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Organic matter constitutes a key reservoir in global elemental
cycles. However, our understanding of the dynamics of organic
matter and its accumulation remains incomplete. Seemingly dis-
parate hypotheses have been proposed to explain organic matter
accumulation: the slow degradation of intrinsically recalcitrant
substrates, the depletion to concentrations that inhibit microbial
consumption, and a dependency on the consumption capabili-
ties of nearby microbial populations. Here, using a mechanistic
model, we develop a theoretical framework that explains how
organic matter predictably accumulates in natural environments
due to biochemical, ecological, and environmental factors. Our
framework subsumes the previous hypotheses. Changes in the
microbial community or the environment can move a class of
organic matter from a state of functional recalcitrance to a state
of depletion by microbial consumers. The model explains the
vertical profile of dissolved organic carbon in the ocean and con-
nects microbial activity at subannual timescales to organic matter
turnover at millennial timescales. The threshold behavior of the
model implies that organic matter accumulation may respond
nonlinearly to changes in temperature and other factors, provid-
ing hypotheses for the observed correlations between organic
carbon reservoirs and temperature in past earth climates.

organic matter | microbial ecology | carbon cycling

Heterotrophic organisms consume organic matter (OM) for
both energy and biomass synthesis. Their activities trans-

form much of it back into the inorganic nutrients that fuel pri-
mary production. Residual OM accumulates as large reservoirs
in the ocean, sediments, and soils. Together, these pools store
about five times more carbon than the atmosphere and play a
central role in global biogeochemistry (1). Therefore, the dynam-
ics of OM cycling and accumulation are key to understanding
how the carbon cycle changes with climate (1–3).

Standing stocks of OM comprise a heterogeneous mix of thou-
sands of compounds, many of which are uncharacterized, with
concentrations ranging over several orders of magnitude (4–
7). Compounds are often conceptually described in terms of a
degree of “lability” that correlates with consumption rates, such
that labile compounds have low abundances and short residence
times in the environment (8, 9). In most biogeochemical models,
OM degradation is dictated by simple rate constants, rather than
explicit consumption by dynamic microbial communities (10, 11).
Though significant progress has been made on integrating OM
cycling with microbial community dynamics (12–17), we still lack
a mechanistic understanding of the ecological controls on OM
and its accumulation.

Dissolved OM (DOM) cycling in the ocean has been studied
for many decades, making this reservoir ideal for developing a
mechanistic framework for OM accumulation. Three hypotheses
have been invoked to explain DOM accumulation in the ocean:
1) “Recalcitrance”: Compounds may accumulate because they
are relatively slowly degraded or resistant to further degrada-
tion by microorganisms (8, 9, 18, 19). This is consistent with
observations, theory, and inferences of a wide range of con-
sumption rates and compound ages in the ocean (20–25), as
well as in sediments and soils (9–11, 26, 27). 2) “Dilution”: The
accumulation may represent the sum of low concentrations of
many organic compounds, each having been diluted by microbial

consumption to a minimum amount (28). This is supported by
evidence that concentrating apparently recalcitrant DOM from
the deep ocean fuels microbial growth (29). Modeling efforts
have reconciled observed carbon ages with this mechanism and
have interpreted the minimum concentrations as resource sub-
sistence concentrations—the minimum concentrations to which
populations can deplete their required resources (17, 30). 3)
“Dependency on ecosystem properties”: The accumulation may
result from a mismatch between OM characteristics and the
metabolic capability of the proximal microbial community (e.g.,
the substrate specificity of enzymes) (31–34). For example, the
dispersal of microbial populations, which is controlled by the
connectivity of the environment and which may manifest as a
stochastic process (35), can allow for intermittent or sporadic
OM consumption events (32, 34). In soils and sediments, some
aspects of these hypotheses apply, while other processes also
influence the accumulation of OM, such as diverse redox con-
ditions and the physical and chemical dynamics of solid organic
particles and mineral matrices.

Here, we investigate why OM accumulates using a stochas-
tic model that simulates the complex dynamics of microbial OM
consumption. We find that the mechanisms underlying each of
the three above hypotheses come into play simultaneously in the
model. We develop a quantitative definition of functional recal-
citrance that depends on both the microbial community and the
environmental context, in addition to substrate characteristics.
We demonstrate the model’s ability to explain the accumula-
tion of DOM in the ocean. Furthermore, because it is grounded
in basic principles of microbial ecology, we suggest that this
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Fig. 1. Schematic of the OM consumption model. Multiple OM pools C and
microbial populations B are resolved. The parameter values dictating the
supply of each OM pool, the interaction between each pool and the micro-
bial population (uptake kinetics and yield), and the loss of biomass (to viral
lysis, grazing, senescence, and cell maintenance) are assigned stochastically.
Here, we show an illustrative example where the fluxes dictated by these
parameter values are represented with different widths of arrows. The sup-
ply and the presence or absence of each population vary stochastically over
time in the model according to assigned probabilities.

framework can also extend to soil and sediment environments.
Finally, the threshold behavior of the recalcitrance indicator
suggests nonlinear OM responses to changes in the environment.

