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Abstract: Dengue is a neglected disease, present mainly in tropical countries, with more than
5.2 million cases reported in 2019. Vector control remains the most effective protective measure
against dengue and other arboviruses. Synthetic insecticides based on organophosphates, pyrethroids,
carbamates, neonicotinoids and oxadiazines are unattractive due to their high degree of toxicity to
humans, animals and the environment. Conversely, natural-product-based larvicides/insecticides,
such as essential oils, present high efficiency, low environmental toxicity and can be easily scaled up
for industrial processes. However, essential oils are highly complex and require modern analytical
and computational approaches to streamline the identification of bioactive substances. This study
combined the GC-MS spectral similarity network approach with larvicidal assays as a new strat-
egy for the discovery of potential bioactive substances in complex biological samples, enabling the
systematic and simultaneous annotation of substances in 20 essential oils through LC50 larvicidal
assays. This strategy allowed rapid intuitive discovery of distribution patterns between families and
metabolic classes in clusters, and the prediction of larvicidal properties of acyclic monoterpene deriva-
tives, including citral, neral, citronellal and citronellol, and their acetate forms (LC50 < 50 µg/mL).

Keywords: dengue; essential oils; large datasets; molecular networking; larvicidal activity

1. Introduction

Dengue is a viral infection transmitted mainly by the female Aedes aegypti mosquito.
This disease mainly affects tropical regions, depending on the rain precipitation rate,
temperature, humidity and urbanization process [1–7]. The number of cases has increased
almost 8-fold over the last 2 decades (from 505,430 in 2000 to 2.4 million in 2010; 4.2 million
in 2019), leading to the death of more than 4000 people in 2015. Regions of Latin America,
East Asia and the Western Pacific account for over 70% of the cases. In Brazil, more than
1.5 million cases (more than 1000 deaths) were recorded in 2016 alone [1,7,8].

The WHO indicates that combatting the transmitting mosquito is the most efficient
strategy to control and prevent dengue [9]. However, there are still no specific insecti-
cides or repellents (natural or synthetic) to exclusively combat the Ae. Aegypti mosquito.
Consequently, insecticides and repellents can cause disturbances and/or the mortality of
important insects, such as bees and ants, resulting in the degradation of important ecosys-
tem services, including the pollination of crops [9]. Thus, nontoxic and specific repellent
agents or larvicides against Ae. aegypti are urgently required to both reduce the number of
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arboviral disease cases (dengue, Zika and chikungunya) and protect the ecological roles
of insects.

In order to address the aforementioned concerns, the Brazilian National Dengue
Control Program has promoted the replacement of these synthetic compounds with sub-
stances that are less harmful to the environment. Organophosphates (malathion, feni-
trothion and temephos) initially replaced organochlorines, which were in turn replaced
by pyrethroids (cypermethrin and deltamethrin). However, these compounds still present
some toxicity and continue to endanger populations of pollinating insects, animals and
the environment [8].

Since the last century, efforts have been made to source products of natural origin with
activity against Ae. Aegypti, such as pyrethrum and neem oil; although, no commercial
products have been approved/authorized by Brazilian regulatory bodies to date. The
literature reports the potential of various natural insecticides, especially those of microbial
and plant origin [10,11]. The arms race between insects, plants and microorganisms
constitutes a large part of the known metabolic arsenal, the so-called secondary metabolites
or “special” metabolites. Today, it is estimated that more than 100,000 plant-derived
metabolites may have some activity against insects and microorganisms [12].

Among the advantages of natural pesticides/larvicides, we can highlight their envi-
ronmental safety, biodegradation and multiple mechanisms of action through synergistic
effects. However, while the biodegradation of botanical active ingredients may sound posi-
tive, it actually represents a double-edged sword. There is generally greater compatibility
between the released biocontrol agents and other natural enemies and greater safety for bees
and other pollinators [8,13]. However, the lack of persistence of these bio-insecticides in
crops under real field conditions brings some disadvantages. Most botanical insecticides are
highly susceptible to photodegradation (e.g., pyrethrins), abiotic oxidation (azadiractins) or
volatilization loss (essential oil terpenoids) when applied outside a controlled environment
(e.g., indoors), requiring their reapplication when used on monocultures. Despite this
limitation, certain botanical insecticides have proven records dating back 2–3 decades,
confirming their effectiveness in the field [14,15]. Between 2007 and 2016, the state of
California used azadirachtin, chenopodium and natural pyrethrins as the main botanical
assets for pest control. However, recent formulation developments present opportunities
to dramatically improve the field performance of botanical insecticides in terms of their
efficacy and persistence [16,17].

