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A B S T R A C T   

Infant electroencephalography (EEG) presents several challenges compared with adult data: recordings are 
typically short and heavily contaminated by motion artifacts, and the signal changes throughout development. 
Traditional data preprocessing pipelines, developed mainly for event-related potential analyses, require manual 
steps. However, larger datasets make this strategy infeasible. Moreover, new analytical approaches may have 
different preprocessing requirements. We propose an Automated Pipeline for Infants Continuous EEG (APICE). 
APICE is fully automated, flexible, and modular. The use of multiple algorithms and adaptive thresholds for 
artifact detection makes it suitable across age groups and testing procedures. Furthermore, the preprocessing is 
performed on continuous data, enabling better data recovery and flexibility (i.e., the same preprocessing is us
able for different analyzes). Here we describe APICE and validate its performance in terms of data quality and 
data recovery using two very different infant datasets. Specifically, (1) we show how APICE performs when 
varying its artifacts rejection sensitivity; (2) we test the effect of different data cleaning methods such as the 
correction of transient artifacts, Independent Component Analysis, and Denoising Source Separation; and (3) we 
compare APICE with other available pipelines. APICE uses EEGLAB and compatible custom functions. It is freely 
available at https://github.com/neurokidslab/eeg_preprocessing, together with example scripts.   

1. Introduction 

Electroencephalography (EEG) is a valuable tool for developmental 
cognitive studies as it provides a non-invasive, direct, and low-cost 
measure of neural activity with high temporal resolution. However, 
the employment of this technique embeds two major challenges. First, 
the EEG signal is unavoidably contaminated by many artifacts from 
different sources, such as environmental factors (e.g., line noise), 
physiological phenomena (e.g., ocular movements, heartbeats, muscle 
activity), and movements, whose amplitudes are often much larger than 
the neural signal. Second, the neural signal relative to the cognitive 
processes under investigation is lost among many other computations 
overlapping in time and space due to the wide diffusion of the electrical 
fields. One successful solution to isolate a cognitive process is to average 
across many trials to recover a reproducible neural activity time-locked 
to the stimulus presentation, i.e., the event-related potential (ERP). For 
the averaging method to be successful, many trials are needed, and those 
trials should not be contaminated by high amplitude events, whose 
impact on the average could not be eliminated without thousands of 

trials. Other EEG analysis techniques (e.g., multivariate pattern decod
ing, time-frequency analyses) have similar constraints, requiring a high 
number of trials without too large variability. Critically, these demands 
stand at odds with the testing circumstances encountered with infants 
(short recordings often heavily contaminated by motion), calling for a 
specific approach to obtain a sufficiently good signal-to-noise ratio 
despite these challenging recording conditions. 

Simple steps such as filtering can remove some artifacts, e.g., line 
noise, but correcting physiological artifacts requires more sophisticated 
methods (Islam et al., 2016). Fortunately, when EEG data is acquired 
with high-density systems, high redundancy in the signal (caused by the 
diffusion of the electric field) allows the implementation of different 
signal reconstruction techniques (Jiang et al., 2019). In this regard, 
several pipelines and physiological artifact removal algorithms have 
been developed for adult EEG (e.g., PREP (Bigdely-Shamlo et al., 2015), 
Automagic (Pedroni et al., 2019), FASTER (Nolan et al., 2010), ADJUST 
(Mognon et al., 2011), MARA (Winkler et al., 2011)). However, these 
tools are not well suited to the challenging infant data for several rea
sons. First, the correction methods currently available for physiological 
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Contents lists available at ScienceDirect 

Developmental Cognitive Neuroscience 

journal homepage: www.elsevier.com/locate/dcn 

https://doi.org/10.1016/j.dcn.2022.101077 
Received 20 May 2021; Received in revised form 23 January 2022; Accepted 24 January 2022   

https://github.com/neurokidslab/eeg_preprocessing
mailto:ana.flo@cea.fr
www.sciencedirect.com/science/journal/18789293
https://www.elsevier.com/locate/dcn
https://doi.org/10.1016/j.dcn.2022.101077
https://doi.org/10.1016/j.dcn.2022.101077
https://doi.org/10.1016/j.dcn.2022.101077
http://creativecommons.org/licenses/by-nc-nd/4.0/


Developmental Cognitive Neuroscience 54 (2022) 101077

2

artifacts require long recordings without high amplitude artifacts 
(Onton and Makeig, 2006), a condition difficult to achieve in infants. 
Second, the power spectrum (Eisermann et al., 2013; Marshall et al., 
2002) and the properties of the evoked responses (Kushnerenko et al., 
2002; Nelson and Monk, 2001) evolve throughout development due to 
maturational changes. More specifically, infant background activity is 
rich and ample in low frequencies, and the signal variability between 
trials is much higher in infants than in adults (Naik et al., 2021). Third, 
exogenous artifacts vary according to infants’ age (e.g., fewer blinks and 
less motion in younger infants). Lastly, most developmental datasets do 
not include electrocardiogram (ECG) and electromyogram (EMG) re
cordings usually used to identify non-cortical activity contaminating the 
EEG. Due to all these factors, the methods developed for adult EEG are 
ill-suited for infant studies, and no agreement has been reached on the 
most appropriate preprocessing procedures for infant EEG. 

Traditional infant preprocessing relies on manually identifying non- 
functional channels and data segments contaminated by motion arti
facts, which are subsequently discarded. However, high-density 
recording systems (64, 128, 256 electrodes) and longer recording ses
sions make this approach time-consuming and inefficient, revealing the 
need for automated pipelines. As a solution to automate the process and 
easily rule out high-amplitude events, a standard procedure is to 
determine thresholds below which the voltage should remain. Then, 
non-functional channels are either rejected or interpolated, but no 
additional correction of specific artifacts, such as physiological artifacts, 
is applied (e.g., Adibpour et al., 2018; Friedrich et al., 2015; Kabdebon 
and Dehaene-Lambertz, 2019; Winkler et al., 2009). Although 
straightforward, this method presupposes setting arbitrarily fixed 
thresholds, weighing the risk of a high rejection rate that might leave too 
few trials to obtain an ERP free of background activity and a low 
rejection rate that might retain an artifactual signal in the ERP. Setting 
an adequate fixed threshold is usually not possible because the signal’s 
amplitude depends on the distance between the channel and the refer
ence; thus, fixed thresholds are more or less able to detect artifacts, 
likely being too sensitive for distant electrodes and not enough for close 
electrodes. Furthermore, given the changes in EEG amplitude as a 
function of age and sleep-wakefulness stages, fixed thresholds need to be 
re-adjusted for each particular dataset. Another drawback of the tradi
tional approach is that artifacts’ detection is done on segmented data, 
limiting its applicability on analysis requiring longer data segments. 

Nowadays, more complex paradigms are implemented to explore 
infants’ rich cognition (Friedrich et al., 2015; Kabdebon and 
Dehaene-Lambertz, 2019). The impatience of young subjects, the lack of 
verbal instructions, and the common need for familiarization periods 
mean that the amount of data in relevant conditions is scarce, such that 
maximum data retention without data quality loss becomes crucial. 
Furthermore, new analysis techniques with different requirements are 
now combined in the same study. For example, frequency tagging may 
require segmenting the data in longer epochs (e.g., de Heering and 
Rossion, 2015; Kabdebon et al., 2015) or multivariate decoding to retain 
as many trials as possible (Gennari et al., 2021), two demands hard to 
reconcile when there is a high degree of artifact contamination. 

A few papers proposing automatic and more complex pipelines for 
developmental data have been recently published, HAPPE (Gabard-
Durnam et al., 2018), MADE (Debnath et al., 2020), EEG-IP-IL (Desjar
dins et al., 2021), and EPOS (Rodrigues et al., 2021). All these pipelines 
include Independent Component Analysis (ICA) as a fundamental step 
for removing physiological artifacts providing different strategies for its 
proper application on infant data. However, in HAPPE, MADE, and 
EPOS, artifacts rejection is based on fixed thresholds, meaning they do 
not provide a specific way to deal with the high amount of motion ar
tifacts present in infants’ recordings, which drastically affects ICA or any 
other blind separation technique. EEG-IP-IL (Desjardins et al., 2021) is, 
to our knowledge, the only pipeline offering more sophisticated methods 
to identify data contaminated by motion artifacts: after robust average 
reference, artifacts are individuated over short data segments based on 

too high voltage variance using relative thresholds. 
Here we propose an Automated Pipeline for Infants Continuous EEG 

(APICE), in which automatized artifact detection is performed on the 
continuous data before any further preprocessing step. This pipeline 
stems from the needs we have encountered in our long practice of 
cognitive studies in infants. EEG consists of the superposition of multiple 
electrical sources, some relevant, some not, which are hard to disen
tangle. Consequently, our philosophy in preprocessing the data is to 
exclude outlier values to eliminate strong artifacts (mainly due to mo
tion). To do so, we based our approach on the distribution of the voltage 
values of a specific recording (i.e., a specific channel in a specific indi
vidual). Furthermore, because in infants, data are scarce, but EEG is 
redundant, it is also possible to reconstruct transient artifacts instead of 
rejecting the recording. Finally, as experiments become more complex 
with several steps within a trial, we often have to work with epochs of 
different lengths depending on the type of analysis, which required re- 
doing the preprocessing. The solution is thus to preprocess the whole 
recording before epoching. 

We developed APICE in a modular manner to provide high versatility 
and remarkable flexibility, such that it is suitable for a broad range of 
analyzes. Crucially, we aimed APICE to offer good data recovery while 
ensuring data quality across different developmental populations and 
inform the experimenter on the quality of the recording. Relatively to 
previous work, the key innovations we propose with APICE are (1) an 
iterative artifact detection procedure based on multiple algorithms 
applied on continuous data, (2) the use of automatically adapted 
thresholds applicable on non-average referenced data, and (3) the 
correction of transient artifacts on continuous data. 