A Mechanistic Model of OM Consumption. We develop a model
of OM consumption by microbial populations using established
forms of equations for microbial growth and respiration (12,
36, 37). The model resolves multiple pools of OM (n =1, 000)
that are supplied stochastically and consumed by one or more
microbial populations (n =1, 000 or 2, 000; Eqs. 4–6 and Fig. 1).
Stochastic supply captures the variable nature of the release
of organic compounds, which is a function of complex biologi-
cal dynamics (e.g., exudation, lysis, and grazing). We represent
the net impact of each complex OM–microbe interaction [e.g.,
hydrolysis, enzymatic rates, cellular allocation of enzyme, and
free energy released by OM oxidation (16, 32, 33, 38)] with a sim-
plified set of parameters: maximum uptake rate, half-saturation
concentration, and biomass yield (Materials and Methods). To
include the impact of variable community composition, we mod-
ulate the OM consumption by each population over time accord-
ing to its stochastically assigned probability of presence. We vary
the degree of “specialists” (consuming a single OM pool) vs.
“generalists” (consuming multiple OM pools), incorporating a
penalty that increases with the number of pools consumed to rep-
resent a tradeoff among the strategies. We vary both the number
of pools consumed by each population and the number of con-
sumers of each pool (Fig. 1; SI Appendix, Fig. S1). Population loss
rates are proportional to biomass according to both quadratic
and linear mortality parameters, simulating predation, viral lysis,
senescence, and maintenance demand.

Because we expect the values of these growth and mortal-
ity parameters to vary widely among organisms and substrates,
we sample all parameter values from uniform distributions over
wide, plausible ranges (Table 1; SI Appendix, SI Text 1). We
numerically integrate the equations forward in time, allowing
the concentrations of OM pools to emerge from the ecological
interactions. The dynamics presented here are robust across the
parameter space, variations in the model structure, and varia-
tions in the number of OM pools and populations (SI Appendix,
SI Text 2 and 3 and Figs. S2–S7). Sequential transformation
of one OM pool to another due to incomplete oxidation gives
qualitatively similar solutions (SI Appendix, SI Text 2), although
this may increase compound age (17). We present results from
simulations integrated for 10 y (Fig. 2).

The solutions reveal a bimodal distribution of OM concentra-
tions (Fig. 2), implying a set of qualitatively distinct controls on

OM accumulation. Whether or not the bimodality is discernible
depends on the parameter distributions (SI Appendix, Fig. S13),
as well as other sources and sinks not included in the model
(e.g., photolysis). In the simple model, the majority of pools are
depleted to relatively low concentrations (10−4 to 1 µM C), while
a subset accumulates to substantially higher concentrations (0.1
to 10 µM C). The latter accumulated pools comprise the bulk of
total carbon content (Fig. 2B).

Diagnosing Functional Recalcitrance. We evaluate whether each
OM pool equilibrates or accumulates in the model. Equilibra-
tion indicates that the pool can sustain a microbial population in
the given environment, and we classify that pool as “functionally
labile.” Otherwise, the pool accumulates in the environment, and
we classify that pool as “functionally recalcitrant.” For example,
we describe the population dynamics of specialist population j ,
subsisting solely on OM pool i , as (Materials and Methods):

∂Bj (t)

∂t
=

(
Pj yijρ

max
ij

Ci(t)

Ci(t)+ kij
−Lj (t)

)
Bj (t), [1]

where Bj is the biomass, Pj is the probability of the presence
of population j , yij is the biomass yield, ρmax

ij is the maximum
uptake rate, kij is the half-saturation concentration for uptake,
Ci is the concentration of the OM pool, and Lj is the population-
loss rate, which varies as a function of the biomass (Eq. 6 and
Table 1). When the system is at or close to steady state ( ∂Bj (t)

∂t
≈

0), the concentration of pool i can be estimated as:

C ∗ij =
kij

Pj yij ρ
max
ij

Lj
− 1

, [2]

which is the subsistence concentration of OM pool i for spe-
cialist population j (30). For a pool with multiple competing
consumers, the concentration of that pool will be set by the pop-
ulation with the lowest subsistence concentration for that pool
(30). The population can then continue to consume the pool
in proportion to its supply while maintaining the subsistence
concentration (17, 30).