The search for larvicidal agents present in essential oils (EO), plants or natural ex-
tracts requires increasingly modern analytical and computational tools, since these natural
products are composed of dozens and even hundreds of compounds [18–21]. Recently,
innovative methods based on LC-MSn have been applied for untargeted metabolomic anal-
ysis to accelerate the structural annotation of compounds [12,22–25]. The increased sharing
of experimental MS/MS data and the growing number of spectral databases, such as NIST,
METLIN, MassBank, MASST, NuBBEDB, Sumner/Bruker and ReSpect, have promoted the
development of several bioinformatics approaches that help in the interpretation of large
MS/MS datasets [26–33].

One of these approaches is the concept of spectral similarity networking (so-called
molecular networks—MN) which is based on the organization and visualization of MS/MS
data via spectral similarity (homologous fragments) [24,34–39]. Structurally related com-
pounds often share similar MS/MS spectra. The MN groups these compounds (nodes)
according to the degree of spectral similarity as a network in a knowledge graph format,
thus allowing visual exploration of identical/analogous molecules and accelerating the
identification of subgroups or characteristics of a given group of molecules. Chemical
annotation via molecular networking arises from the combination of direct spectral corre-
spondence between MS/MS spectra and compound libraries (MS/MS data) and through
the relationship of molecular network masses (differences) between closely related struc-
tures (degree of spectral similarity). A mass difference of 15 Da between nodes with a
high degree of similarity may suggest a CH3 group for the same class of compound, while
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differences of 162, 146 or 132 Da may correspond to homologues glycosylated with hexose,
deoxyhexose or pentose [36,39–42].

In this study, we propose a strategy combining the spectral similarity networking
(molecular networking) approach with larvicidal activity tests against Ae. aegypti to analyze
commercial essential oils with the aim of discovering potential bioactive metabolic classes.
The GC-MS retention time and fragmentation, chemotaxonomy and larvicidal activity
against Ae. aegypti (LC50 values) of essential oils were organized, grouped and evaluated
by molecular networking. Figure 1 shows a graphical representation of the strategy.
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Figure 1. Strategy for the discovery of potential bioactive classes: spectral similarity networking
(GC-MS data) combined with biological assays (larvicidal assay—LC50 values).

2. Results

Essential oils from 20 plant species (from 9 families) with insecticidal properties were
analyzed by an untargeted profiling method using GC-EI/MS (Supplementary Materials)
and tested against Ae. aegypti larvae (third instar, L3), evaluating their mortality rate at
24 h and 48 h, Table 1. According to Dermaque et al. [43], an initial screening strategy to
preselect an extract active against Ae. aegypti larvae involves testing at a single concentration,
standardized at 250 ppm.

Species of the genera Lavandula, Cymbopogon, Rosmarinus, Citrus, Perlagonium and
Amyris demonstrated larvicidal activity, while the other essential oils presented little or
no activity. Among them, it is noted that the essential oils of the genus Eucalyptus, as well
as the species of Cymbopogon and Litsea, had highly active LC50 values of: Eucalyptus citri-
odora (23.3 µg/mL), Eucalyptus staigeriana (43.1 µg/mL), Cymbopogon nardus (31.3 µg/mL),
Cymbopogon flexuosus (41.7 µg/mL) and Litsea cubeba (32.7 µg/mL).

In order to annotate and streamline the process of discovering bioactive classes in
essential oils, we applied the molecular network approach with retention time and frag-
mentation data from the GC-MS/MS experiments and metadata, such as taxonomy and
LC50 values calculated in the Ae. aegypti larvicidal tests.

Molecular Networking

The molecular network of 20 essential oils resulted in 82 nodes (with qualitative,
quantitative and metadata for each compound), connected by 258 edges and grouped into
a large cluster with 76 nodes and 6 lone pairs, as shown in Figure 2. One of the advantages
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of MN is the ability to create filters for nodes and edges in order to recognize patterns in
the dataset. In this sense, different colors were attributed to nodes considering the retention
time of the compounds present in the GC-MS profiles (red—longer RT; yellow—shorter
RT) and to the relative abundance of ions represented by the node sizes (Figure 2).