The use of multiple algorithms and adaptive thresholds makes APICE 
applicable without modifications across different ages and protocols. It 
also makes it easily adaptable to adult EEG datasets. The early detection 
of artifacts in the continuous data enables the experimenter to decide 
how to deal with artifacts before further preprocessing steps (e.g., re- 
referencing the data to the average, blind source separation methods). 
Additionally, the detection and correction of artifacts on continuous 
data increase data recovery by avoiding rejecting data segments con
taining transient voltage jumps. Finally, APICE is highly flexible, 
allowing the experimenter to use the same preprocessed data for many 
kinds of analysis. 

Note that we built this pipeline to suit the needs of cognitive studies 
using high-density nets. Processing clinical data with a few electrodes 
has neither the same goal of high robustness at the individual level nor 
the same spatial redundancy to enable data interpolation. Nevertheless, 
we believe that most of the solutions proposed in APICE can be 
employed in many experimental and clinical situations if we consider 
the signal features and the purpose of the EEG recording. Therefore, we 
made all parameters adjustable, but we provided default values based on 
our experience. 

In this paper, we first describe the general logic behind the pipeline 
and its different steps. Then, we validate APICE’s performance in terms 
of data quality and data recovery. Specifically, we evaluate the effect of 
the relative thresholds used for rejection by comparing three different 
values. We also compare APICE with a reduced version of it, in which we 
kept the automatic detection of artifacts in continuous data but removed 
the correction of transient artifacts. Then, we evaluate whether incor
porating additional data cleaning methods described in the literature 
provides any improvement. Specifically, we tested ICA coupled with 
automatic rejection of components using iMARA (Haresign et al., 2021) 
and Denoising Source Separation (DSS) (De Cheveigné and Parra, 2014; 
de Cheveigné and Simon, 2008). Finally, we validated APICE by 
comparing it with a standard widely used preprocessing pipeline and 
with MADE (Debnath et al., 2020). We chose MADE between the 
available pipelines for developmental EEG because it allows ERPs 
analysis and has already been implemented in published infant EEG 
studies (e.g., Hwang et al., 2021; Troller-Renfree et al., 2020). We per
formed the validation on two datasets with very different properties, an 
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auditory experiment in asleep neonates and a visual experiment in 
awake 5-month-olds. 

APICE is implemented in MATLAB, and it uses the EEGLAB toolbox 
and custom functions compatible with the EEGLAB structure (Delorme 
and Makeig, 2004). It is freely available at https://github.com/neuroki 
dslab/eeg_preprocessing, together with example scripts. APICE is 
modular, allowing functions to be easily recombined to meet different 
requirements. APICE also provides toolkit functions to modify events, 
correct event timings using Digital Input events (DINs), add information 
about trial features, and obtain average ERPs. 

2. Pipeline general description 

APICE uses EEGLAB (Delorme and Makeig, 2004) functions for 
standard processing steps (e.g., importing the data, filtering, epoching) 
and includes new functions for more specific steps. APICE includes the 
following crucial additions. (1) The identification of motion artifacts on 

continuous data using relative thresholds applicable on single elec
trodes. (2) The correction of artifacts in the continuous data when they 
involve a few channels or affect a brief period. (3) The possibility to 
define contaminated samples and non-functional channels based on the 
rejected data. Independently from our work, a similar procedure has 
been recently developed for EEG-IP-L (Desjardins et al., 2021). (4) Once 
recordings are segmented into epochs, the definition of bad epochs is 
based on the amount of rejected data within the epoch, specifically, in 
terms of time samples and electrodes rejected. 

Additionally, APICE includes functions that allow applying other 
standard data cleaning methods. For example, we provide a function to 
perform ICA, which omits the samples and channels previously identi
fied as containing artifacts, uses Wavelet-thresholding before perform
ing the ICA, and automatically identifies components associated with 
artifacts using iMARA (Haresign et al., 2021). We also provide a function 
to apply DSS, a method to clean ERP proposed by De Cheveigné and 
Parra (2014), de Cheveigné and Simon (2008). 

Fig. 1. Schematic description of different pre
processing pipelines. Standard corresponds to a 
common basic preprocessing pipeline usually 
used on infant experiments. APICEa is a 
reduced version of our pipeline in which arti
facts detection is performed on continuous data 
using multiple algorithms and relative thresh
olds (see Section 2.2). APICE is our full pre
processing pipeline, including correcting 
transient artifacts on continuous data (see Sec
tion 2.4). APICE + W-ICA is APICE with the 
addition of ICA. APICE+DSS is APICE with the 
addition of DSS.   

A. Fló et al.                                                                                                                                                                                                                                      

https://github.com/neurokidslab/eeg_preprocessing
https://github.com/neurokidslab/eeg_preprocessing


Developmental Cognitive Neuroscience 54 (2022) 101077

4

It is important to note that all the functions and steps are modular, 
offering flexibility to the user. Although we propose a recipe to perform 
the different steps in a specific order to obtain optimal results, the 
functions can be re-combined according to particular needs. Based on 
our research and clinical experience in infant EEG data, we propose the 
following steps for preprocessing infant EEG data (Fig. 1).  

1. Importing the data to EEGLAB.  
2. Minimal filtering of the data.  
3. Detecting artifacts.  
4. Correcting artifacts when possible.  
5. Re-detecting artifacts.  
6. Applying ICA (optional).  
7. Epoching.  
8. Rejecting bad epochs.  
9. Applying DSS (optional). 

10. Re-referencing (averaging reference), data normalization, base
line correction (optional). 

Note that the steps after epoching (step 7) are specific to ERP ana
lyses or other analyzes involving evoked activity (i.e., an averaging 
process across trials to recover reproducible time-locked activity). 

2.1. Importing the data 

APICE is based on EEGLAB (a free MATLAB toolbox) (Delorme and 
Makeig, 2004). We provide the codes to import the data exported from 
the EGI system (Electrical Geodesics, Inc) in the EEGLAB format. How
ever, APICE can be implemented on any data imported to the EEGLAB 
format. It is worth noticing that in many systems, such as EGI, voltages 
of all electrodes are recorded relative to a single electrode, the reference 
(e.g., the mastoids, the vertex). With systems using an active and a 
passive electrode to generate a common-mode voltage (e.g., Biosemi), 
the data needs to be referenced to one of the electrodes (e.g., the mas
toids, the vertex) when imported to remove the common-mode signal. 

2.2. Filtering 

As the first preprocessing step, data are filtered to remove common 
environmental artifacts. We use a low-pass filter below the line noise 
frequency (e.g., with a line noise at 50 Hz, we low-pass filter the data at 
40 Hz). Unless high-frequency activity needs to be investigated, low- 
pass filtering is, in our experience, the most effective way to remove 
line noise. 

High pass filtering enables the removal of drifts and slow activity in 
the data. Low-frequency noise strongly contaminates high impedance 
EEG recordings, mainly due to skin potential (Kappenman and Luck, 
2010). Furthermore, slow waves are common in very young infants’ EEG 
recordings (Eisermann et al., 2013; Marshall et al., 2002; Selton et al., 
2000) due to immaturity and partially to the brain’s movement in the 
skull following respiration. For most EEG analyses, it is imperative to 
reduce this contamination. However, extensive filtering (above 0.1 Hz) 
can introduce critical distortions in the data (de Cheveigné and Nelken, 
2019). While alternatives to high-pass filtering exist, such as local 
detrending methods (de Cheveigné and Arzounian, 2018), we have not 
observed better performance of these methods. Therefore, we apply a 
high pass filter at 0.1 Hz at this early stage of preprocessing, which 
should not introduce critical distortions in the data but remove the main 
drifts. Using a very low high-pass filter at the initial stage brings flexi
bility since the same continuous preprocessed data can be used for 
analysis requiring different filtering levels. 

We use the pop_eegfiltnew EEGLAB function, which uses the FIRfilt 
plugin, to perform a non-causal Finite Impulse Response (FIR) filter. We 
first apply a low-pass filter at 40 Hz with a transition band of 10 Hz. We 
then apply a high-pass filter at 0.1 Hz with a transition band of 0.1 Hz. 

It is worth noticing that while low-pass filters can be applied at any 

preprocessing stage, high-pass filters should always be performed on 
continuous data to avoid edge effects. 

2.3. Artifacts detection 

One of APICE’s key innovations is detecting artifacts, which is done 
automatically. Artifacts are identified on the continuous recording 
before re-referencing the data to the average and through adaptive 
rather than absolute thresholds set per subject and electrode. As we 
discuss below, these features are decisive for an adequate and versatile 
preprocessing pipeline for infant recordings. 

Non-working electrodes have a response that deviates radically from 
the rest of the channels, with amplitudes much higher or lower than 
expected. However, in unipolar recordings (i.e., the signal is recorded as 
the difference of potential between each electrode and a single refer
ence), the amplitude of the signal varies in function of the distance of 
each electrode to the reference electrode — with electrodes closer to the 
reference having smaller amplitudes than more distant ones. Thus, ab
solute thresholds (classically used in standard pipelines) differently 
penalize each channel: when the signal’s amplitude is already large, a 
slight supplementary increase might be interpreted as an artifact, 
whereas the same deviation in electrodes close to the reference might 
remain undetected. Therefore, the same noise level is not similarly 
detected across electrodes, and the percentage of data rejected in each 
channel might be very different at the end of the process. 

A solution to homogenize the voltage in high-density recordings is to 
measure the potential relative to an ideal reference, such as the average 
reference (Bertrand et al., 1985). The integrated scalp potential must be 
null and can be approximated by the average over numerous homoge
neously distributed channels. Re-referencing the data to the average 
results in a null integrated potential by subtracting the average voltage 
at each time point to each electrode. Crucially, the data must be clean to 
avoid affecting functional channels with contaminated data through the 
average process. 