Table 1. Parameters and their distributions for the OM microbial
consumption model

Parameter Symbol Value (range) Units

Number of OM pools∗ n 1,000
Number of populations† m 1,000 and 2,000
Probability of presence P 0 to 1
Total OM supply (all pools) σT 0.1 µM·d−1

Potential supply (each pool) σ σT n−1 µM·d−1

Probability of supply q 0 to 1
Maximum specific uptake rate ρmax 10−2− 102‡ d−1

Half-saturation concentration k ρmax(100− 102)−1‡ µM
Yield (growth efficiency) y 0 to 0.5 mol·mol−1

Quadratic mortality rate mq 0.1 to 1 (µM·d)−1

Linear mortality rate ml 0 to 0.01 d−1

Loss rate L mqB+ml d−1

Parameter values are assigned stochastically according to uniform distri-
butions over the indicated ranges.
*Here, we illustrate two 10-member ensembles with 1,000 OM pools in each
individual model, giving a total of 104 pools per ensemble. See SI Appendix,
Fig. S3 for an individual model with 104 pools.
†The community consumption matrix dictates which populations consume
each pool (SI Appendix, Fig. S1). See SI Appendix, Figs. S4–S7 for variations,
including variations in the ratio of populations to pools from 2:1 to 1:1,000.
‡Varied over a log rather than a linear range.
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Fig. 2. Simulated concentrations from the stochastic OM consumption model. (A) The modeled OM concentrations C and associated diagnostic C∗, the
subsistence concentrations of the microbial consumers (Eq. 2 and SI Appendix, Eq. S18), against recalcitrance indicator Q (Eq. 3). The Q = 1 threshold (gray
dashed line) delineates the functionally recalcitrant (accumulating) and functionally labile (equilibrated) OM. We illustrate compiled results from two model
versions, each resolving 1,000 OM pools: one with only 1,000 specialist microbial populations, and one with the specialists and an additional 1,000 generalist
populations, which consume varying numbers of OM pools. We compile 10 simulations of each model version so that 10,000 OM concentrations underlie
the illustrated statistics. The red and light red dots indicate the binned means for the two compilations. The red and light red bars (for the model solutions)
and the light blue shaded area (for diagnostic C∗) indicate the 16th and 84th percentiles (equivalent to one SD for a Gaussian distribution). The gray
dots indicate the 20,000 individual OM concentrations from both compilations combined. (B) The normalized frequencies of the concentrations and their
contributions to total carbon in the model (for the version with both specialists and generalists). Frequencies are split at Q≈ 1 (cutoff at 1.01).

For the OM pool to equilibrate (C ∗ij > 0 in Eq. 2), the max-
imum rate of local biomass synthesis (Pj yijρ

max
ij ) must exceed

the biomass loss rate at steady state (Lj ). Using C ∗ij as a diagnos-
tic, and extending the expression to generalists that can consume
more than one OM pool (SI Appendix, Eqs. S17 and S18), we find
that many concentrations of the modeled pools precisely match
the minimum subsistence concentration among their consumers,
and thus have equilibrated (Fig. 2A; SI Appendix, Figs. S8 and
S9). Because these pools sustain microbial growth in this partic-
ular model environment, we consider these functionally labile.
These low concentrations are consistent with the measured
nanomolar or lower concentrations of known labile constituents
of marine DOM, such as free amino acids and glucose (4, 39).

Most of the pools that accumulate to higher concentrations
never equilibrate in the simple model. For these pools, the loss
rates of all consuming populations match or exceed their max-
imum biomass synthesis rates. We consider these pools to be
functionally recalcitrant. We can robustly define the threshold
where pools transition from being functionally labile (depleted
to C ∗ij ) to functionally recalcitrant (accumulating). We define a
recalcitrance indicator Qi for pool i as:

Qi =max
j

Pjρ
max
ij

Lj

yij +
∑
k

ykj
ρkj
ρij︸ ︷︷ ︸

impact of other pools


, [3]

where index k denotes a pool other than pool i consumed by gen-
eralist population j , and ρkj /ρij is the relative uptake of pool k to
pool i by population j (see SI Appendix, SI Text 4 for derivation).
For specialists, the term representing the impact of other pools
drops out of the equation. If Qi > 1, pool i is functionally labile:
At least one population can deplete it to its subsistence con-
centration given sufficient time, with the equilibration timescale
dictated by the associated growth and loss parameters. If Qi ≤ 1,
pool i is functionally recalcitrant, and it accumulates over time

in our model. Thus, Qi =1 serves as an emergent threshold
between functional lability and functional recalcitrance (Fig. 2).

