–pituitary–adrenal.

production of NO and endothelin-1 (29). This imbalance
can increase lipid peroxidation of the cell membrane and
direct oxidative stress in smooth muscle cells (30), causing
microperfusion disorders and cerebral ischemic infarction (31).
The interaction of neutrophils with platelets and vascular
endothelium has also been demonstrated (32). Some clinical
evidence shows that the increase of neutrophils in CSF indicates
vascular injury and may be an independent predictor of
vasospasm, indicating the risk of DCI (33, 34). Further studies
have found additional pathogenic mechanisms, such as EBI and
apoptosis, destruction of the BBB (35), micro thromboembolism
(36), and cortical diffuse depolarization (37), which are more or
less linked to inflammation.

Neutrophils and SIRS in aSAH
Neutrophils migrate to the damaged brain tissue at the
earliest stage and reach a peak in the early stage (24–
48 h) (38). Neutrophils interact with activated ECs and
play an important role in aggravating the inflammatory
response, leading to the destruction of the BBB, brain edema,
hypoperfusion, and nerve cell injury (39). Targeting neutrophil
function could mitigate cerebral hypoperfusion (40, 41),
and inhibition of neutrophil–endothelial interactions markedly
decreased neuronal cell death and reduced secondary brain
injury (42). The mechanism pathway involves inflammatory
factors released by neutrophils, such as reactive oxygen
species, cathepsin (43), matrix metalloproteinase-9 (MMP-9),
and myeloperoxidase (MPO) (44). Neutrophils show significant
procoagulant effects and aggravate the disturbance of the
microcirculation (45).

The activation of inflammation and an increase in neutrophils
also occur in the peripheral immune system (46, 47). The
interruption of the BBB or the CSF drainage system may
serve as a communication channel for inflammatory factors
(48, 49). The peripheral activation of innate immune cells after
aSAH is regulated by the sympathetic nervous system (SNS)
and the hypothalamic–pituitary–adrenal (HPA) axis (50, 51).
These changes in the peripheral inflammatory status and the
resulting symptoms may manifest as SIRS (52). The occurrence
of SIRS with common characteristics, like body temperature,
heart rate, blood pressure, leukocytosis, and platelet activation,
usually leads to continuous tissue hypoperfusion and damage
to microcirculatory blood flow (53, 54). In return, systemic
hyperinflammation provoked by maladaptive innate immunity
may activate innate immune signaling pathways in the CNS,
increasing BBB destruction (55).

Lymphocytes and Immunosuppression
Adaptive immunity is active in both the CSF and periphery
after aSAH (56). Lymphocytes are found in the CNS after
aSAH and are mainly involved in the protective mechanism
against brain injury (57). Tregs play a key role in the
elimination of inflammation and are the main brain-protective
immunomodulator (58, 59). Tregs can reduce the inflammatory
response by blocking the activation of the TLR4/nuclear factor-
kappa B (NF-κB) signaling pathway, inducing the transformation
of microglia toward a more favorable M2-like phenotype

Frontiers in Neurology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 671098

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cai et al. Role of NLR in aSAH

inhibiting the effect of neutrophil-derived MMP-9 to protect
the integrity of the BBB and EC function (60, 61). The potent
homeostatic function of Tregs in the peripheral immune system
involves the inhibition of early immune overactivation that may
result in an exhausted immune phenotype (62). In contrast,
Th17 cells promote the inflammatory response (63) and are an
important source of pro-inflammatory cytokines to aggravate
brain injury (64).

A decrease in the total number of lymphocytes, especially
Tregs, is found in aSAH patients (65). The profound loss of
lymphocytes and the reduction of their activation are defined
as pathophysiological immunosuppression, which is a long-
lasting state that can last for several weeks and has a complex
mechanism. The autonomic nervous system (ANS) and the SNS
affect immune responses in the periphery and play a major role in
immunosuppression (66). The stress response induced by injury
activates the HPA axis and also leads to deficiency in the early
activation of lymphocytes (67). Neutrophils release arginase 1
(ARG1), resulting in T-lymphocyte suppression in peripheral
blood (68). Immunosuppression is also associated with changes
in related cytokines released by lymphocytes, such as decreases in
interferon-gamma (INF-γ) and interleukin-10 (IL-10) (69, 70).
Lymphocytes are crucial for host defense against pathogens,
and apparently, concomitant immunosuppression can increase
vulnerability to systemic infection (71).