Table 1. Commercial essential oil larvicidal assay (mortality rate at 24 h and 48 h) results and
corresponding LC50 values determined against Ae. aegypti.

Sample Species (Family) Batch Major Compound
(%)

Mortality
250 µg/mL
(%, 24 h)

Mortality
250 µg/mL
(%, 48 h)

LC50
(µg/mL)

(24 h)

01 Juniperus communis
(Cupressaceae) 180113 α-pinene (38.9) 75 82.5 135.2

02 Origanum majorana
(Lamiacae) 180319 terpinen-4-ol (25.2) 82.5 80 121.3

03 Cymbopogon martini
(Poaceae) 180227 geraniol (80.6) 87.5 92.5 73.88

07 Boswellia carteri
(Burseraceae) 180217 α-pinene (43.8) 42.5 75 129.8

08 Mentha piperita
(Lamiaceae) 180418 menthol (45.7) 100 100 95.29

09 Citrus aurantium var.
amara (Rutaceae) 180206 D-limonene (96.9) 42.5 60 177.1

10 Eucalyptus citriodora
(Myrtaceae) 180307 citronelal (74.4) 100 100 23.26

11 Eucalyptus globulus
(Myrtaceae) 180205 eucalyptol (89.9) 87.5 97.5 276.6

14 Lavandula angustifolia
(Lamiaceae) 180408 linalyl acetate (63.0) 100 100 85.88

16 Lavandula hybrida
(Lamiaceae) 180403 linalool (36.2) 70 70 109

18 Cymbopogon flexuosus
(Poaceae) 180326 citral (50.6) 100 100 41.66

19 Cymbopogon nardus
(Poaceae) 180306 citronelal (45.9) 100 100 31.25

20 Cedrus atlantica
(Pinaceae) 180226 β-himachalene

(54.7) 60 65 269.1

21 Rosmarinus officinalis
(Lamiaceae) 180415 camphor (23.6) 90 90 80.33

23 Citrus aurantium subsp.
Bergamia (Rutaceae) 180402 D-limonene (38.2) 100 100 99.57

24 Pelargonium graveolens
(Geraniaceae) 171234 citronellol (35.3) 100 100 78.32

27 Litsea cubeba
(Lauraceae) 180412 citral (47.7) 100 100 32.74

31 Salvia sclareia
(Lamiaceae) 180405 linalyl acetate (71.0) 60 75 120

33 Amyris balsamifera
(Rutaceae) 180214 valencene (21.5) 100 100 99.51

34 Eucalyptus staigeriana
(Myrtaceae) 180207 D-limonene (29.2) 100 100 43.13

N.C. 1 <1% DMSO - - - -

P. C. 2 Temephos (100%
mortality) - - 0.35 0.35 0.019

1—negative control; 2—positive control.

The distribution of colors in the cluster regions indicated that different classes of
metabolites must be grouped differently. In addition, most of the compounds (nodes) were
eluted between 7 and 20 min, which may denote certain metabolic classes and, consequently,
assist in the annotation process.
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Another aspect is to evaluate the correlation of these compounds between families
and their chemotaxonomic characteristics. It is also possible to make an indirect association
between the chemotypes and the larvicidal potential of the cluster regions.

Figure 3 shows the MN using the compound distribution filter (relative abundance
of ions) among the families using a color gradient in the nodes. Yellow represents little
or no abundance, while blue represents a high abundance of ions. The Burseraceae and
Cupressaceae families presented a strong correlation with most of their compounds (nodes)
located in the region with the lowest retention times. Geraniaceae and Lamiaceae displayed
a wide distribution of their compounds in the MN, while metabolites in Lauraceae, Myr-
taceae, Poaceae and Rutaceae were observed between 7 and 20 min. Pinaceae concentrated
its compounds in longer retention times.