The recalcitrance indicator Qi demonstrates how recalcitrance
is simultaneously governed by chemical, biological, ecologi-
cal, and environmental characteristics. In Eq. 3, an enzyme-
dependent substrate–microbe interaction i–j is captured by both
yij and ρmax

ij , which also reflect the energetic content and the
accessibility of the OM (40–42). The encounter probability of the
population with the OM pool (Pj ) and the biomass loss rate (Lj )
capture the ecological context—the diversity and abundances of
the local microbial populations, predators, and viruses. Many
factors control these processes, including selection and environ-
mental connectivity (35), which is shaped in part by physical
conditions such as circulation and sinking particles in the ocean
and porosity and diffusion in soils. Diversity and connectivity also
modulate the availability of other pools for uptake by generalists.
In Eq. 3, the uptake of an additional OM pool k by population
j can increase the population’s potential to deplete pool i (i.e.,
Qi increases). In other words, the ability of consumers of OM
pool i to consume other pools increases the functional lability of
pool i . This provides a mechanistic explanation for the observed
“priming effect,” in which the addition of other substrates allows
for the metabolization of a given pool (34, 43, 44).

In the environment, a functionally recalcitrant OM pool may
accumulate or diminish at a rate dependent on production, con-
sumption, and physical transport over time, or it can equilibrate
due to an abiotic, concentration-dependent sink such as photolysis
(8, 34). In the model version with many generalists, Qi reaches a
minimum of one (to within 1%) (Fig. 2A). WhenQi ≈ 1, pools are
unequilibrated and functionally recalcitrant, but consumption can
continue by consumers whose loss rates have dynamically adjusted
to approach their maximum biosynthesis rates.

Recalcitrance emerges as a community- and context-specific
phenomenon that can change in time and space (SI Appendix,
Fig. S10). Critically, the recalcitrance indicator for each OM
pool (Qi) is defined as the maximum of multiple population-
specific values (Eq. 3)—one for each population j that consumes
pool i . Consequently, whether each pool is functionally labile or
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recalcitrant depends on the local microbial community. For a
diverse community of consumers, we can analyze the fraction
of the community that experiences each pool as recalcitrant
(SI Appendix, Fig. S11). This community dependency implies
that, statistically, functional recalcitrance may be more promi-
nent when OM is exposed to a lower diversity of heterotrophic
microorganisms. This also implies that functional recalcitrance
may arise from the requirement for specialized enzymes or
expensive consumption pathways for some types of OM (45): If
specialization is required, there may be fewer possible consumers
overall, and so it becomes less likely that any one consumer is
present in the given environment. This is consistent with evi-
dence that specific heterotrophic clades consume carboxyl-rich
alicyclic molecules, which comprise a significant fraction (up to
8%) of marine DOC (6, 46).

Unification of Hypotheses. The three current hypotheses for
DOM accumulation in the ocean—recalcitrance, dilution, and
dependency on ecosystem properties—each explain aspects of
the total amount of carbon in the model. Additional processes,
such as mineral protection and diverse redox conditions of soils
and sediments, can also be incorporated into the framework to
modify it for these other systems. We may consider each hypoth-
esis individually as a limit case for the formation of large organic
carbon reservoirs in natural environments. Total organic car-
bon content is the sum of all OM pools. A traditional view
of recalcitrance, focused on intrinsic qualities of the substrate
or of the microbe–substrate-specific reaction, is represented in
the model by the biomass yield yij and maximum uptake rate
ρmax
ij . The quality of electron acceptor or mineral protection can

also be represented by these parameters. As yijρ
max
ij becomes

small, while other parameters remain constant, OM becomes
recalcitrant (Eq. 3), and the total organic carbon pool becomes
large. The number of OM pools n that are present can impact
total carbon in two opposing ways. As n increases, total carbon
increases, even for low, equilibrated subsistence concentrations
(the dilution hypothesis). However, the impact of other OM
pools (priming) means that as n increases, the likelihood of Qi >
1 increases, decreasing the likelihood of functional recalcitrance
and, thus, potentially decreasing total carbon. Dependency on
ecosystem properties is encapsulated in the population’s steady-
state loss rate Lj and probability of presence Pj . As Lj increases,
OM becomes recalcitrant, and total carbon increases. As the fre-
quency of nearby consumers decreases, Pj decreases, increasing
total carbon.