CLINICAL EVIDENCE

We reviewed relevant studies that associate NLR with aSAH
to evaluate whether the NLR could serve as a biomarker to
predict outcomes and be used as an effective biomarker for
clinical management. A total of 11 studies assessed short- or
long-term clinical outcomes according to the Modified Rankin
Scale (mRS), early neurological deterioration, mortality, the
occurrence of DCI, and other parameters. The synopses of
the studies include the primary endpoint, inclusion criteria,
and exclusion criteria, which are summarized in Table 1. The
main characteristics of the patients enrolled in the studies are
summarized in Table 2. The main conclusions are summarized
in Table 3.

Prediction of Adverse Clinical Outcomes
The relationship between the NLR and unfavorable clinical
outcomes was investigated in a retrospective cohort study. Giede-
Jeppe et al. described 319 patients in a tertiary inpatient center
in Germany and recorded the mRS score at 3 and 12 months.
It was found that the NLR value of patients with an unfavorable
prognosis was significantly increased. After adjustment, the
NLR remained an important factor in predicting unfavorable
outcomes in patients. Through receiver operating characteristic
(ROC) analysis, an NLR ≥7.05 was determined as the best
cutoff value to predict unfavorable outcomes, which indicated
an mRS score of 3–6 after 3 months (75). Wang et al. also
found that there was a positive correlation between the NLR
and the Hunt–Hess grade and that the NLR could predict the
adverse outcomes of patients with an mRS score of 3–5 after
3 months (73). In a study that included 247 patients, the NLR

was proven to be an independent predictor of adverse outcomes
after 3 months, with a sensitivity of 74.5% and a specificity of
69.3% (81).

The NLR was also an independent marker of mortality in
patients with aSAH. Huang et al. found that the increase in
the NLR in intensive care unit (ICU) patients was significantly
associated with hospital mortality and 1-year mortality (80).
Jamali et al. found that the NLR value of patients who died
in the hospital was significantly higher than that of surviving
patients, and the in-hospital mortality rate of patients with an
NLR ≥12.5 increased significantly. In this study, the effects of
the absolute neutrophil count and absolute lymphocyte count
on mortality were compared separately, and the results showed
that there was no difference (72). Yilmaz et al. also found that
the NLR was associated with the Fisher score and mortality and
was a simple indicator of aSAH patient severity and short-term
mortality (79).

Prediction of the Risk of Complications
The main complications of aSAH are DCI and rebleeding,
which are common clinically and cause severe disability and
delayed neurological dysfunction. A single-center, prospective,
observational cohort study of 1,067 patients at Columbia
University Medical Center demonstrated that the NLR on
admission could predict the occurrence of DCI. They found
that in the multivariate model, an increased NLR was associated
with a poor Hess grade on admission, Caucasian race, the
location of the anterior aneurysm, loss of consciousness
at onset, and an increased bleeding volume (Fisher ≥

3). After controlling for known predictors such as age,
poor clinical grade on admission, bleeding volume, and
mean arterial pressure on admission, the admission NLR
could predict the occurrence of DCI, and an NLR ≥5.9
on admission predicted a 2-fold increase in the risk of
DCI (74).

Wu et al. also found that the NLR may be a practical
index to predict the occurrence of DCI in aSAH patients. They
studied 122 patients, and 43 of them developed DCI during
hospitalization and had an increased white blood cell count,
neutrophil count, and NLR and a lower lymphocyte count.
The NLR value was the most predictive variable among the
four variables, and the best predictive value was 11.47. The
sensitivity and specificity were 58.1 and 82.3%, respectively (77).
The findings of Tao et al. also supported these results, as they
found that an increased NLR was an independent factor that
predicted the occurrence of DCI, with a sensitivity of 87.3% and a
specificity of 48.4% (81). Ray et al. carried out further studies on
the dynamics of the NLR and found that NLR trends showed a
significant initial decline followed by a gradual rise among those
without DCI, whereas the NLR was persistently low in those
patients that developed DCI in an early immune-depressed state
after aSAH (76).

The relationship between the NLR and rebleeding was
proven as well. In a study that included 716 patients with
aSAH, rebleeding occurred in 4.19% of patients. Univariate
analysis showed that the NLR in patients with rebleeding was
significantly higher than that in patients without rebleeding.
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TABLE 1 | Synopsis of the studies.