Larvicidal activity against Ae. aegypti was used as a filter for the third step of evaluating
the molecular network of commercial essential oils. The LC50 values (Table 1) from essential
oils were used in two different ways to calculate the individual larvicidal activity for
each node (substance). First, we calculated the average of the LC50 values for each node
(one substance may be present in different EO), Figure 4A. Alternatively, we calculated
the relative average considering ion abundance (present differently in each EO) for each
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node, Figure 4B. In both molecular networks (Figure 4A,B), we colored the maximum and
minimum calculated LC50 values in four equidistant categories. The pink color represents
the most active nodes, followed by blue, green and yellow. Although the ranges were
different between the different averages, the color pattern was similar.
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As a result, it was possible to observe three regions of molecular network with different
larvicidal potentials. It is important to emphasize that these regions are projections of
bioactivity, but may be used as a guide for regions/compounds to be explored and studied.
In this case, for both averages (molecular networks) the lower right side of the cluster,
colored in pink and blue, suggests a region with higher larvicidal potential. In Figure 4B,
there is also a pink diagonal projecting this potential.
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The fourth filter of this molecular networking was to annotate the nodes. We used the
GNPS library combined with our in-house NIST database and gas-phase fragmentation
data. The annotated compounds were then classified hierarchically according to the NP-
Classifier ontology [44], as shown in Figure 5.

Figure 5 represents the filtered molecular network for compound annotation. The
ellipse represents the level of the superclass (terpenes), while the colors represent the
distribution of classes into monoterpenes (orange) and sesquiterpenes (purple). In the
lower part of Figure 5, it is possible to observe the group of expanded monoterpenes and
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sesquiterpenes. Eight subclasses were found for monoterpenes: acyclic (orange), camphane
(green), fatty alcohols (light blue), menthane (blue), monocyclic (purple), pinane (pink)
and thujan (red), while six subclasses were classified as sesquiterpenes: cadinan (yellow),
caryophyllane (green), elemane (light blue), germacrane (blue), himachalane (dark blue)
and longifolene (pink) alcohols.
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Figure 5. Molecular network filtered for compound annotation (nodes) using the GNPS library
and an in-house NIST database. The annotated compounds were classified using the NP classifier
ontology. The colors of the ellipse represent the annotated monoterpenes (orange) and sesquiterpenes
(purple). At the bottom, the groupings of mono- and sesquiterpenes with their respective subclasses
are expanded.

The potential bioactive nodes were annotated and classified as acyclic (orange), cam-
phane (green) and menthane/monocyclic monoterpenes (dark blue). Specifically, the com-
pounds with the lower LC50 values were annotated as citral (polyunsaturated and aldehyde
as a functional group (FG)), neral (FG-aldehyde), citronellal (monoterpene-unsaturated
and FG-aldehyde), citronellol (unsaturated and FG-alcohol), citronellol acetate (unsat-
urated and FG-acetate), isopulegol (unsaturated, monocyclic and FG-alcohol), linalool
(poly-unsaturated and FG-alcohol), camphor (menthane and FG-ketone), and endo-borneol
(menthane and FG-ketone).

Table 2 shows the list of annotated compounds, retention time (min), precursor ion
values (m/z), samples and relative LC50 values.
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Table 2. List of annotated compounds including the retention time (min), precursor ion values (m/z),
samples and relative LC50 values.

RT
(min) Compound m/z * Samples

Relative
LC50 **
(µg/mL)