The degree to which each mechanism controls OM accumula-
tion in different environments therefore depends on the parame-
ter space that sets the population and OM characteristics. Here,
we assume uniform distributions for these parameters using plau-
sible ranges for the ocean (Table 1; SI Appendix, SI Text 1). These
ranges will vary with the environment. For example, if stochas-
ticity in population presence does not apply to a given sediment
ecosystem, then probability of presence P may be set to one for
analysis of that environment. The model is consistent with that
of ref. 17 in that intrinsic recalcitrance is not necessary for OM
accumulation in the ocean, as well as with experimental evidence
for dilution-limited consumption (SI Appendix, SI Text 5 and
Fig. S12) (29). Here, we provide a generalized framework that
encapsulates a more complete set of dynamics than in ref. 17—
one that is also consistent with evidence of recalcitrance (8, 18,
19) and the impact of the microbial community (31, 33, 34, 45,
46). The emergent distributions of OM degradation rates are con-
sistent with theory and observations that remineralization rates
are lognormally distributed over a wide range due to multiplica-
tive stochasticity in the underlying processes (27) (SI Appendix,
Fig. S13). They are also consistent with continuum intrinsic reac-
tivity models, which assume a wide distribution of rates (10, 11)
which tend toward lognormal distributions (47).

Predicting OM Accumulation Patterns. Our framework can help
explain large-scale patterns in OM accumulation. Here, we use
our model to understand the vertical structure of dissolved
organic carbon (DOC) in the ocean. Globally, DOC concen-
trations peak at the sea surface and approach a minimum at
depth (Fig. 3A) (8). Since the stochastic model is not practi-
cal for multidimensional biogeochemical models, we utilize a
reduced-complexity model analog that captures the essence of
the stochastic model, resolving 25 aggregate pools. We incor-
porate this model analog into a fully dynamic ecosystem model
of a stratified marine water column, where production and con-
sumption of all organic and inorganic pools are resolved mech-
anistically as the growth, respiration, and mortality of photoau-
totrophic and heterotrophic microbial populations (SI Appendix,
SI Text 6 and Fig. S14). The model is integrated for 6,000 y to
quasi-equilibrium (SI Appendix, SI Text 6).

Ecological interactions in the model result in characteristics
typical of a marine water column (Fig. 3; SI Appendix, Fig. S15).
Modeled DOC accumulates throughout the water column. Total
DOC decreases smoothly with depth, with higher surface DOC
transported to depth by vertical mixing (Fig. 3A). Most pools are
depleted to subsistence concentrations throughout the water col-
umn (Fig. 3 B and C). One pool remains functionally recalcitrant
throughout the entire water column due to its slow consumption
rate (lightest yellow line in Fig. 3B), which is consistent with the
observed homogenous composition of aged marine DOC (7, 48).

Many DOC pools in the model accumulate at the surface and
become depleted at depths of 500 to 1,000 m. This transition
is due to the increase in Q for these pools from the surface to
depth (Fig. 3B). Specifically, the loss rates of the populations are
highest at the surface and attenuate with depth. This is because
productivity peaks in the surface, and so total biomasses, activ-
ity rates, and, therefore, predation rates (represented implicitly in
the model; Eq. 6) also peak at the surface. The subsistence concen-
trations for the functionally labile pools also decrease with depth
as loss rates decrease, and so the total concentration of function-
ally labile OM also decreases with depth, contributing slightly to
the vertical DOC gradient. Thus, an ecologically determined tran-
sition from functional recalcitrance to functional lability for some
pools explains much of the decrease in DOC with depth. This
transition is consistent with observations that a subset of DOC is
resistant to consumption by surface communities, but able to be
remineralized by deep communities (31).