References Inclusion criteria Exclusion criteria Primary endpoint

Jamali et al. (72) Patients (≥18 years) with a diagnosis of

SAH

Preexisting immunocompromised state,

autoimmune disorders, hematologic disorders, and

malignancies

Overall inpatient mortality; incidence of

pneumonia during hospitalization

Wang et al. (73) Patients with a diagnosis of SAH and

rebleeding confirmed by CT. CTA or DSA

was used to verify the presence of the

intracranial aneurysm

The patients presented with other cerebrovascular

diseases and intracranial tumors; multiple

intracranial aneurysms; a malignant tumor;

leukemia; hemolytic anemia; antiplatelet or

anticoagulant-associated ICH; with pneumonia

within 72 h following SAH

Rebleeding within 72 h following aSAH; 3

months outcome (favorable: mRS score

0–2; poor: mRS score 3–5)

Al-Mufti et al.

(74)

Patients (≥18 years) with a diagnosis of

SAH verified by admission CTA and DSA

SAH secondary to perimesencephalic bleeds,

related to trauma, rupture of an arteriovenous

malformation, or other causes

DCI (focal neurological impairment or a

decrease in at least two points on GCS);

poor outcome (death or moderate to

severe disability: unable to walk or tend to

bodily needs, mRS score of 4–6)

Giede-Jeppe

et al. (75)

Patients with a diagnosis of SAH verified

by admission CTA and DSA

Missing outcome data and missing NLR levels,

patients suffering from infections

3 months outcome (favorable: mRS score

0–2; unfavorable: mRS score 3–6) and

mortality; 12 months outcome and

mortality; in-hospital complications

Ray et al. (76) Patients with a diagnosis of SAH verified

by admission CTA and DSA

Patients without appropriate CT scans, lost to

follow-up or revoked consent; in-hospital death

1 year outcome (mRS score of 3–6, MoCA

< 26), DCI (a new hypodensity on CT

and/or associated symptoms)

Wu et al. (77) Patients with a diagnosis of SAH, verified

by CT, received standard medical

treatment

Patients with traumatic SAH, recent infectious

diseases, and prior neurological conditions,

including ischemic stroke, hemorrhagic stroke, or

brain trauma

DCI (focal impairment or a decrease of at

least 2 points on the GCS, without other

causes)

Ogden et al. (78) Patients (≥16 years) admitted to the

emergency room and diagnosed with SAH

on CT and then treated in the ICU

Patients whose data were incomplete, with head

and general body trauma and with spontaneous

intracerebral hematoma which drained into the

ventricle

N/A

Yilmaz et al. (79) Patients diagnosed as SAH by CT, MRI,

and CTA

Patients with endocrinologic disorders, hematologic

and rheumatologic diseases, malignancy, history of

autoimmune diseases, immunosuppressive drug

intake, acute or chronic infection, use of

antiaggregant, anticoagulants, or analgesics

In-hospital mortality

Huang et al. (80) Patients (≥15 years) with a diagnosis of

SAH verified by ICD9*

Patients who have been previously admitted to ICU

were excluded

Hospital death; 1 year mortality

Tao et al. (81) Patients (≥18 years) with a first aSAH

confirmed by DSA; received aneurysm

repair treatment within 72 h after

admission; initial blood sampling for

laboratory test including NLR/PLR was

limited within 24 h after ictus of

hemorrhage

Patients with acute or chronic infection, history of

autoimmune disease, previous stroke and recent

cardiocerebrovascular disease, previous use of

anticoagulant/antiplatelet medication, suffered

aneurysm rebleeding before surgery and declined

surgical intervention, other prior systemic diseases

DCI (a decrease of at least 2 points on the

GCS) and 3 months outcome (poor: mRS

score of ≥3)

Zhang et al. (82) Patients (≥18 years) had an acute

headache attack and underwent CT

Patients with acute or chronic inflammatory

diseases, hematological diseases, cancers,

autoimmune diseases, hepatic or renal insufficiency,

cerebral hemorrhage, acute ischemic stroke or

other trauma diseases, and patients whose clinical

data were incomplete

Neutrophil, NLR, and PLR in SAH and

non-traumatic acute headache

*ICD9: code = 430 and sequence = 1 on MIMIC II database.

SAH, subarachnoid hemorrhage; aSAH, aneurysmal SAH; CT, computed tomography; CTA, CT angiography; DSA, digital subtraction angiography; ICH, intracerebral hemorrhage;

mRS, Modified Rankin Scale; DCI, delayed cerebral ischemia; GCS, Glasgow Coma Scale; NLR, neutrophil-to-lymphocyte ratio; MoCA, Montreal cognitive assessment; ICU, intensive

care unit; PLR, platelet-to-lymphocyte ratio.