We thus face a circular problem: to estimate non-functional channels 
based on their amplitude, we need to re-reference the data to the 
average, but to obtain a proper estimation of the average reference, we 
need clean data. Pipelines, such as PREP (Bigdely-Shamlo et al., 2015), 
overcome this problem by computing a robust average reference. This 
procedure consists of computing a first average across channels, then 
detecting and interpolating bad channels, and computing a new average 
reference, steps that can be iterated to obtain more accurate results. 
However, this procedure does not properly deal with artifacts contam
inating only subgroups of electrodes within a limited portion of time (e. 
g., electrodes that dry or lose contact because the infant touches them), a 
common situation in developmental studies employing wet high-density 
nets. In APICE, we use multiple algorithms sensitive to different signal 
features that allow detecting artifacts without an initial estimation of the 
average reference. This is possible because some algorithms are inde
pendent of the signal amplitude (e.g., the correlation among electrodes, 
or the proportion of power in certain frequency bands), while for others, 
thresholds are adapted to the signal properties of each electrode, 
allowing the identification of channels not working during restricted 
periods. Once artifactual data has been identified, it can be excluded to 
obtain a first yet robust average reference before applying algorithms 
requiring average referenced data. Later, aberrant data can be interpo
lated before computing the final robust estimation of the average 
reference based on clean data. 

Adaptive thresholds present another crucial advantage; they do not 
have to be customized to each population or testing procedure (i.e., age 
group, resting-state, or active task), providing and standard procedure to 
all datasets. Since the amplitude and properties of the signal radically 
change during development, and between-subjects variability is 
considerable, using adaptive thresholds is an essential feature for infant 
EEG. 

The detection of artifacts in continuous data rather than in 
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segmented epochs also has its advantages. First, the properties of the 
EEG recording and the threshold for the different artifacts can be better 
estimated. Second, some transient artifacts that may lead to the rejection 
of the epoch can be corrected, facilitating the recovery of more data. 
Third, it provides more flexibility, enabling performing multiple types of 
analysis using a common preprocessing pipeline. 

All the algorithms used in APICE compute a measure for each sample 
or in a sliding time window. Then, the algorithms reject the data when 
the measure is above or/and below a threshold. While all our functions 
allow using absolute thresholds, we advise using relative thresholds. 
Relative thresholds are determined based on the distribution of the 
measure throughout the entire recording. More precisely, a threshold is 
computed as, Thresh = Q3 + k× (Q3 − Q1), and/or Thresh = Q1 − k×
(Q3 − Q1), where Q1 and Q3 are the first and third quartiles of the 
distribution. k should be provided as an input (by default 3). Because the 
measures used by the algorithms usually have a normal distribution, this 
threshold definition successfully identifies extreme values (i.e., out
liers). The functions allow defining a single threshold for all electrodes 
or individual thresholds per electrode. We also provide the option of 
computing the algorithms in data z-scored per channel or on average 
reference data. While the algorithms might implement some data 
transformations for detection, the output data is never modified. 

Different algorithms are sensitive to different artifacts in the data. 
Using a collection of algorithms and methods enables a large and com
plete detection of artifacts of all kinds. We can distinguish three groups 
of algorithms based on their sensitivity. (1) Algorithms that are partic
ularly apt to individuate non-functional channels. Specifically, one of 
them looks at the power spectrum of the different channels across fre
quency bands, and another detects channels with very low activity 
correlation with other channels (similar to PREP (Bigdely-Shamlo et al., 
2015)). (2) Algorithms sensitive to motion artifacts, resulting in high 
amplitudes and signal variance. These algorithms detect when the sig
nal’s amplitude, temporal variance, or running average are too high. (3) 
An algorithm that identifies when the signal changes too rapidly and 
serves to detect jumps or discontinuities in the signal. 

All these artifact detection algorithms define for each sample and 
channel if the data is clean or contaminated, and the information is 
stored in a logical matrix, BCT, of the size of the recording (i.e., chan
nels × samples × epochs (epochs is equal to 1 in case of continuous 
recording)), where a true value indicates the presence of artifacts. Being 
the outcome of heterogeneous detection strategies, the rejection matrix 
obtained at this point is likely to present a “salt and pepper” structure. 
According to the neighborhood context, a final group of algorithms (4) 
refines this rejection pattern through further (minor) exclusions or data 
reintegration. For example, they rule out short data segments (shorter 
than 2 s) sandwiched between rejected segments or re-include very short 
rejected data segments (shorter than 20 ms). A full description of all the 
algorithms and functions is provided in Appendix A. 

APICE detects artifacts through multiple cycles of rejection, and the 
data rejected in one cycle is no longer entered into the signal estimation 
used to construct adaptive rejection thresholds for subsequent cycles. 
Considering that the distribution for the different measures in the 
absence of artifacts is normal, once extreme outliers are rejected in the 
first cycle of rejection, subsequent cycles reject very little or no data. In 
brief, these multiple cycles allow a progressive skimming of the signal. 
We propose the following rejection cycles:  

• Rejection cycle 1 includes the algorithms that primarily identify 
channels not working based on their power spectrum and their 
absence of correlation with other channels.  

• Rejection cycle 2 rejects all data with an amplitude higher than 
500 μV (non-average referenced data). This absolute threshold is 
very high and is only used to avoid taking very large amplitude data 
into account. This step accelerates the reiteration procedure but can 
be skipped without substantial changes.  

• Rejection cycles 3a and 3b apply twice the algorithms sensitive to 
motion artifacts using relative thresholds per electrode and non- 
average referenced data. Specifically, the algorithms reject data 
with a too high amplitude, too high variance, or too high running 
average relative to the distribution of each electrode.  

• Rejection cycles 4a and 4b apply the same algorithms as in the third 
cycle twice, but this time on average referenced data and using a 
single relative threshold across all electrodes. Note that outlier 
values identified in the previous cycles are not considered for the 
estimation of the average reference (robust average referencing).  

• Rejection cycles 5a and 5b detect fast transient changes in the signal, 
once using one threshold per electrode on non-average reference 
data (5a) and one on average reference data and defining a single 
threshold across all electrodes (5b). 

After artifact detection (Fig. 2A), segments heavily contaminated by 
artifacts (bad times or BT) and non-functional channels (bad channels or 
BC) are defined (Fig. 2B) (see Section 2.4). Then, artifacts are corrected 
(Fig. 2C) (see Section 2.5). Finally, the rejection matrix is reset, and the 
artifact detection algorithms are rerun to detect artifacts in the “clean” 
data (Fig. 2D). Only the algorithms to detect motion artifacts (cycles 
2–4) are rerun in the final artifacts rejection step, as the non-functional 
channels and jumps in the signal, when possible, were already corrected. 

2.4. Definition of bad samples and channels 

The rejection matrix is a logical matrix of the size of the data indi
cating good and artifacted data (i.e., outliers). However, thresholds, 
even relative, are only a workaround method to reject contaminated 
data. Thus, some data points not identified as outliers can still contain 
artifacts, or the data quality of the neighboring points can be too 
strongly contaminated to be trustable. For example, it is probably the 
case of short “good” periods sandwiched between “bad” periods and of 
samples where most of the channels, but not all, are considered “bad”. 
Therefore, we defined bad-times (BT) to refer to time samples strongly 
contaminated by artifacts (i.e., those for which most of the channels are 
identified as “bad”) and bad-channels (BC) non-functional channels (i.e., 
channels for which most of the time was identified as “bad”). These 
definitions allow to easily exclude from future analysis samples con
taining large artifacts that cannot be corrected and reconstruct non- 
functional channels. A similar logic has been recently also imple
mented in EEG-IP-L (Desjardins et al., 2021). The functions used to 
define BT and BC are described in Appendix B. In Fig. 2, we present an 
example of a rejection matrix and the definition of BT and BC. 

From our practice, we advise defining periods in which artifacts 
affect more than 30% of functional electrodes as bad times. Afterward, 
we remove the bad time tag of segments shorter than 100 ms. Next, we 
tag as bad the 500 ms before and after any bad time segment and short 
time segments of less than 1 s. Two reasons motivate these last choices: 
first, because data samples surrounding motion artifacts tend to be 
partially contaminated, and second, to avoid interpolating non- 
functional channels close to motion artifacts. As a result, we obtain 
BT, a logical matrix of size 1 × samples × epochs signaling strongly 
contaminated data segments. 

The channels with a proportion of bad tags in BCT relative to the 
number of good times (i.e., the total number of samples excluding the 
ones previously identified as bad in BT) higher than a certain threshold 
are marked as bad. The process is applied either at the epoch level or 
across all epochs. At the epoch level, it means that the total number of 
good times is computed for each epoch, and bad channels are marked in 
BC, a logical matrix of size channels × 1 × epochs. During the whole 
recording implies that the number of good samples is computed across 
all epochs, and bad channels are therefore identified across the whole 
data and marked in Bcall, a logical matrix of size channels × 1 × 1. 
Notice that the distinction between BC and Bcall is only necessary when 
working with epoched data. In continuous data, we usually define BCall 
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as those channels with bad tags during more than 30% of the good times. 
In a single epoch, we defined as BC those channels with bad tags during 
good times lasting more than 100 ms. We chose to use 100 ms for con
sistency (i.e., it is the same limit value we use for the definition of bad 
times because periods shorter than this are probably false positives). 

However, a change in this parameter within certain limits (from 100 ms 
to ~ 1 s) does not affect the results because electrodes usually stop 
working for periods much longer than 100 ms. 

2.5. Correction of localized artifacts 

Artifact correction is a critical point because it implies data recon
struction, in other words, the estimation and removal of the artifacts or 
the interpolation of the contaminated segments. Data segments con
taining large artifacts (i.e., motion artifacts affecting most electrodes 
during a period) are very common in infant recordings but unfortunately 
cannot be reconstructed and need to be discarded. Thus, the best we can 
do is to identify them accurately. These periods correspond to the bad 
times defined in the previous section. 