5.01 thujene 93.1 1, 2, 9, 10, 11, 16, 18, 19, 23, 24, 31 125.6
5.21 pinene 91.1 1, 2, 7, 8, 9, 10, 11, 14, 16, 18, 19, 21, 23, 24, 27, 31 105.9
5.21 fenchene 93.1 1, 2, 7, 8, 9, 10, 11, 14, 16, 18, 19, 20, 21, 23, 24, 27, 31, 33 123.2
5.58 camphene 93.1 1, 2, 9, 10, 14, 16, 18, 19, 23, 27, 31 84.1
6.20 phellandrene 93.1 1, 2, 7, 9, 10, 11, 18, 20, 23, 24, 27, 31 128.5
6.31 pinene 93.1 1, 2, 8, 9, 10, 11, 14, 18, 23, 24, 27, 31, 33 116.0
6.52 sulcatone 43.0 1, 2, 3, 7, 8, 9, 10, 11, 14, 16, 18, 19, 20, 24, 27, 31, 33 55.1
6.64 myrcene 77.0 1, 2, 3, 9, 10, 11, 14, 18, 19, 23, 24, 31, 33 130.2
7.06 ethylene diglycol monoethyl ether 93.1 1, 2, 9, 10, 11, 14, 18, 19, 23, 24, 27, 31 127.5
7.25 terpinene 93.1 1, 9, 10, 11, 16, 18, 23 126.5
7.44 terpinene 136.1 1, 2, 9, 10, 23, 24, 27 120.3
7.68 cymol 119.1 1, 2, 3, 9, 10, 11, 14, 16, 18, 19, 20, 23, 24, 27, 31, 33 124.7
7.83 D-limonene 68.1 1, 2, 3, 8, 9, 10, 11, 14, 16, 18, 19, 20, 23, 24, 27, 31, 33 119.6
7.91 eucalyptol 43.0 1, 2, 3, 7, 8, 9, 10, 11, 14, 16, 18, 19, 20, 23, 24, 27, 31 229.6
8.44 cymene 93.1 1, 2, 3, 9, 10, 11, 14, 16, 18, 19, 24, 33 150.1
8.83 phellandrene 93.1 1, 2, 7, 9, 10, 11, 14, 18, 20, 23, 24, 27, 31 120.3
9.13 sabinene hydrate 71.1 2, 10, 18 120.9
9.90 terpinolene 93.1 1, 2, 9, 10, 11, 14, 18, 20, 23, 24, 27 124.0
10.28 linalool 71.1 1, 2, 3, 7, 9, 10, 11, 16, 18, 19, 20, 23, 24, 27, 31, 33 105.9
12.05 iso-pulegol 41.0 9, 10, 18, 19, 20, 23, 27, 31 86.5
12.06 camphor 95.1 9, 10, 16, 18, 20, 23, 27 86.8
12.40 citronellal 41.1 2, 10, 19, 20, 27, 31 51.9
12.86 menthol 112.1 10, 18, 27 93.0
12.89 endo-Borneol 95.1 1, 2, 9, 10, 16, 18, 19, 21, 23, 27, 33 94.8
12.90 cis-p-menthan-3-one 69.1 10, 16, 18, 23 96.7
13.37 terpinen-4-ol 71.1 1, 2, 7, 9, 10, 11, 16, 18, 31 121.5
13.90 terpineol 93.1 1, 2, 9, 10, 11, 14, 16, 18, 19, 20, 21, 23, 24, 27, 31, 33 125.2
15.45 citronellol 69.1 1, 2, 3, 7, 11, 18, 19, 20, 24, 27, 31, 33 48.3
15.98 neral 41.1 3, 10, 11, 18, 19, 20, 24, 27, 31 39.6
16.59 geraniol 69.1 2, 3, 7, 10, 11, 16, 18, 19, 20, 24, 27, 31, 33 97.2
16.59 linalyl acetate 93.1 2, 3, 7, 10, 11, 16, 18, 19, 20, 23, 24, 27, 31, 33 112.0
17.25 citral 69.1 3, 7, 10, 11, 16, 19, 20, 24, 27, 31, 33 37.6
17.39 citronellyl formate 109.1 10, 16, 24, 27 84.5
17.88 unknown 95.1 1, 2, 9, 16, 18, 23 92.9
18.09 lavandulol acetate 69.1 16, 18 104.5
18.56 unknown 69.1 3, 19, 20, 27, 33 78.2
20.52 unknown 119.1 1, 7, 9, 21 144.5
20.67 citronellol acetate 81.1 1, 20, 27, 31, 34 40.6
21.15 unknown 69.1 2, 3, 7, 11, 16, 18, 19, 24, 27, 33 114.3
21.59 unknown 41.0 1, 7, 9, 19, 24, 31, 33 76.4
21.60 unknown 119.1 1, 3, 7, 9, 10, 19, 27, 31, 33 92.6
21.95 neryl acetate 69.1 1, 2, 3, 7, 11, 16, 18, 19, 20, 24, 27, 31, 33 92.3
22.28 elemene 81.1 1, 7, 8, 9, 10, 20 58.7
23.38 caryophyllene 79.1 1, 2, 3, 7, 8, 9, 10, 11, 16, 18, 19, 23, 27, 31, 33, 34 97.8
24.60 himachalene 93.1 7, 8, 21, 34 247.8
24.75 humulene 93.1 1, 2, 3, 7, 8, 9, 10, 11, 18, 19, 20, 23, 27, 33, 34 79.1
25.00 acoradiene 93.1 1, 8, 9, 34 66.1
25.69 longifolene 93.1 1, 7, 8, 9, 20, 21, 27, 34 221.5
25.86 germacrene 91.1 1, 7, 8, 9, 10, 18, 19, 20, 21, 27, 33, 34 93.2
26.44 unknown 91.1 1, 2, 7, 8, 9, 10, 11, 21, 27, 34 100.9
26.50 curcumene 121.1 1, 2, 7, 9, 10, 11, 21, 33, 34 98.2
26.63 himachalene 119.1 1, 7, 8, 9, 16, 20, 21, 34 257.1
26.96 unknown 69.1 7, 8, 9, 18, 21, 24, 34 55.1
27.18 unknown 161.1 1, 7, 8, 9, 18, 19, 20 69.0
27.31 unknown 122.1 7, 8, 34 65.9
27.54 cadiene 119.1 1, 7, 8, 9, 10, 18, 19, 20, 21, 27, 34 128.1
28.54 elemol 107.1 9, 20, 34 91.4
29.81 unknown 91.1 1, 2, 3, 8, 9, 16, 18, 19, 21, 31, 33 100.1
30.46 unknown 95.1 7, 27, 34 38.6
31.95 unknown 91.1 1, 2, 7, 8, 9, 18, 20, 21, 34 103.8
32.02 unknown 161.1 1, 7, 9, 18, 20, 34 89.1
32.48 unknown 95.1 1, 7, 8, 9, 20, 34 83.9
34.92 unknown 69.1 3, 7, 34 60.9