Our framework may also be employed to investigate microbial
control on OM in soils and sediments. The model can be adapted
to incorporate the different characteristics of these environ-
ments. For example, here, we employ a simple parameterization
for the supply of each OM class, but a sediment or soil model
version could include more sophisticated descriptions of how
the physics and chemistry of solid particles and mineral matri-
ces impact the supply rate. Though Michaelis–Menten uptake
kinetics do not apply to the enzymatically catalyzed degrada-
tion of polymeric organic compounds to monomeric compounds,
the ecological principles of our framework should still hold (SI
Appendix, SI Text 7). Indeed, we find that, even in its current
form, the simple model captures a key observation of sediment
OM: the proportional increase in OM decomposition rate with
increased OM concentration (49) (SI Appendix, Fig. S16). This
further demonstrates consistency with the predictions of estab-
lished first-order kinetic decomposition models (12, 49). Our
framework can also be used to explore the impact of more enzy-
matically diverse sedimentary communities relative to pelagic
communities on OM accumulation (33) by altering the commu-
nity consumption matrix to include a greater degree of generalist
ability. Also, varying the yields or uptake rates with electron
acceptors could incorporate diverse redox conditions into the
model. A decrease in yield with a lower-quality electron accep-
tor may suggest that some types of OM are functionally labile
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Fig. 3. Marine ecosystem water-column model results showing the accumulation of DOC. (A) Phytoplankton biomass, total DOC-consuming biomass B, and
total DOC. Annual average profiles of total DOC from two open ocean time series stations are illustrated: HOT (the Hawaii Ocean Time-series in the Pacific
Ocean) and BATS (the Bermuda Atlantic Time-series Station in the Atlantic Ocean) (50). (B) The concentration of each of the 25 resolved DOC pools, which are
differentiated in the water-column model by maximum uptake rate ρmax (color scale). Each pool is categorized as functionally labile (solid line) or functionally
recalcitrant (dashed line) as a function of depth using recalcitrance indicator Q (Eq. 3). (C) The maximum (max) (surface) concentration C of each DOC pool
and the associated diagnostic C∗, the subsistence concentration of the microbial consumer population (Eq. 2), plotted against the maximum uptake rate
for that pool. (D) The turnover time of each DOC pool calculated diagnostically from the integrated concentration and the integrated consumption rate,
plotted against the maximum uptake rate.

when oxygen is available, but functionally recalcitrant in anoxic
environments.

Implications. Our model is consistent with the observations and
previous sediment modeling results that the majority of the
diverse types of OM are present at relatively low (< 1 µM
C) concentrations, while the majority of the total standing
stock is functionally recalcitrant (8, 10, 51) (Figs. 2B and 3B).
The recalcitrant portion may equilibrate if subjected to abiotic
concentration-dependent sinks (8) or may change slowly with
time (7, 8). Our framework further emphasizes that apparently
slow consumption rates of recalcitrant DOC in the ocean may
be controlled by the frequency of encounter of “the right” pop-
ulations and substrates, in addition to biochemical and energetic
limitations. This is consistent with the understanding that local-
ized sinks cause the 10 to 20% decrease in deep ocean DOC
along the deep ocean circulation pathway (32).

The water column model links the millennial timescales of
OM turnover (24) to microbial consumption occurring on suban-
nual timescales (Fig. 3D). Although OM transformation through
a complex interaction network can also explain old carbon ages
(17), slow turnover as an additional mechanism is consistent with
inferences that the size of organic carbon reservoirs does not

reach a steady state over geologic timescales (2). While our model
is compatible with the dilution hypothesis, it also incorporates
the other explanations for accumulation, and so it is consistent
with a broader set of observations, including the compositional
uniformity of ubiquitous recalcitrant classes (7, 48).

A key aspect of our framework is the threshold behavior of
the accumulation. The threshold, Q =1, is set by the dynamics
of the microbial populations that consume the OM pools. Q =1
represents an ecological threshold along a continuum of OM and
microbial characteristics, including factors known to influence
recalcitrance, such as thermodynamic limitations (40), enzymatic
control (33), mineral protection (41, 44, 52), and molecular prop-
erties (19). The nonlinear behavior of the threshold suggests that
small changes in the environment can drive large depletions or
accumulations of OM.

Consumption of recalcitrant OM depends on the rate of
microbial processing, which increases with temperature. If other
factors remain constant, the model predicts that less OM accu-
mulates at higher temperatures (SI Appendix, SI Text 3 and
Fig. S10C). Indeed, the loss of soil OM is a likely positive feed-
back to current warming (53). The framework here additionally
suggests that a decrease in OM with warming may be nonlinear
due to some OM pools crossing the threshold from functionally
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Fig. 4. Controls on OM accumulation by microbial consumption. Starting
from a representative, arbitrary concentration in the center, the change
in total OM carbon is calculated for a 10-fold change in each of four
parameters (i.e., two parameters vary in each quadrant): slower microbial
processing via a reduced maximum uptake rate, faster turnover via an
increased population-loss rate, less connectivity via a reduced likelihood of
population presence, and more substrates (chemical diversity) via a greater
number of OM pools.

recalcitrant to functionally labile (SI Appendix, Fig. S10c). This
may help to understand the correlations between tempera-
ture and organic carbon reservoirs in past earth climates, such
as increased ocean carbon burial, “inert” soil carbon reser-
voirs, and perhaps marine DOC during glacial periods (54,
55). Temperature-driven nonlinearity may also constitute an
explanation for the 10-fold higher microbial utilization rates
of DOC in the warmer deep Mediterranean compared to the
colder deep open ocean (56). Using this framework to quanti-
tatively predict changes in organic carbon reservoirs with current
increases in global temperature will require accurate estimates
of microbial community loss rates, as well as an understanding
of how temperature will impact both microbial rates and the
diversity of the community.