By contrast, other types of artifacts can be corrected. For example, 
we have already described the removal of electrical noise by filtering, 
and many methods exist to correct physiological noise (Islam et al., 
2016; Jiang et al., 2019). We will specifically discuss the use of ICA to 
clean this type of artifact in the next section. This section discusses data 
reconstruction when artifacts are localized in either time or space 
(channels). A detailed description of the function for data correction is 
presented in Appendix C. 

Transient artifacts, like jumps and discontinuities, frequently 
contaminate the EEG signal. To remove this type of artifact, we apply a 
target PCA and remove the first components, a procedure already 
implemented on Near-Infrared Spectroscopy data (Yucel et al., 2014). 
The underlying assumption is that, during these periods, the majority of 
the variance can be attributed to the artifact. Crucially, this approach is 
restricted to very brief data segments showing big amplitude jumps in 
the signal. Therefore, the first components carrying the higher variance 
mainly contain the artifact. Indeed, even if all the variance is removed (i. 
e., the data is replaced by a flat segment), this approach remains better 
than losing a longer data segment or keeping the artifact because the 
artifact is brief but of high amplitude. Contrary to blind source separa
tions methods, as ICA or PCA applied to the whole recording, in this 
procedure, the PCA is restricted to specific events, limiting the undesired 
removal of neural activity. We used it for segments shorter than 100 ms 
and removed the first components carrying 90% of the variance (see 
Appendix C for more details). The time limit for the length of the arti
facts circumscribes this correction to jumps in the signal and other fast 
events such as heartbeats (see Fig. 3). 

Another possible scenario is that artifacts affect a small number of 
electrodes. For these cases, a widely used reconstruction method is the 
spatial interpolation of the channels using a spherical spline (Perrin 
et al., 1989). In adult experiments, electrodes are identified as 
non-working during the whole recording and eventually spatially 
interpolated. However, with infant high-density systems, it is common 
that some channels stop working during limited periods (e.g., the infant 
touches some electrodes, making them lose contact, or after a child’s 
movement, the electrode moves before returning to its original posi
tion). To account for these scenarios and recover as much data as 
possible, we reconstruct the channels identified as bad during the whole 
recording and restricted periods using spatial interpolation. It is 
important to highlight that while the reconstruction of non-functional 
channels is a common practice that can simplify the between-subjects 
analysis, the signal is estimated as a weighted sum of the good elec
trodes. Thus, it does not add new information, and the dataset becomes 
rank deficient. 

In our practice, we apply the artifacts correction as follows. First, we 
correct transient artifacts using target PCA. Second, we spatially inter
polate channels not working during a certain period. We restrict this 
interpolation to good times, i.e., samples with less than 30% of the 
channels tagged as bad. The underlying assumption is that when too 
many channels are affected by an artifact at a given time, the spatial 
interpolation is ineffective. Finally, we interpolate channels rejected 
during the whole recording (i.e., BCall). By applying the functions in this 

Fig. 2. Example of the rejection matrixes (channels × time-samples) for one 
subject obtained during successive preprocessing stages. BE = Bad Epochs, 
BC = Bad Channels, BT = Bad Times. Bad refers to epochs/channels/times 
identified as containing artifacts. Notice that the example refers to continuous 
data; thus, there are no bad epochs. (A) Rejection matrix after the artifacts’ 
detection. (B) Identification of bad channels (pink) and bad time samples (or
ange). (C) Rejection matrix with bad times and channels after interpolating 
localized artifacts (bad channels and transient artifacts). Notice that all rejected 
samples, except bad times, have been corrected. (D) Rejection matrix after 
applying the artifacts detection algorithm again. Notice that most of the cor
rected transient artifacts (difference between B and C) are no longer identified 
as artifacts when the artifact detection algorithms are applied again (D), 
meaning that the correction of transient artifacts was successful. 
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order, transient artifacts are corrected before non-functional channels, 
minimizing the use of contaminated data to reconstruct non-functional 
channels. Fig. 2C shows the rejection matrix after interpolation. 
Observe how bad data remains only during bad times. 

2.6. Independent Component Analysis 

ICA is commonly applied on multichannel recordings of EEG data to 
remove physiological noise (e.g., eye blinks, eye-motions, muscle ac
tivity, heartbeat). The recording is decomposed into temporally inde
pendent components (IC). Then, the components related to artifacts are 
identified either automatically or manually by their topography, tem
poral profile, and power spectrum and removed from the data. Ideally, 
each IC is related to a neural or non-neural source. Therefore, ICA 
removes specific artifacts (sources) from the data without discarding the 
EEG segments affected by that artifact. Removing a specific IC alters the 
entire recording, potentially eliminating genuine neural activity. Thus, 
the successful application of ICA for EEG data cleaning depends on (1) 
an appropriate separation of non-neural sources in distinct components 
and (2) their proper identification. 

ICA is a common practice in the preprocessing of adult data. How
ever, its implementation in infant data is not widespread, and its benefits 
are unclear. The poor performances of the method are partially due to 
the nature of infant EEG data. Young infants’ recordings contain more 
slow waves than adult data (Eisermann et al., 2013; Marshall et al., 
2002), ERPs are less precise in time (Kushnerenko et al., 2002), and 
more variable (Naik et al., 2021). The nature of the artifacts is also 
different in infants and adults. Adults are often quiet and attentive, with 
a low voltage EEG. Thus, artifacts are rare and have a markedly different 
signal, contrary to infants. All these factors hamper a successful sepa
ration of neural and non-neural sources. A second reason for the lower 
performances is that algorithms for automatic identification of 
artifact-related IC have been developed primarily for adult data. 
Recently, some algorithms have been adapted for developmental data. 
For example, the ADJUST algorithm (Mognon et al., 2011) has been 
optimized into adjusted-ADJUST (Leach et al., 2020) using 6-year-old 
children recordings and the MARA algorithm (Winkler et al., 2011) 
into iMARA (Haresign et al., 2021) using training recordings from 
10-month-old infants. However, the continuous developmental change 
of the signal (e.g., changes in the power spectrum profile and ERP due to 
maturation of the neural circuits, changes in the diffusive properties of 
the skull due to its maturation) may hinder the classification and 
degrade the algorithm’s performance. 

A good ICA decomposition requires several considerations. In order 
to obtain a reliable separation in ICs, the data must be high-pass filtered 

at least at 1 Hz and should not contain high amplitude noise (e.g., mo
tion artifacts) (Winkler et al., 2015). However, high-pass data filtering 
may not be suitable for many EEG analyses (e.g., ERPs are distorted, and 
slow waves may be lost). We implemented a standard solution consisting 
of high-pass filtering and applying ICA to a copy of the data. In this way, 
the non-neural components are estimated and subtracted from the 
original data (Debnath et al., 2020). 

To avoid high amplitude noise on the data, we restricted the ICA to 
the time samples tagged good and set the remaining bad data points to 
zero. Next, we performed a wavelet-thresholding on a first ICA (Geetha 
and Geethalakshmi, 2011; Johnstone and Silverman, 1997) to remove 
potentially remaining transient high amplitude artifacts. Then, on the 
clean data, we applied ICA again. The use of wavelet-thresholding on a 
first ICA decomposition improves the final ICA decomposition 
(Gabard-Durnam et al., 2018; Rong-Yi and Zhong, 2005). 

Another important consideration is that the recording should fulfill 
m ≥ 30× n2, where m is the number of samples and n is the number of 
channels (Onton and Makeig, 2006). Unfortunately, infants’ recordings 
are generally not long enough to guarantee this condition. There are two 
alternatives to overcome this issue. One is to reduce the analysis to a 
subset of channels. The second possibility is applying PCA and retaining 
only the first components to reduce the problem’s dimensionality. 

We do not regularly apply ICA in APICE (see the pipeline validation 
section for further discussion). When we apply it, we recommend that 
data are high-pass filtered at 2 Hz (Winkler et al., 2015), and we use PCA 
first to reduce the dimensionality of the problem. We have noticed that 
the variance lost by keeping only the first ~ 50 components is minimal 
with high-density nets, and results are more accurate than by reducing 
the number of channels because fewer channels entail a loss of spatial 
resolution and a decrease in the performance of the classification algo
rithms. Moreover, reducing the number of channels implies either not 
analyzing some of them or analyzing the data in multiple loops. 
Therefore, we opted to use PCA instead for short recordings. 

Notice that for ICA, the signals need to be independent. Thus, in 
principle, ICA should be applied before the spatial interpolation of the 
non-functional channels. However, if PCA is applied first to reduce the 
dimensionality, ICA can be performed before or after interpolating non- 
functional channels. We use the iMARA algorithm (Haresign et al., 
2021) to identify components associated with non-neural artifacts 
automatically. In Appendix D, we describe the function that performs 
ICA in APICE. 

2.7. Definition of bad epochs 

Once continuous recordings are segmented into epochs, we can 

Fig. 3. Example of heartbeat (A) and a jump in the signal (B) artifact correction by target-PCA and ICA. The shaded area represents the samples identified as having 
artifacts and on which target-PCA is applied. The figure shows the original data (original: black), the data preprocessed using APICE(3) + W-ICA (W-ICA: blue), and 
the data preprocessed APICE(3) (t-PCA: red). The original data and the W-ICA data overlap, depicting how W-ICA fails to remove the heartbeat and the jump in the 
signal. The target-PCA removes the artifacts but introduces drifts in the signal affecting low-frequency activity (below the high-pass filter used to remove the drifts). 
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define bad epochs that should not be considered in subsequent analyses. 
An epoch is defined as bad if any of the following three criteria is pre
sent: 1) it contains any bad time; 2) it contains more than 30% of bad 
channels; 3) if more than 50% of the data was interpolated. Note that 
30% is the limit in the proportion of channels to define bad times; thus, 
the first two criteria overlap. The function to define bad epochs is 
described in Appendix E. 