*—precursor ion; **—relative average LC50 of each node.
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To verify the predictive potential of the strategy to discover larvicides in essential
oils, we tested some of the monoterpenes indicated by MN against Ae. aegypti larvae
and calculated their LC50 values after 48 h exposure. Among the compounds tested
were: α-fenchene (>100 µg/mL); eucalyptol (>100 µg/mL); menthol (>100 µg/mL); cit-
ronellol (65.3 µg/mL); citronellal (57.8 µg/mL); cymol (41.7 µg/mL); citral (40.1 µg/mL);
α-phellandrene (40.1 µg/mL) and D-limonene (27.1 µg/mL).

Similarly, we projected the LC50 values of the tested compounds onto the molecular
network to confirm the pharmacological patterns pointed out by MN, Figure 6. As a result,
the diagonal indicated by MN including acyclic, monocyclic monoterpenes and menthane-
type monoterpenes were active against Ae. aegypti larvae. In addition, some menthane-type
monoterpene derivatives, such as D-limonene, were highly active.
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Figure 6. Molecular network filtered by LC50 values calculated for larval mortality at 48 h
of Ae. aegypti for monoterpenes: α-fenchene (>100 µg/mL), eucalyptol (>100 µg/mL), menthol
(>100 µg/mL), citronellol (65.3 µg/mL), citronellal (57.8 µg/mL), cymol (41.7 µg/mL), citral
(40.1 µg/mL), α-phelandrene (40.1 µg/mL), D-limonene (27.1 µg/mL). Red nodes represent high
larvicidal activity and dark blue nodules represent LC50 values > 100 µg/mL.

3. Discussion

Essential oils and their structural analogues have historically made an important contri-
bution as repellents or insecticides against Ae. aegypti in different communities [8,14,45,46].
However, larvicide/insecticide products based on natural products (NP) are scarce in the
industry, revealing some difficulties associated with applying traditional approaches in
NP [43,47,48].
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Typically, a traditional approach uses organic solvents to produce crude extracts
(polar or non-polar) that are screened for pharmacological activities and then fractionated
into dozens of portions for further iterative bioguided analyses. In each cycle, the active
fractions are reassembled after verification with spectral experiments, which can range
from simple UV light to more expensive NMR analyses. Thus, the cost of pinpointing
the NP-based product by traditional methods is high when considering that hundreds of
extracts need to be analyzed to find a hit molecule [47,49].