In the multivariate analysis, the NLR and Fisher grade were
risk factors for rebleeding. An increased NLR predicted the
occurrence of rebleeding and poor prognosis after aSAH. In
addition, a model combining the NLR and the Fisher grade was
more valuable for predicting rebleeding than a single NLR or
Fisher rating model, with a specificity of 100% (73).

PRACTICE PROSPECTS

Prediction of Outcomes
The mortality rate of aSAH is quite high, and survivors

are typically left with prolonged functional impairments, but

accurate estimation of the prognosis of aSAH patients has been
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TABLE 2 | Characteristics of the included patients.

References Patients,

number

Age, years Female, % Clinical severity NLR values Time onset to

sample

***Jamali et al.

(72)

44 52 ± 12 vs. 59 ± 19 21 (66%) vs. 6

(50%)

GCS: 13 ± 3 vs. 5 ± 4;

FG: 3.59 ± 0.67 vs. 3.75 ±

0.62

11.53 vs. 17.85 <24 h

**Wang et al. (73) 716 52.23 ± 12.74 vs.

54.99 ± 11.59

14 (46%) vs. 437

(64%)

HHG > 3, 8 (26.7%) vs. 107

(15.6%); FG > 2, 22 (73.3%)

vs. 287 (41.8%)

11.27 (6.31–16.19) vs. 5.50

(2.71–10.64)

16 (7.25–20) vs.

14 (8.0–17)

Al-Mufti et al.

(74)

1,067 Age > 53, 589

(55%)

731 (69%) HHG ≥ 3, 645 (61%);

GCS < 8, 301 (29%)

NLR ≥ 5.9, 768 (72%) <24 h

*Giede-Jeppe

et al. (75)

319 51 (43–59) vs. 57

(49–70)

104 (65.8%) vs.

117 (72.7%)

HHS: 2 (1–3) vs. 4 (2–5);

GCS: 15 (13–15) vs. 9 (3–13);

WFNS: 1 (1–2) vs. 4 (2–5)

5.8 (3.0–10.0) vs. 8.3

(4.5–12.6)

Admission

Ray et al. (76) 44 54.7 ± 12.8 31 (70.5%) HHG > 3, 8 (28.2%);

FG > 2, 29 (65.9%);

WFNS > 3, 17 (38.6%)

#-0.78 (−1.42, −0.13) vs.

−1.13 (−1.47, −0.78)

N/A

Wu et al. (77) 122 55.3 ± 10.6 48 (39.3%) HHS > 3, 4 (19.7%);

FG > 2, 109 (89.3%)

10.7 ± 8.2 <72 h

Ogden et al. (78) 54 58.50 ± 16.52 24 (44.4%) ##GSC: 15 ± 3.64 vs. 12 ±

3.41 vs. 10 ± 5.09;

FG: 3 ± 0.79 vs. 4 ± 0.78 vs.

2 ± 0.63

##7.71 ± 13.49 vs. 11.07 ±

7.86 vs. 2.51 ± 8.71

N/A

Yilmaz et al. (79) 152 52.94 ± 17.04 94 (61.8%) ###FG: 4 (1–4) vs. 3 (1–4) ###8.48 (0.1–54.8) vs. 3.56

(0.46–32.9)

<24 h

Huang et al. (80) 274 59 ± 16 164 (59.9%) SAPS: 12.5 ± 5.6 8.7 ± 9.2 N/A

Zhang et al. (82) 54 56.91 ± 13.45 38 (70.4%) N/A 9.88 ± 7.68 <24 h

*3 months mRS score: 0–2 (n = 158) vs. 3–6 (n = 161). **Rebleed group (n = 30) vs. non-rebleed group (n = 686). ***Alive group (n = 32) vs. dead group (n = 12); #DCI (n = 27) vs. no

DCI (n = 13). Data show 95% confidence interval. ##Patients with angiography of negative spontaneous (n = 20) vs. patients with SAH originating from anterior communicating artery

aneurysm (n = 18) vs. patients with traumatic SAH (n = 16). ###Aneurysmal (n = 99) vs. non-aneurysmal SAH (n = 53).

Data are mean or mean ± standard deviation, median (interquartile range), and number of patients (%), unless otherwise indicated.