2.8. Denoising Source Separation (DSS) 

Spatial filters are linear combinations of the sensors designed to 
partition the signal between components carrying the signal of interest 
from non-interest. In the particular case of the DSS, the spatial filter is 
designed to select components carrying evoked activity, meaning ac
tivity that is reproducible across trials from non-evoked activity. Thus, 
the method has been proposed as an alternative to clean ERPs (De 
Cheveigné and Parra, 2014; de Cheveigné and Simon, 2008). This data 
cleaning method is specific to the study of evoked activity because the 
activity that is not phase-locked to the stimuli is partially removed. 

In Appendix D, we describe the function provided in APICE to 
perform DSS. 

2.9. Preprocessing report 

Within the EEGLAB structure, we register a report containing the size 
of the data, the amount of rejected data, and the amount of interpolated 
data after each data processing step. More specifically, we retain the 
number of channels, samples, epochs, the number of rejected and 
interpolated points, and the number of bad times, bad channels, and bad 
epochs. We also provide a function that prints a table in the command 
window and a text file to summarize these measures. The information is 
collected for all subjects at critical points during the pipeline. Specif
ically, it summarizes the rejection percentages before data epoching, 
before the rejection of bad epochs, and at the final stage. This summary 
information should enable evaluating the pipeline’s performance and 
detect possible problems in some participants. 

A description of these functions can be found in Appendix E together 
with the report for the analysis performed using the APICE pipeline on 
datasets 1 and 2 as examples (Tables S1 and S2). 

3. Pipeline validation 

Since the “real” ERP is unknown, it is not banal to evaluate different 
pipelines. We can distinguish two ways in which different preprocessing 
steps can influence data quality. On the one hand, some processes might 
introduce a systematic bias in the measurement; thus, affecting accu
racy. For example, this is the case of filtering that can modify the timing 
and shape of the response (de Cheveigné and Nelken, 2019) or blind 
source separation methods that might result in the removal of neural 
signal attenuating the ERPs (Haresign et al., 2021). On the other hand, 
other processes might affect the variability across different measure
ments of the same response (i.e., trials); thus, the precision, for example, 
when motion or physiological artifacts are not adequately removed. 
While a bias in the measurement results in a change of the grand average 
ERP, a loss of precision results in an increase in the error of the ERPs but 
not necessarily in a change in the grand average response (there is no 
systematic error across trials and participants). In brief, an increased 
error due to a loss of precision means a loss of statistical power but not a 
distortion of the evoked response. 

Ideally, the goal is not to introduce biases in the signal and retain as 
much data as possible without losing precision. Therefore, we verified 
that no systematic biases were introduced by any method, and we 
compared the pipelines performances based on: (1) the proportion of 
retained epochs and (1) the standardized measurement error (SME) 
proposed by Luck et al. (2021). The SME measures the variability across 
epochs, with a lower SME implying that the responses across epochs are 

closer to each other. A smaller SME and more trials retained translate 
into a lower error for the ERP obtained for each subject and, therefore, 
an increase in statistical power in eventual statistical analysis. 

To validate APICE, we first identified the relative thresholds for 
artifact detection that provides minimal data loss (high trial retention) 
with good data quality (low SME). To do so, we ran APICE with three 
different values: 2, 3, and 4 interquartile ranges (see Section 2.3), and 
we compared the performance. Then, we investigated whether different 
modifications of APICE bring any improvement. Specifically, we vali
dated the interpolation of localized artifacts in the continuous data by 
comparing APICE with a reduced version of it, APICEa, which includes 
the artifacts’ detection in the continuous data, but not the interpolation 
of localized artifacts (Fig. 1). Additionally, we compared APICE with 
two other versions, including W-ICA and DSS filters, to evaluate if these 
cleaning algorithms improve the pipeline performance (Fig. 1). Finally, 
we validated APICE by comparing its performance with a Standard 
preprocessing pipeline (STD) and MADE (Debnath et al., 2020). The STD 
pipeline is a preprocessing consisting of minimal steps widely used in 
infants studies (e.g., Adibpour et al., 2018; Friedrich and Friederici, 
2017; Kabdebon and Dehaene-Lambertz, 2019; Winkler et al., 2009). 
The data is filtered, epoched, and bad channels are identified on the 
segmented data using absolute thresholds and, when possible, recon
structed using spline-interpolation; thus, the procedure implies a mini
mal number of steps. MADE is a pipeline optimized for developmental 
data using ICA combined with adjusting-ADJUST (Leach et al., 2020) for 
automatic IC removal. 

While APICE can be used to preprocess data that might be used in its 
continuous form, we decided to validate it using ERPs for several rea
sons. First, ERPs remain the most frequent method to study infant 
cognition. Second, data quality measures have been described for ERPs 
(Luck et al., 2021). Third, data quality measures for ERPs should be valid 
for any other type of analysis based on stimuli evoked responses (e.g., 
decoding, fast periodic stimulation). 

To have a more robust validation, we analyzed two very distinct 
datasets. Significant changes occur in the EEG features during infant 
development (Eisermann et al., 2013; Marshall et al., 2002; Nelson and 
Monk, 2001), and the level of contamination by motion artifacts can 
vary considerably according to infants’ age, vigilance, and the type of 
task. Therefore, we decided to use two datasets differing in infants’ age 
and vigilance, stimulation modality, and type of task. The first dataset 
corresponds to an auditory experiment in sleeping neonates, and the 
task consisted of passive listening to syllables. Motion artifacts were thus 
minimally contaminating the data. The second experiment corre
sponded to a visual task where 5-month-old infants looked at a sequence 
of images on the screen. The infants were awake and actively engaged in 
the task, resulting in strong motion artifacts in the data. 

3.1. Datasets 

3.1.1. Dataset 1: neonates dataset 
The neonate’ dataset corresponds to an auditory experiment. During 

each trial, infants heard 4 or 5 syllables lasting 250 ms presented every 
600 ms. 216 trials were presented to each infant. Scalp electrophysio
logical activity was recorded using a 128-electrode net (Electrical Geo
desics, Inc.) referred to the vertex with a sampling frequency of 250 Hz. 
Neonates were tested in a soundproof booth while sleeping or during 
quiet rest. Participants were 24 (11 males), healthy-full-term neonates, 
with normal pregnancy and birth (gestational age > 38 weeks of 
gestation, Apgar score ≥ 7/8 at 1 and 5 min, and cranial perimeter 
≥ 33.0 cm). All participants were tested at the Port Royal Maternity (AP- 
HP) in Paris, France. Parents provided informed consent. 

3.1.2. Dataset 2: 5-month-old dataset 
The 5-month-old infants’ dataset was a study investigating their 

capacity to associate two sets of images. During each trial, an attention 
grabber appeared on the center of the screen for 0.6 s, followed by a first 
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image lasting 1 s, a second image lasting 1.2 s, and the attention grabber 
again during other 1.0–1.2 s. The experiment lasted until the infants 
were fussy (80–140 trials per participant). Scalp electrophysiological 
activity was recorded using a 128-electrode net (Electrical Geodesics, 
Inc.) referred to the vertex with a sampling frequency of 500 Hz. Infants 
were tested in a soundproof shielded booth while sitting in their parents’ 
lap. Participants were 26 (12 males), 22.98-weeks-old infants (SD 1.41, 
min 20.86, max 27). All participants were tested at NeuroSpin, in Gif/ 
Yvette, France. Parents provided informed consent. 

3.2. Preprocessing 

We included different preprocessing approaches. The final steps 
were the same for all methods. After bad epochs were removed, data 
were average referenced, and baseline corrected over [− 100, 100] ms. 

3.2.1. APICE pipeline 
The APICE pipeline consisted of the steps described in each of the 

corresponding sections above. Data were filtered (low-pass filter at 
40 Hz and high-pass filter at 0.1 Hz), and artifacts were detected on the 
continuous data (see Section 2.3). Afterward, bad times and channels 
were defined (see Section 2.4). Bad times were identified as those with 
more than 30% of the good channels rejected and lasting at least 100 ms. 
Bad channels were those presenting artifacts during more than 30% of 
the good times. Artifacts were corrected using target PCA on segments 
shorter than 100 ms and spatial spherical spline to interpolate bad 
channels (see Section 2.5). Finally, artifacts were detected again, and bad 
times and channels were re-defined. Fig. 4 shows an example of pre
processed data. 

We used three different relative thresholds for artifact detection. As 
described in Section 2.3, the relative thresholds are fixed based on a 
certain number of interquartile ranges from the first and third quartiles. 
We fixed this value to 2 (APICE (2)), 3 (APICE (3)), and 4 (APICE (4)) in 
different runs of the preprocessing to evaluate how it affects the rejec
tion percentage. A lower value (2) detects more artifacts but discards 
more data. A higher value (4) misses some artifacts but keeps more data. 

To obtain ERPs, the continuous preprocessed data was further high- 

pass filtered at 0.2 and epoched. Then, bad times and channels were re- 
defined on the epoched data based on the data already rejected. A 
sample was defined as bad as explained on continuous data. A channel in 
a given epoch was defined as bad if it presented any artifact lasting more 
than 100 ms. Notice that some channels may present artifact events 
during periods not defined as bad times because we re-detected artifacts 
after the correction of transient artifacts (see Fig. 2D). If less than 30% of 
the channels were bad, they were interpolated using spherical splines. 
Epochs were rejected based on the amount of bad data: either when 
more than 30% of the channels were bad channels or when the epoch 
contained any bad time. Finally, the rejected epochs were removed, data 
was average referenced, and the average over the period [− 100, 100] 
ms was used as the baseline. All epochs were averaged in each infant and 
then across infants to create a grand average ERP. 