This challenge has been partially addressed through the development of dereplication
methods, which aim to prioritize the discovery of bioactive substances, still in the crude
extract, avoiding the re-isolation of interferents or known compounds. Dereplication uses
previously established data (spectroscopic data, pharmacological and physicochemical
properties) present in databases, scientific literature and computational tools to compare
samples and reference material and, therefore, annotate and to attribute some properties
to substances still in extracts or fractions. Despite offering advantages over traditional
methods, this strategy faces some obstacles, as follows: (1) the databases and literature
are not comprehensive and standardized, rendering it difficult to discover non-ubiquitous
compounds; (2) the comparison process is still univariate between the sample(s) and the
reference material, making the whole process time-consuming; (3) the global relationships
between samples and metabolites are little explored [18,25,50,51].

On the other hand, chemometrics and bioinformatics have faced these obstacles
introducing a holistic view of how to manage data and especially how to extract relevant in-
formation from vast datasets. Some of the strategies employed in genomics and proteomics
are gradually being introduced into NP science. One such strategy is the use of spectral
similarity information (or any other molecular data) that can provide clues as to how the
constituents of a sample are organized (classes, substituents and properties) [38,40,52–54].

This organization concept is already used in the GNPS platform generating spectral
networks of MS/MS data. Therefore, not only can single samples be screened for similarity,
but hundreds or even thousands of samples can be organized into a single network, the
so-called molecular network. Thus, using a spectral similarity score (cosine score) we
can organize families, classes, substituents from one or several samples at once and still
discover distribution patterns of unknown metabolites [25,55–59].

However, several parameters need to be adjusted to extract relevant information from
the MS/MS data. In LC-MS, MS/MS experiments are performed in data dependent analysis
(DDA), which means that each ion is initially isolated from the others, fragmented and
then analyzed (collected). In contrast, most GC-MS systems do not possess an ion isolation
chamber and the separation of substances depends on chromatographic resolution, which
is often insufficient to separate all of the metabolites. This results in the fragmentation of
more than one substance at the same time, making it difficult to apply spectral comparison
(similarity) tools between samples and the reference [53,60].

In this sense, our strategy largely overcomes these limitations, since the MS/MS
spec-tral data from GC-MS are initially deconvoluted and aligned by the Mzmine 2 tool
and then compared and organized by spectral similarity networking (molecular network
GNPS). As shown in Figures 2–6, it is possible to clearly visualize how substances are
distributed throughout the chromatographic analysis, showing potential metabolic classes
with different fragmentation profiles. It was possible to group information at the family
level and discover patterns among them. We noticed that some families share similar
MS/MS profiles, some of which have similar pharmacological properties. This allows us to
extract chemotaxonomic information and prioritize bioactive families [61].

The incorporation of metadata into the molecular network opens up new opportunities
to discover unknown patterns in samples. The relative mean of LC50 values from larvicidal
experiments in Ae. aegypti, in several samples, allowed us to estimate the pharmacological
effect of individual compounds that were repeatedly present in the samples and also
indicate the bioactive ones. This is an innovative strategy in terms of discovering bioactive
compounds in crude extracts, particularly in GC-MS experiments.
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We annotated compounds quickly and easily using our in-house library combined
with the molecular network. Using the unknown to known annotation principle, the
compounds determined by the library were used in the network to evaluate the neighbors
(similar) and their spectra, facilitating and speeding up the annotation. During this process
we also noticed that pharmacological patterns were associated with some metabolic classes
such as acyclic, monocyclic and methane monoterpenes. Furthermore, they rationally
shared some characteristics such as the presence of oxygen in the form of an alcohol or
carbonyl group (acetate, aldehyde or ketone), an unsaturation index between 1 and 3,
and masses between 152 and 156 Da. This suggests that this strategy can be employed to
indicate potentially promising chemical classes.

Finally, we tested the larvicidal activity of some of the isolated monoterpenes, revealing
the bioactive potential of some of them. We therefore confirmed the potential of the strategy
to not only predict the pharmacological activity of compounds in crude extracts and
fractions, but also facilitate pattern recognition in samples and metabolites.

4. Materials and Methods

The essential oils were purchased from BioEssência®, Jaú, Brazil, and analyzed by
dissolving in ethyl acetate at a concentration of 5 µg/mL. Table 1 details the percentages of
the major compounds in each essential oil.