NLR, neutrophil-to-lymphocyte ratio; GCS, Glasgow Coma Scale; FG, Fisher grade; HHG, Hunt–Hess grade; WFNS, World Federation of Neurosurgical Societies grade; SAPS, simplified

acute physiology score; DCI, delayed cerebral ischemia; SAH, subarachnoid hemorrhage.

challenging (83). At present, the most important prognostic
determinants for the aSAH outcome are the neurological
grade on initial examination, radiographic results, and age
(84, 85). However, subjective differences are inevitable in
using the grading scales (86), and the sensitivity of the
radiograph depends on the time interval between symptom
occurrence and image acquisition (87). Researchers are hard-
pressed to find new, feasible, and accurate evaluation and
prediction methods.

Severe subarachnoid hemorrhage is associated with the strong
early inflammatory response (88), and the most direct and
easily observed result is the change in peripheral inflammatory
biomarkers, such as the neutrophil and lymphocyte counts (89,
90). In general, an increase in neutrophils in peripheral blood is
a manifestation of inflammation in the CNS and may be related
to the development of extracerebral organ immune dysfunction.
And SIRS associated with neutrophils is also related to poor
clinical grade and independently predicts poor outcomes (91). A
decrease in lymphocytes suggests the loss of neuroprotection and
the impairment of native immunity with immunosuppression in
the periphery (92). Therefore, NLR is a peripheral biomarker that
conveys information about the inflammatory burden in terms of
both innate and adaptive immunity and may fill the current lack
of prognosis prediction.

It is understood that NLR is easy to utilize clinically without
additional costs. As a ratio, the NLR remains more reliable and
stable than a single blood parameter and is not affected by factors
such as dehydration, overhydration, and blood sample treatment
(93, 94). In addition, the NLR is more specific, multidimensional,
and sensitive when slight changes in the inflammatory status of
patients are difficult to detect (95). In conjunction with imaging
results and the neurological grade, the NLR is of great value
for the risk stratification process and the guidance of early
prevention (96).

Prediction of Rebleeding, DCI, and
Infection
The complications of aSAH include rebleeding, DCI,
hydrocephalus, increased intracranial pressure, and seizures
(97). Previous studies have highlighted rebleeding and DCI,
which contribute to high rates of disability and neurological
dysfunction in survivors and are independent predictors of
unfavorable outcomes (98). Rebleeding events are defined as
a new hemorrhage apparent on repeat computed tomography
(CT) with or without new symptoms and are viewed as the
cerebrovascular equivalent of a second hit (99, 100). One of
the causes of adverse clinical outcomes is the delayed diagnosis
and treatment of rebleeding (101, 102). There is no sensitive
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TABLE 3 | Synthesis of the main findings.

References Main findings

Jamali et al. (72) NLR ≥ 12.5 at admission predicts higher inpatient mortality in patients with aSAH.

Wang et al. (73) Higher NLR predicts the occurrence of rebleeding and poor outcome at 3 months, and NLR combined with Fisher grade significantly

improves the prediction of rebleeding following aSAH. The AUC values of the NLR and combined NLR–Fisher grade model were

0.702 and 0.744 (sensitivity was 39.94%, and specificity was 100%), respectively, for predicting rebleeding. After PSM, the optimal

cutoff value for NLR as a predictor for rebleeding following aSAH was determined as 5.4 (sensitivity was 83.33%, and the specificity

was 63.33%).

Al-Mufti et al. (74) Admission NLR predicted development of DCI, a sensitivity of 63% and specificity of 53% for predicting DCI.

Giede-Jeppe et al. (75) NLR represents an independent parameter associated with unfavorable functional outcome for aSAH; an NLR of 7.05 was identified

as the best cutoff value to discriminate between favorable and unfavorable outcomes.

Ray et al. (76) NLR trends showed a significant initial decline among those without DCI, a gradual rise in those developing DCI, and an early

immune-depressed state after aSAH.

Wu et al. (77) NLR may be a practical predictor for the occurrence of DCI in SAH patients. NLR possessed the largest AUC. The best cutoff value

of NLR was 11.47. The sensitivity and specificity of NLR were 58.1 and 82.3%, respectively, for predicting DCI.