3.2.2. APICEa pipeline (reduced version) 
APICEa is a reduced version of APICE(3) in which we removed the 

reconstruction of transient artifacts in the continuous data using PCA 
and spatial spherical spline interpolation. All the other steps were the 
same. Notice that in this case, interpolation was done only after seg
menting the data into epochs as it is usually do all the other available 
pipelines. 

3.2.3. APICE + W-ICA pipeline 
The APICE + W-ICA pipeline was primarily the same as the APICE(3) 

pipeline using a relative threshold equal to 3 for the artifacts rejection 
steps. After artifacts identification and correction in the continuous data, 
ICA was applied as described in Section 2.5. The steps to obtain the ERP 
are the same as in the APICE pipeline. 

3.2.4. APICE + DSS pipeline 
The APICE +DSS pipeline is the same as the APICE(3) pipeline, with 

a relative threshold equal to 3 for the artifacts rejection steps. The only 
difference is that the DSS filter was applied to the remaining trials after 
bad epochs were removed and the data were average-referenced. In the 
first PCA, we retained 50 components, and in the second PCA, 15. 
Finally, data were baseline corrected as in the other pipelines. 

Fig. 4. Examples of 70 s of pre
processed continuous data. (A) Data 
from one subject of dataset 1 after the 
artifacts’ detection. Data tagged as 
“bad” is shown in red. Y-axis scale 
30 μV. (B) Data from the same subject 
of dataset 1 after the artifacts’ detection 
and correction (APICE(3) pipeline). Bad 
times are shown in orange. Y-axis scale 
30 μV. (C) Data from one subject of 
dataset 1 after the artifacts detection, 
correction, and W-ICA (APICE(3) + W- 
ICA pipeline). Bad times are shown in 
orange. Y-axis scale 30 μV. (D) Analog 
than (A) for data from one subject of 
dataset 2. Y-axis scale 120 μV. (E) 
Analog than (B) for data from the same 
subject of dataset 2. Y-axis scale 120 μV. 
(F) Analog than (C) for data from the 
same subject of dataset 2. Y-axis scale 
120 μV.   
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3.2.5. Standard pipeline 
We based the STD pipeline on a preprocessing procedure widely used 

in infant studies (e.g., Adibpour et al., 2018; Friedrich and Friederici, 
2017; Kabdebon and Dehaene-Lambertz, 2019; Winkler et al., 2009), 
consisting of minimal steps. The data were filtered (low-pass filter at 
40 Hz and high-pass filter at 0.2 Hz) and epoched. Note that the same 
0.2 Hz high pass-filtered is applied in all the pipelines before epoching. 
Afterward, we defined bad channels per epoch based on three criteria. 
First, we discarded channels for which the 5% stronger correlations with 
the other channels were lower than 0.4. Then, we rejected channels with 
an amplitude bigger than 500 μV on non-average reference data. Finally, 
we rejected channels with a fast running average bigger than 250 μV or a 
difference between the fast and slow running average bigger than 150 
μV on average reference data. If less than 30% of the channels were 
rejected, they were interpolated using spherical splines. If more than 
30% of the channels contained artifacts, the epoch was rejected. The 
retained epochs were average referenced, and baseline corrected using 
the average over [− 100, 100]. All epochs were averaged in each infant 
and then across infants to create a grand average ERP. 

3.2.6. MADE pipeline 
We implemented the MADE pipeline (Debnath et al., 2020) using the 

codes available at https://github.com/ChildDevLab/MADE-EEG-pre 
processing-pipeline. In the MADE pipeline, the data is first filtered. Af
terward, not working channels are identified using FASTER (Nolan et al., 
2010). Then ICA is performed on a copy of the data high-passed filtered 
at 1 Hz. Before applying ICA, the data is epoched in one-second 
non-overlapping epochs, and electrodes and epochs containing arti
facts are removed. After ICA decomposition, components associated 
with artifacts are automatically removed using adjusting-ADJUST 
(Leach et al., 2020). Then, data is segmented and baseline corrected. 
Epochs containing residual ocular artifacts (high amplitude on pre
defined frontal channels) are removed. If any remaining channels show 
high amplitude activity, they are reconstructed using spherical spline 
interpolation. Epochs with too many interpolated channels are rejected. 

Here we filter the data between 0.2 Hz and 40 Hz. To detect residual 
ocular artifacts and non-functional channels, the authors recommend an 
amplitude threshold of 150 μV for infant data. However, this value 
rejected almost all the data for most of the subjects of Dataset 2 (5- 
month-old infants). We, therefore, increased it to 500 μV to Dataset 2. In 
the MADE pipeline, a limit of 10% of interpolated channels is used to 
reject epochs. We increased this value to 30% because otherwise, the 
rejection was very high (even when higher amplitude thresholds were 
used). Moreover, 30% is the limit used by APICE to define bad times; 
thus, the two pipelines become easy to compare. We want to point out 
that applying the MADE pipeline with the same values as proposed by 
the authors (Debnath et al., 2020) gave much worse results (see Ap
pendix F); thus, we tried to optimize the absolute threshold used for 
rejection for both datasets. See Fig. 4 for an example of preprocessed 
data. 

3.3. Pipelines evaluation 

To control for systematic biases introduced by the different pre
processing approaches, we report the grand average responses and sta
tistically compare them. To compare the pipeline’s performance in 
terms of data quality, we report two metrics: (1) the proportion of 
retained epochs and (2) the SME (Luck et al., 2021). 

The proportion of retained epochs was computed as the number of 
epochs after rejection divided by the number of epochs before rejection. 
The SME was computed for the average response over a region of in
terest and time window corresponding to the auditory (Dataset 1) or 
visual ERPs (Dataset 2) using bootstrap. First, we randomly sampled 
with replacement N responses for each subject, where N is the number of 
retained epochs. Then, we computed the mean in time and space. We 
repeated the process 1000 times, and the standard deviation of the 

measure across all iterations corresponded to the SME for each subject 
ERP (Luck et al., 2021). Higher SMEs denote nosier data and smaller 
SMEs cleaner data. The SME for Dataset 1 was computed over central 
electrodes in the time window 250–350 ms (Fig. 5), which corresponds 
to the auditory response (Dehaene-Lambertz and Pena, 2001). The SME 
for Dataset 2 was computed over occipital electrodes in the time window 
550–650 ms (Fig. 5), which corresponds to the P400 visual ERP (de 
Haan and Nelson, 1999). We used a time window centered at the peak of 
the ERP of the same length for both datasets; however, a change in the 
time window length does not affect the pattern of results. 

We statistically compared the two metrics across the different pre
processing approaches. When an ANOVA is used for comparison, the 
partial-eta-squared (η2

p) and the generalized-eta-squared (η2
G) are re

ported. Post-hoc pairwise comparisons were Bonferroni corrected. For 
pair comparisons, Cohen’s d effect sizes were computed based on the 
means and standard deviations. 

3.4. Results 

The grand average ERPs obtained with APICE and the regions and 
time windows of interest used on the two datasets are illustrated in 
Fig. 5. The grand average responses for each of the pipelines are reported 
in Appendix F (Figs. S1–S3). No main differences were observed be
tween the grand-average responses across pipelines, suggesting no 
substantial biases were introduced by any of the methods (or the bias 
was comparable across all the pipelines). 

3.4.1. APICE rejection level 
Before comparing the SME and the percentage of retained epochs 

with varying thresholds, it is worth noticing that, as expected, the level 
of artifact contamination in the two datasets was considerably different. 
By using APICE(3) the average percentage of data tagged as bad in 
Dataset 1 was 4.19% (SD 3.84%, min 0.19%, max 12.92%), and in 
Dataset 2 12.19% (SD 8.79%, min 1.88%, max 30.40%). Regarding the 
amount of bad times, it was for Dataset 1 6.44% (SD 5.46%, min 0.29%, 
max 18.30%), and for Dataset 2 17.06% (SD 11.93%, min 1.93%, max 
43.93%). These results illustrate the differences in terms of artifacts 
contamination between datasets. The tables summarizing the rejection 
obtained from the continuous preprocessed data are presented in Ap
pendix E. 

We ran two 1-way-ANOVAs to test the effect of three artifact- 
rejection levels in APICE (2, 3, and 4) on the SME and the percentage 
of retained epochs. For Dataset 1, on the SME, we observed a main effect 
of threshold (F(2,46) = 34.83; p = 6.16 × 10− 10; η2

p = 0.60; η2
G 

= 0.11). Pairwise comparisons, Bonferroni corrected, showed that the 
SME was lower in APICE(2) than in APICE(4) (p = 7.8 × 10− 6, d = 0.82) 
and APICE(3) (p = 3.0 × 10− 5, d = 0.46), and in APICE(3) than in 
APICE(4) (p = 7.2 ×10− 5, d = 0.40) (Fig. 6A). The effect of threshold on 
the amount of retained data was also significant (F(2,46) = 69.31; 
p < 1.3 × 10− 14; η2

p = 0.75; η2
G = 0.34). Pairwise comparisons, Bon

ferroni corrected, showed that, as expected, more epochs were retained 
in APICE(4) than APICE(2) (p = 4.7 × 10− 8, d = 1.59) and APICE(3) 
(p = 3.8 × 10− 7, d = 0.68), and in APICE(3) than APICE(2) 
(p = 7.9 × 10− 8, d = 1.01) (Fig. 6B). 