We identify a set of controls on OM accumulation and
turnover rooted in the complexity of microbial ecosystems. Previ-
ously disconnected hypotheses for OM accumulation, including
the many mechanisms giving rise to functional recalcitrance, are
subsumed within one framework. OM concentrations are medi-
ated by the characteristics of substrate–microbe interactions,
the heterogeneity of organic substrates, microbial community
dynamics, and the ecological and biogeochemical diversity set
by the connectivity of the environment (Fig. 4). The model is
consistent with a comprehensive set of observations and theory
of OM concentrations, turnover rates, and ages. The framework
can be used to quantify the degree to which each of the subsumed
hypotheses explains OM accumulation in different environments
and to develop testable hypotheses for how organic reservoirs
change with the biogeochemical environment.

Materials and Methods
Model Equations. We describe microbial consumption and growth on pools
of organic carbon. The model framework is sufficiently general to also
account for inorganic nutrients and may be extended to account for the

cycling of other elements. We model the uptake ρij of each OM pool i,
according to its concentration Ci , by microbial population j as a function
of time t using a saturating (Michaelis–Menten) form as

ρij(t) = ρ
max
ij

Ci(t)

Ci(t) + kij
, [4]

where ρmax
ij is the maximum uptake rate and kij is the half-saturation

constant (Table 1).
Each population synthesizes biomass according to a growth efficiency for

each pool (yield yij) and loses biomass at a rate proportional to its biomass
according to a quadratic mortality parameter mq

j (implicitly representing

predators and viruses) and linear mortality parameter ml
j (representing cell

maintenance and senescence). The rates of change of the concentration Ci

of pool i and the biomass Bj of population j are

∂Ci(t)

∂t
= si(t)−

∑
j

Ij(t)ρij(t)Bj(t), [5]

∂Bj(t)

∂t
=

∑
i

Ij(t)yijρij(t)Bj(t)−mq
j Bj(t)2−ml

jBj(t), [6]

where si(t) is the supply rate of pool i, which is governed by the probability
of the supply of each pool qi as

si(t) =

{
σi with probability qi

0 with probability 1− qi ,
[7]

where σi is the potential supply rate, which here is a fraction of total OM
supply to the domain (Table 1). The term Ij(t) indicates the presence of pop-
ulation j at time t according to the probability of presence Pj (see detail
below) as

Ij(t) =

{
1 with probability Pj

0 with probability 1− Pj .
[8]

Because the presence of population j averages to Pj over time, we include
Pj in Eqs. 1–3 for conciseness. All parameter values (ρmax, k [via the affinity
ρmaxk−1], y, mq, ml, q, and P) are set by randomly sampling from uniform
distributions (Table 1; SI Appendix, SI Text 1).

Yield yij reflects the cost of enzymes and the free energy released by OM
oxidation. ρmax

ij and yij may be interdependent due to cellular optimization
strategies, reflecting inherent tradeoffs between protein allocation and effi-
ciency (57, 58). The varying combinations of ρmax

ij and yij can also represent
the different modes of uptake of high-molecular-weight DOM (59). Analo-
gously, the different parameter combinations can account for the additional
feedback between the external concentration and the rate of cellular pro-
cessing ρmax

ij (60). Real populations may change their cellular machinery due
to plasticity, where, in the model, the many sets of parameters represent
static phenotypes among these different modes.

Probability of Presence. Observations show that community composition
dictates the character of DOM remineralization in seemingly unpredictable
ways (61, 62), and evidence supports localized sinks of deep DOM (32). To
simulate this impact, we include a population presence–absence dynamic in
the model. Each population is assigned an overall probability of presence
Pj , simulating the sporadic presence of rare functional types and the nearly
guaranteed presence of ubiquitous types. When Ij(t) = 0 (Eq. 8), the popu-
lation does not consume OM or synthesize biomass at that timestep, but its
biomass is still subject to loss. In effect, this dynamic extends the range of
maximum processing (synthesis) rates to lower values, demonstrating how
the absences of particular functional types contribute to longer effective
remineralization timescales. This dynamic results in the majority of interac-
tions at intermediate (though still widely ranging) rates, with very slow and
very fast interactions being fairly rare (SI Appendix, Fig. S13). Over time, the
average presence approaches Pj , and the steady-state balances calculated
with the overall probability Pj closely match the model solutions.