Ogden et al. (78) NLR could be predictive for etiological factors (traumatic SAH or spontaneous SAH) of patients who were admitted unconscious to

the emergency room with SAH detected on radiological imaging. An NLR <4.17 was 81% sensitive and 75% specific in

discriminating traumatic SAH patients from angiography-negative SAH patients, indicating that this hemorrhage might be traumatic;

An NLR <3.62 was 81.3% sensitive and 83.3% specific in discriminating traumatic SAH patients from aneurysmal SAH patients,

indicating that this hemorrhage might be traumatic

Yilmaz et al. (79) Higher NLR values were significantly related to mortality rates.

Huang et al. (80) NLRs were significantly associated with hospital death, and higher 1 year mortality

Tao et al. (81) NLR is independently related to DCI and functional outcome at 3 months after aneurysm repair. The combination of NLR and PLR

showed a better predictive value than each alone for DCI and poor outcome

Zhang et al. (82) NLR was a useful and potential tool in distinguishing between SAH and non-traumatic acute headache. The best cutoff value of NLR

was 4. The sensitivity and specificity of NLR were 98.59 and 64.81%, respectively, for distinguishing patients with SAH from those

with non-traumatic acute headache.

NLR, neutrophil-to-lymphocyte ratio; aSAH, aneurysmal subarachnoid hemorrhage; AUC, area under curve; PSM, propensity score matching; DCI, delayed cerebral ischemia.

and facile prediction method for prioritizing early treatment,
such as early or ultra-early aneurysm repair and the use of
antifibrinolytic drugs (103, 104). The NLR has been shown to
predict the occurrence of rebleeding, which may be explained by
the mechanism that neutrophil recruitment changes the stability
of the ruptured aneurysm wall (73, 105). The present study
on the NLR and rebleeding is limited but indicates potential
predictors and new strategies for addressing neuroinflammation
in rebleeding.

DCI generally occurs within 2 weeks after subarachnoid
hemorrhage and is caused by cerebral perfusion defects (106),
resulting in the deterioration of neurological function and a
dramatically decreased quality of life in most survivors (107).
The challenge is how to predict the occurrence of DCI and
then formulate effective preventive strategies to reverse the
development of DCI in advance (108). At present, four clinical
studies have proven that the NLR is an independent prognostic
factor for the occurrence of DCI with strong sensitivity and
specificity (74, 76, 77, 81). This implies that the NLR is promising
as a new predictor for DCI to help classify patients and direct
preventive treatment to those who are most likely to benefit.

Increasing evidence shows that immune system disorders
after aSAH and the risk of infection are increased (109).
Immunosuppression induced by a significant decrease in
peripheral lymphocytes is perhaps the vital reason for the
increased risk of infection, especially in critically ill patients
(110). Patients with SIRS also tend to become infected (111).

Within 24 h after aSAH, an increase in the NLR may indicate the
occurrence of intense early inflammation, which could develop
into a strong late inflammatory response (112). Patients with
a high NLR are more likely to develop pneumonia during
hospitalization (113), and an NLR ≥5.9 is associated with
pulmonary edema and high fever (74). The average number of
neutrophils in patients with pneumonia is significantly increased
(72). In particular, patients with DCI have a higher NLR and are
more likely to be infected at a later stage (76). The NLR is an
accessible indicator to evaluate immunity status and infection
risk and can help adjust treatment strategies for preventing
postoperative infectious complications (114).

Other Roles of the NLR and Implications
for Future Research
Further study could focus on the comparison of the role of
neutrophils and lymphocytes in different neurological diseases.
Current studies have shown that NLR is associated with a
variety of diseases, such as ischemic stroke, other ICH (115),
and traumatic brain injury. A number of studies have shown
that NLR was predictive of short-term functional outcome
in acute ischemic stroke (AIS) (116). A high NLR was also
found to be an independent predictor for the complications
following AIS including cerebral edema (117), hemorrhagic
transformation after ischemia (118), and the development of ICH
after endovascular treatment (119).
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Neuroinflammation is prevalent in these conditions and
plays with similar mechanisms. In the early stage of both SAH
and AIS, the activation of microglia by neutrophil is vital for
following cascade of inflammation, with similar inflammatory
mediators and pathways (120). Moreover, Tregs also play a
major role in immunomodulatory function and neuroprotection
after AIS (121). Valuable findings and breakthroughs may
occur through comparing the similarities and differences
of pathophysiological mechanisms about neuroinflammation
among these medical conditions.