For Dataset 2, the threshold level 2 rejected all epochs for two sub
jects; thus, the SME could not be estimated, resulting in a smaller n. The 
effect of threshold on the SME was marginally significant (F(2,48) =
3.19, p = 0.05; η2

p = 0.12; η2
G = 0.01). Pairwise comparisons, Bonfer

roni corrected, showed no significant difference between APICE(2), and 
APICE(3) (p > 0.1, d = 0.12) and APICE(4) (p > 0.1, d = 0.25), and a 
significant difference between APICE(4) and APICE (3) (p = 0.01, 
d = 0.17) (Fig. 6C). The effect of threshold on the amount of retained 
epochs was significant (F(2,50) = 48.68; p = 1.84 × 10− 12; η2

p = 0.66; 
η2

G = 0.25). Pairwise comparisons, Bonferroni corrected, showed that 
the proportion of epochs retained was larger in APICE(4) than APICE(2) 
(p = 6.2 × 10− 7, d = 1.21) and APICE(3) (p = 3.1 × 10− 5, d = 0.28), 
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and in APICE(3) than APICE(2) (p = 8.6 × 10− 7, d = 0.97) (Fig. 6D). 

3.4.2. APICE modifications 
We evaluated the effect of interpolating localized artifacts by 

comparing our two metrics on the full and reduced pipelines, APICE vs. 
APICEa (Fig. 7). For both Datasets, APICE was better than APICEa. In 
Dataset 1, the SME was marginally lower in APICE (t(23) = − 2.11; 
p = 0.046; mean of the difference − 0.011; d = 0.09); and more data 
was retained after APICE (t(23) = 6.038; p = 3.7 × 10− 6; mean of the 
difference 3.84%; d = 0.50). In dataset 2, the SME was lower with APICE 
(t(25) = − 3.1488; p = 0.0042; mean of the difference − 0.22; 
d = 0.18), and more data retained after APICE (t(25) = 6.12; 
p = 2.12 × 10− 6; mean of the difference 4.84%; d = 0.28). 

To evaluate the effect of the two supplementary cleaning methods, 
ICA and DSS, we compared them with APICE. The ICA step applied on 
Dataset 1 removed on average 11.9% of the components (SD 8.37%, min 
0%, max 30%) and 0.57% of the total variance (SD 0.46%, min 0%, max 
2.09%). On Dataset 2, it removed on average 48.3% of the components 
(SD 17.18%, min 12%, max 75%) and 2.89% of the total variance (SD 
1.71%, min 0.07%, max 7.30%). The DSS filter on Dataset 1 removed 
13.18% of the total variance (SD 4.13%, min 6.51%, max 23.11%). On 
Dataset 2, it removed 33.46% of the total variance (SD 5.31%, min 
19.48%, max 44.43%). 

ICA and DSS slightly improve the validation metrics on specific 
datasets. In Dataset 1, the SME did not differ between APICE and 
APICE + W-ICA (p > 0.1; d = 0.03), and the amount of retained epochs 
was slightly higher for APICE than APICE + W-ICA (t(23) = 2.58; 
p = 0.017, mean of the difference 0.17%; d = 0.02), denoting that ICA 
did not improved data quality. In Dataset 2, APICE resulted in a slightly 
higher SME than APICE + W-ICA (t(25) = 3.55; p = 0.0016; mean of the 
difference 0.14; d = 0.12), and there was not significant difference in the 
amount of retained epochs (p > 0.1; d = 0.03), which means a modest 
increase in data quality. 

On dataset 1, a slightly higher SME was observed for APICE than 
APICE+DSS (t(23) = 2.86; p = 0.0090; mean of the difference 0.013; 

d = 0.10). On dataset 2, the SME did not significantly differ when APICE 
and APICE + DSS were applied (p > 0.1; d = 0.04). Note that the per
centage of retained epochs is not affected since the DSS is applied after 
bad epochs are removed. 

3.4.3. APICE compared to other pipelines 
For Dataset 1, we compared the results obtained with MADE using 

the threshold for artifact rejection suggested by the authors for infant 
data (150 μV) (Debnath et al., 2020). For Dataset 2, since too much data 
was rejected using this threshold, we tested different thresholds and 
used the one providing the best performance. Figs. S4 and S5 show how 
the SME and percentage of retained epochs for MADE vary for different 
thresholds. 

To compare the performances of APICE, STD, and MADE pipelines, 
we run two 1-way-ANOVAs on the SME and the percentage of retained 
epochs. On dataset 1, there was a main effect of pipeline on the SME (F 
(2,46) = 28.66; p = 8.28 × 10− 9; η2

p = 0.55; η2
G = 0.24). Pairwise 

comparisons, Bonferroni corrected, showed that the SME was lower in 
APICE(3) than in STD (p = 1.4 × 10− 5; d = 1.15) and in MADE than in 
STD (p = 9.9 × 10− 5; d = 1.06), while there was no significant differ
ence between APICE(3) and MADE (p > 0.1; d = 0.06). The main effect 
of the pipeline was also significant for the percentage of retained epochs 
(F(2,46) = 46.22; p = 9.89 × 10− 12; η2

p = 0.67; η2
G = 0.50). Pairwise 

comparisons, Bonferroni corrected, showed more retained epochs for 
STD than APICE (p = 5.1 × 10− 7; d = 1.76), and MADE 
(p = 1.7 × 10− 7; d = 2.17), and more retained epochs for APICE than 
MADE (p = 0.00011; d = 1.17). 

On dataset 2, on the SME, we observed a main effect of pipeline (F 
(2,50) = 16.38; p = 3.38 × 10− 6; η2

p = 0.440; η2
G = 0.11). Pairwise 

comparisons, Bonferroni corrected, revealed that it was due to lower 
SME for APICE than STD (p = 0.00024; d = 0.79) and MADE 
(p = 2.7 × 10− 5; d = 0.57), and a marginally significant lower SME for 
MADE than for STD (p = 0.073; d = 0.34). The effect on percentage of 
retained epochs was also significant (F(2,50) = 18.23; p = 1.13 × 10− 6; 
η2

p = 0.42; η2
G = 0.20). Pairwise comparisons, Bonferroni corrected, 

Fig. 5. Grand average ERPs obtained using APICE with a threshold for artifact rejection of 3. (A) Central electrodes (in red) considered for dataset 1. (B) Grand 
average ERP for the electrodes of interest for dataset 1. The peaks after the dotted lines (syllables’ onset) correspond to the auditory ERP following each syllable. The 
shaded area shows the time windows where the SME was computed (250–350 ms, peak of the auditory response to the last syllable of the epoch). (C) Occipital 
electrodes (in red) considered for dataset 2. (D) Grand average ERP for the electrodes of interest for dataset 2. The first two dotted lines indicate the onset of two 
images, and the third dotted line the appearance of the attention grabber. P1 and P400 are visible after the onset of the images, followed by the visual response to the 
attention grabber. The shaded area shows the time windows where the SME was computed (550–650 ms, P400 to the second image). 
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showed a significantly higher retention for APICE than STD 
(p = 1.5 × 10− 6; d = 1.13) and MADE (p = 1.7 × 10− 5; d = 1.09), and 
no difference between STD and MADE (p > 0.1; d = 0.14). 

3.5. Discussion 

We tested the effect of the rejection level used for artifacts detection, 
the validity of the different steps composing APICE, and its performance 
relative to other available pipelines on two different infant datasets. We 
evaluated the pipelines by the stability and reproducibility of the ob
tained ERPs as measured by the SME, a procedure proposed by Luck 
et al. (2021) to quantify ERP quality. This procedure computes the 
subject ERP through multiple random draws of the epochs and examines 
the distribution of the ERP values across draws. When the averaging 
process is successful at neutralizing unwanted “noise,” that is, if no 
unexpected large-amplitude non-evoked activity remains in the pre
processed data, the values of the SME are low. Further, we examined the 
number of kept epochs, crucial for complex paradigms where pertinent 
conditions comprise only a few trials. 

3.5.1. APICE rejection level 
We validated APICE on three threshold levels for artifact detection to 

find the best compromise between quality and retained data. Results 
show that decreasing the threshold from 4 to 3 minimally changes the 
percentage of rejected data while reducing the SME. On the other hand, 
a further decrease to 2 reduces the SME at the cost of a considerable 
increase in the rejection rate. In other words, while the change in SME 
shows a linear decrease with threshold decrease, the change in rejection 
shows a logarithmic trend. Therefore, using a too low threshold implies 
losing too much data relative to the gain in data quality, while too high 
thresholds result in a too high loss in data quality compared to the gain 
in data retention. Accordingly, we recommend using a threshold of 3 as 
default to keep enough epochs per subject. Nevertheless, the threshold 
can be adjusted depending on the analysis requirements –either more 
data but noisier or less data but cleaner. 

3.5.2. APICE modifications 
Besides detecting artifacts on the continuous data, APICE also cor

rects localized artifacts. We tested if this step brings any improvement by 

Fig. 6. Effect of the threshold level used 
for artifact detection in APICE. The 
boxplot shows the median, 25 and 75 
percentiles, and the whiskers 1.5 inter
quartile ranges. The cross shows the 
mean and the error bar the standard 
error. (A) SME for Dataset 1. (B) Per
centage of retained epochs for Dataset 
1. (C) SME for Dataset 2. (D) Percentage 
of retained epochs for Dataset 2. A good 
pipeline performance should result in a 
small SME (little noise) and a high per
centage of epochs retained. Asterisks 
indicate significant differences (Bonfer
roni corrected).   
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comparing APICE with APICEa, a reduced version in which we removed 
the interpolation of transient artifacts. Results show that while in APICE, 
the SME is only marginally lowered relatively to APICEa, the amount of 
retained epochs is considerably higher. Thus, the interpolation of tran
sient artifacts enables the recovery of otherwise lost epochs without loss 
of data quality. 