Consumption Matrix. A consumption matrix dictates which populations con-
sume which OM pools (SI Appendix, Fig. S1). We vary the specialist vs.
generalist capabilities of the populations with respect to the number of
OM pools taken up by each population (nup, which can vary from one to
n, the number of OM pools), as well as with the widespread popularity of
each pool with respect to the number of consumers of each (ncons, which
can vary from one to m, the number of populations) (Fig. 1). In the model
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version with solely specialists (Fig. 2; SI Appendix, Fig. S2), each population
consumes only one unique pool. For the generalist populations (Fig. 2; SI
Appendix, Fig. S2), we first randomly assign nup to each population drawing
from the linear range from one to n. Second, we assign a weight to each OM
pool of its probability of being consumed ncons, varying the weights linearly.
Finally, we assign the specific pools taken up by each population (i.e., we
fill each column of the consumption matrix) by sampling from the n possi-
bilities with the weights. For the weighted sampling, we use the algorithms
“ProbabilityWeights” and “sample” in the StatsBase package in Julia.

Simulations. In the simulations illustrated in Fig. 2, we resolve 1,000 OM
classes and 1,000 or 2,000 pools of biomass: a model version with 1,000 spe-
cialists, and a model version with the 1,000 specialists and an additional
1,000 with a range of generalist ability. Results with the latter 2,000 pools
are similar to a model with only the 1,000 generalists. For each experi-
ment, we integrate the model forward in time for 10 y, until the pools
that have the potential to equilibrate have equilibrated. The concentrations
of many of the recalcitrant pools continue to increase over time (unless a
concentration-dependent sink is added to the model). SI Appendix, Fig. S13
illustrates the resulting distributions of biomass concentrations, OM concen-
trations, and remineralization rates of the ensembles, which are consistent
with observed and inferred distributions of OM characteristics, remineral-
ization rates, and ages in the ocean, sediments, soils, and lakes (10, 21–27,
63–65).

In SI Appendix, SI Text 2 and Figs. S2–S7, we demonstrate the qualitative
consistency of the solutions across variations of the model. All simulations
support the conclusions presented. Solutions vary quantitatively, but not
qualitatively, with variations in the generalist capabilities of the microbial
populations, the number of OM pools resolved, the ratios of OM pools to
populations resolved, the length of numerical integration, and the mode of
uptake by the populations (additive consumption vs. switching over time to
optimize growth). In the model version, where generalists switch their con-
sumption over time (SI Appendix, Fig. S7), values of Q< 1 result for some
pools as generalists cease to consume functionally recalcitrant pools, despite
their capability to do so.

Reduced-Complexity Model Version. For the reduced-complexity model of
OM consumption used in the marine ecosystem model, we collapse the com-
plexity onto one master lability parameter—the maximum uptake rate—and
we resolve fewer OM pools (n = 25) (SI Appendix, Fig. S15). The values of y,
mq, ml, and uptake affinity are kept constant, since their variation affects

the solutions quantitatively, but not qualitatively. A specialist population,
which represents multiple clades in aggregate, consumes each pool. Since
we don’t include stochastic processes, the probability of presence P = 1
for all populations. In accordance with theory and our stochastic model
results (27, 66), we assume a lognormal distribution for the partitioning
of total OM production into the 25 pools (SI Appendix, Fig. S15D), which
represents the average outcome of microbial transformation over time
and space.

Marine Ecosystem Model. The reduced-complexity model version is incorpo-
rated into a dynamic marine ecosystem model of a stratified vertical water
column, where the production and consumption of all organic and inorganic
pools are due to the growth, respiration, excretion, and mortality of micro-
bial populations (SI Appendix, Fig. S14). Light and vertical mixing attenuate
with depth. Two populations of phytoplankton convert dissolved inorganic
carbon and nitrogen into biomass using light energy. Populations of micro-
bial heterotrophs consume DOM (25 pools) and particulate OM (POM) (one
pool), oxidize a portion of the carbon for energy, and excrete inorganic
carbon and nitrogen as waste products. For simplicity, POM is resolved as
one aggregate pool sinking at a constant rate. Total DOM is produced
from POM degradation (due to the extracellular hydrolysis of POM) and
the biomass loss of all populations. The model is a modified version of a
published model in which carbon and nitrogen of the organic pools and the
biomasses are each resolved independently (67). Parameter values are listed
in SI Appendix, Table S1. See SI Appendix, SI Text 6 for model equations and
further detail.

Data Availability. Julia code for the stochastic OM consumption model and
Fortran code for the marine ecosystem model are publicly accessible on
GitHub (https://github.com/emilyzakem/OMconsumption) (68).
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