Furthermore, systematic and quantitative analyses of relevant
clinical studies are needed to explore different levels and trends
of NLR in multiple diseases, which could develop potential and
guiding clinical applications. Ogden et al. studied patients in the
neonatal intensive care unit (NICU) and found that the NLR
was higher in aSAH than in traumatic subarachnoid hemorrhage
(78). Eryigit et al. also found that the NLR can be used in
distinguishing aSAH and migraine, with different levels and
changes of NLR (122). The different cutoff values may be useful
in specific classifications for etiologies.

NLR is proven to be a useful and potential tool in
distinguishing between aSAH and SAH of other etiologies (82).
The potential mechanism may be that neuroinflammation plays
a significant role during the formation and rupture of cerebral
aneurysms (123). Neutrophil infiltration and pro-inflammatory
cytokine overexpression cause thinning of the aneurysm wall and
coagulation dysfunction (124, 125). However, the hypothesis that
the NLR may be used as an early warning index before aneurysm
rupture requires more exploration regarding the pathology of
aneurysm progression and neuroinflammation.

It is encouraging that combining the NLR with other
indicators can enhance the predictive value. The combined NLR–
Fisher score model significantly improves the ability to predict
the outcome of aSAH with higher sensitivity and specificity (74).
Combining the NLR with the platelet-to-lymphocyte ratio (PLR)
is more sensitive for aSAH than either indicator alone (81, 126).
The prognosis of neurological diseases is affected by a number of
factors, and combining NLR with other potential indicators may
be a potential way to improve the prediction accuracy and clinical
value of NLR. Lattanzi et al. found that the accuracy of outcome
prediction in acute ICH would increase when NLR combined
with the modified ICH score (127). NLR combined with patient
characteristics like gender, a history of hypertension, diabetes
mellitus, and smoking could present high diagnostic accuracy in
ischemic stroke (128, 129). NLR combined with PLR was also
found to be more meaningful in the early clinical detection of
post-stroke depression than either alone (130).

Further studies may focus on the application of the NLR
as a new potential target for developing novel therapeutic
strategies (131). Neutrophils and lymphocytes show the potential
to have substantial beneficial effects. Preclinical studies have
shown that selective limitation of neutrophil activity can
reduce neuroinflammation and neuronal apoptosis, eventually
protecting the microcirculation and improving prognosis (132).
Therapeutic strategies for T lymphocytes, such as the use of
cyclosporine, have also been shown to be effective in some studies
(133, 134). Many studies have evaluated drugs aimed at inhibiting

inflammation, but the results have beenmixed and not as obvious
as originally hoped (135). It is not advisable to inhibit overall
inflammation, and immunomodulatory methods should aim to
block harmful effects selectively rather than functioning as an
extensive, non-selective anti-inflammatory therapy (136, 137).
Future treatment strategies should focus on subtle regulation of
the immune response, which requires the precise assessment of
inflammation, and the NLR may be a promising index for this.

LIMITATION

There are many areas of uncertainty regarding the evaluation of
the NLR as a prognostic marker in aSAH and new therapeutic
targets. To some extent, the conclusions of clinical studies may
overestimate the causality and clinical correlation between the
NLR and aSAH, for the existence of confounding factors is
inevitable (138). In addition, the admission criteria of studies are
not harmonized or standardized, and some are not strict enough.
Moreover, the sampling time of all studies is at the time of
admission, which ignores the fact that theNLR is a dynamic index
(23, 139). The current research can only prove the predictive role
of the NLR on admission; a further prospective study is needed to
provide time trend data to explore the overall dynamic changes.

Undoubtedly, further multicenter, large-sample, prospective,
standardized evaluation studies are needed to confirm the
detailedmechanisms and causal link between theNLR and aSAH.
Additionally, all candidate biomarkers and molecules in the
upstream pathways should be further explored for the detection
of target antigens that link central and peripheral inflammation
and to help identify other new targets (140).

CONCLUSIONS

Present studies have demonstrated that NLR may be useful
for predicting clinical outcome and the risk of complications
in patients with aSAH. And the underlying pathophysiology
mechanism of neuroinflammation is highlighted to further
support this conclusion. However, NLR may present an
insufficient specificity when it plays a predictive role in a
variety of medical conditions. Combining NLR with other
relevant prognosis factors may be a potential way to improve
the predictive ability and clinical value of NLR. Despite the
complexities of neuroinflammation and deficiency of present
studies, modulating levels of neutrophils and lymphocytes
and relevant signal transduction pathways could be a clinical
therapeutic intervention in aSAH.
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