Finally, we tested whether the addition of ICA or DSS, two data 
cleaning methods extensively used in adult studies, can improve data 
quality. For ICA, we implemented the latest proposals offered in the 
literature. To achieve a better ICA decomposition, we high-pass filtered 
a copy of the data and applied a combination of ICA with wavelet- 
thresholding (Rong-Yi and Zhong, 2005), as it was also applied in 
HAPPE (Gabard-Durnam et al., 2018). For the IC automatic classifica
tion, we used iMARA (Haresign et al., 2021), a recent modification of 
MARA (Winkler et al., 2011), adapted to infant data. Finally, the activity 
separated as non-neural was removed from the original data. For dataset 

1 (neonates), ICA did not produce any improvement: the SME did not 
change, and it slightly reduced the number of retained epochs. For 
dataset 2 (5-month-old), ICA decreased the SME, but the size of the 
improvement was small, indicating that the obtained noise reduction 
was consistent across infants but meager in magnitude. The average 
number of components and the total variance removed was much bigger 
for dataset 2 than 1 (percentage of removed components: 48.3% vs. 
11.9%; total variance: 2.89% vs. 0.57%). The difference in the number 
of removed components, together with the no change between APICE 
and APICE+W-ICA in terms of SME for dataset 1, suggest that the ICA 
less successfully identifies physiological artifacts in neonates’ data. 

Overall, despite our effort to optimize ICA, its effectiveness on young 
infants’ ERP remains weak. iMARA performs better than the original 
MARA algorithm on classifying non-neural IC in 10–13-month-old in
fants (Haresign et al., 2021), and authors prove substantial improve
ments in data quality in an ERP study at this age. Nevertheless, our 

Fig. 7. Comparison between APICE 
(blue) and some variations of it. In 
particular, a reduced version, APICEa, 
in which artifacts were detected in the 
continuous data but without interpola
tion of artifacts in the continuous data 
(green); APICE + W-ICA, in which 
wavelet-thresholding ICA and iMARA 
for automatic components classification 
was applied to removed physiological 
artifacts; and APICE + DSS, in which 
denoising source separation was used to 
remove the non-evoked activity. The 
boxplot shows the median, 25 and 75 
percentiles, and the whiskers 1.5 inter
quartile ranges. The cross shows the 
mean and the error bar the standard 
error. (A) SME for dataset 1. (B) 
Retained epochs for dataset 1. (C) SME 
for dataset 2. (D) Retained epochs for 
dataset 2. Asterisks indicate significant 
differences between APICE and its 
variations.   
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results suggest that this improvement might be less substantial in 
younger populations. Given the high computational cost of applying ICA 
and the risk of removing neural activity, we recommend evaluating the 
cost/benefit of implementing this routine on a case-by-case basis. For 
example, for sleeping neonates for whom physiological artifacts as 
ocular movements are less prominent, and the ICA algorithms seem to be 
less efficient at separating them, its use does not seem to be justified. 
Instead, for older infants involved in an active task, ICA might improve 
data quality by removing physiological artifacts that otherwise remain 
in the data. 

The application of DSS on the retained epochs led to a similar 
outcome: a statistically significant but minimal reduction of the SME, 
specifically in Dataset 1 (neonates). Thus, we do not recommend it as 
default for infant ERPs studies, even though it might provide more 
substantial benefits if numerous trials are available. 

Possible explanations for the modest improvements observed 
following the application of ICA and DSS might reside in the intrinsic 
properties of the infant EEG. For example, high inter-trial variability 
(Naik et al., 2021) is likely to compromise the efficiency of DSS filters, as 
this method is based on the presence of highly reproducible activity 
across trials. In addition, developmental changes and variability of both 
neural responses and physiological artifacts might result in poor 
decomposition during ICA for infant data. Indeed, the authors of the 
iMARA algorithm report more variability in the manual coding of infant 
IC than adult IC (Haresign et al., 2021). While substantial improvements 
have been recently made in the implementation of blind source sepa
ration techniques in pediatric recordings (Haresign et al., 2021; Leach 
et al., 2020), more research is needed to adapt these techniques to 
younger populations and better characterize infant EEG recordings. 

Fig. 8. Comparison of APICE’s performance with the Standard pipeline (STD) and the MADE pipeline. The boxplot shows the median, 25 and 75 percentiles, and the 
whiskers 1.5 interquartile ranges. The cross shows the mean and the error bar the standard error. (A) SME for dataset 1. (B) Retained epochs for dataset 1. (C) SME 
for dataset 2. (D) Retained epochs for dataset 2. Asterisks indicate significant differences (Bonferroni corrected). 
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3.5.3. APICE compared to other pipelines 
Results show that the APICE(3) pipeline outperformed the STD and 

MADE pipelines (Fig. 8). While the STD pipeline retained more epochs 
than APICE(3) for Dataset 1 (an auditory experiment in sleeping neo
nates), this was at the cost of a much higher SME. If a greater number of 
epochs is a priori an advantage to recover the ERP through the average 
process, this is no longer the case when it implies a decrease in data 
quality. The neonates were tested asleep, which means that the 
recording was only mildly contaminated by motion and that the EEG 
amplitude was low; thus, high-amplitude artifacts exceeding the abso
lute thresholds used in the standard pipeline were rare. The imple
mentation of algorithms based on various signal features makes APICE 
more sensitive to outlier signals. In Dataset 2 (a visual experiment in 
awake 5-month-old infants), where the contamination by motion arti
facts was substantial, APICE(3) retained more data and yielded a smaller 
SME than STD. 

APICE(3) also outperformed MADE for both datasets. For Dataset 1, 
the SME was comparable between pipelines, but APICE retained a much 
higher number of epochs than MADE. For Dataset 2, APICE(3)’s per
formance was better in terms of both SME and epochs retention. The 
retention of more trials and smaller SMEs achieved by APICE than other 
pipelines entails smaller ERP errors, implying more statistical power 
(Luck et al., 2021). 

It is worth noticing that we needed to adjust the MADE rejection 
threshold in Dataset 2 to achieve a reasonable performance (Fig. S5). In 
APICE, thresholds are based on the distribution of the voltage values in 
each subject (and electrode), thereby ensuring optimal sensitivity across 
subjects and datasets and making APICE robust across different pop
ulations without main adjustments. Pipelines for which the artifacts’ 
detection relies on fixed thresholds need to be adjusted for each popu
lation, a costly and time-consuming process if it has to be done each time 
a dataset has to be analyzed. Moreover, even if the thresholds are 
adjusted, their performance remains poorer because differences in signal 
amplitude also exist between testing systems and subjects (e.g., due to 
differences in resistance). One could argue that also APICE requires the 
experimenter to set an overall rejection level at the beginning of the 
analysis. However, the results across the two tested datasets suggest that 
the effects of the rejection level are considerably stable across different 
populations. Moreover, APICE outperformed STD and MADE irre
spective of the particular choice at hand (see Figs. 6 and 7). In brief, the 
automatic detection of contaminated data through adaptive thresholds 
and the correction of localized artifacts on the continuous recording, 
implemented in APICE, results in better recovery of good quality data 
with a wide range of relative rejection levels. 

4. Conclusion 

EEG is a widely used technique in developmental studies. Never
theless, no standard procedure exists for the preprocessing of infant 
data, partly because of the small size of the research community and 
partly because of the many challenges preprocessing infant EEG entails. 
For example, infants’ recordings are shorter and more heavily contam
inated by motion artifacts. Moreover, the types of artifacts and the 
features of the EEG signal change during development (Eisermann et al., 
2013; Kushnerenko et al., 2002; Marshall et al., 2002; Nelson and Monk, 
2001), making the approaches optimized for adult data ineffective and 
the design of methods applicable across age groups challenging. 

APICE can successfully identify artifacts across different ages and 
experimental conditions by employing multiple algorithms and adaptive 
thresholds for artifacts detection and the interpolation of transient ar
tifacts on the continuous data. The approach we propose improves data 

recovery and data quality relative to other pipelines. Moreover, it brings 
flexibility because the same preprocessed data can serve to perform 
analyzes requiring different segmentation strategies. Furthermore, 
accurately detecting artifacts allows one to decide how to handle them 
in subsequent processes. For example, the amount of data with artifacts 
in an epoch can be used as a criterion to reject it, and detected motion 
artifacts could be excluded before performing ICA (or any other blind 
source separation method), a fundamental step for good sources 
separation. 

Nevertheless, crucial challenges remain. Many physiological arti
facts (e.g., eye movements, muscle artifacts, skin potential) present 
amplitude and spectral properties similar to those characterizing the 
neural signal. Therefore, algorithms based on local properties might fail 
in disentangling the two. For example, with APICE, we can identify the 
heartbeat using an algorithm that detects fast changes in the signal, and 
we can correct them using target PCA. However, APICE does not 
explicitly search for artifacts like blinks or eye movements. Moreover, 
even if all physiological artifacts could be identified, efficient removal of 
physiological artifacts cannot reside on the rejection of any segment 
contaminated by them. Instead, it would require blind source separation 
methods (Islam et al., 2016; Jiang et al., 2019) as ICA and proper 
individuation of the irrelevant sources. APICE can be combined with 
some of the latest ICA and automatic components classification methods 
available for infant data to deal with physiological artifacts. Neverthe
less, our results suggest that the benefits for young infant EEG in the 
current state of the arts are still limited. Considering the computational 
cost of ICA and the risk of removing neural activity, the use of ICA 
should be evaluated case-by-case, taking into account the level of 
physiological artifacts as eye movements expected in the data. 

We created APICE to be fully automated and flexible. Automation 
guarantees replicability and scalability for growing data sets (without 
increasing the human workload). APICE performs all the artifact 
detection steps in the continuous data to ensure flexibility and better 
data recovery. Consequently, the same preprocessed data is ready for 
different types of analysis. Furthermore, APICE is modular, allowing it to 
be easily modified to meet specific needs and incorporate new steps. 
Additionally, APICE includes functions for renaming events, correcting 
their timing, organizing epochs by condition, and computing the 
average ERP. APICE is freely available at https://github.com/neuroki 
dslab/eeg_preprocessing, with example scripts illustrating its applica
tion. APICE is currently limited to MATLAB. However, we are currently 
working on (Savalle, 2022) transferring it to Python and integrating it 
into MNE (Gramfort et al., 2013). 
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