4.1. Larvicidal Activity against Ae. aegypti

Larvicidal tests were performed with the Ae. aegypti Rockefeller strain. Third instar
larvae (L3) were obtained from infection-free colonies maintained in the insectary of the
Laboratory of Pharmacognosy of the University of Brasília. Colony maintenance is in
accordance with World Health Organization guidelines [62] Monthly monitoring of this
strain, which is susceptible to insecticides, using dose–response curves performed in
12-well plates with 10 L3 larvae, with temephos as the positive control (concentrations
ranging from 0.05 to 0.003125 µg/mL).

We optimized the WHO larvicidal trial to perform rapid screening and subsequent
scale-up without harm. Assays were performed as described by Silva et al., 2020 [63],
using 12-well plates, with 3 mL of tap water, 10 L3 larvae and 50 µL of sample diluted in
DMSO. This test is rapid, uses a small sample and allows the screening of many essential
oil samples for major compounds.

The samples were tested in quadruplicate using a negative control of 0.025% dimethyl
sulfoxide in tap water at pH 7.75, conductivity at 34.5 µS/cm and temephos as the positive
control. This organophosphate is used as a positive control due to its efficiency against
Ae. aegypti Rockefeller strain (100% mortality at 0.35 µg/mL after 24 and 48 h with LC50 of
0.019 µg/mL), being used in private companies in Brazil as a pest control agent.

For initial screening, only the mortalities of essential oils at the final concentration
of 250 µg/mL were determined, after 24 h and 48 h. The 50% lethal concentration values
(LC50 µg/mL) were estimated using the test concentrations 250, 125, 62.5 and 31.25 µg/mL
for the essential oils and 100, 50, 25, 12.5 and 6.25 µg/mL for pure compounds (GraphPad
Prism 7.0 software, GraphPad, La Jolla, CA, USA). Larvae mortality was determined after a
24 h exposure treatment. For each bioassay, the temperature was maintained at 28 ± 2 ◦C
and 70 ± 10% RH, with a 12 h photoperiod.

4.2. GC-MS Analysis

For the essential oil analysis, we used the analytical methodology described by Adams
(2007) with adaptations. Analysis involved gas chromatography coupled with mass spec-
trometer detection (GCMS-QP2010) according to the following parameters: injector temper-
ature, 250 ◦C; column temperature, 60 ◦C; heating ramp from 60 to 210 ◦C, at 3 ◦C/min,
with a total time of 50 min; chromatographic column, DB-5, 30 m × 0.25 mm in diameter,
0.25 µm in thickness; helium was used as the carrier gas, under 79.7 kPa at 1.30 mL/min,
with a linear velocity of 41.6 cm/s and 1 µL injection volume and a 1:60 split.
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The mass detector parameters were as follows: ion source temperature, 250 ◦C; inter-
face temperature, 260 ◦C; solvent cutoff at 3.0 min; Scan mode, from 35 to 400 m/z; detector
voltage, 0 kV.

4.3. Molecular Networking

GC-EI/MS data were initially processed using the GCsolution (Shimadzu—Tokyo,
Japan). Mass spectrometry molecular networks were created using the GNPS platform
(http://gnps.ucsd.edu, accessed on 30 November 2021) [35,64]. As the mass data from the
EI experiments did not present pre-selection of precursor ions (called acquisition format of
DIA), a spectral deconvolution was necessary. To achieve this, GC-MS data were analyzed
and processed using the MzMine 2 package according to the parameters shown in Table 3.

Table 3. Mzmine 2 parameters for the commercial essential oil MS data analysis.

Feature LVL 1 LVL 2 Value

Mass Detection Scans 3.5–50.0 min
Mass Detector Centroid

Noise Level 1.0 × 103

ADAP Chrom.
Build Min. group size in # of scans 15

Group intensity threshold 1.0 × 103

Min. highest intensity 1.0 × 103

m/z tolerance 0.01 m/z

Chrom. deconv. Wavelets (ADAP) S/N threshold 7
S/N estimator Intensity window SN

Min feature height 1
Coef./area threshold 30

Peak duration 1.00
RT wavelet range 0.15

m/z center calculation Median

Spec. Deconv. Multivariate Curve Resolution Deconvolution window width (min) 0.15
Retention time tolerance (min) 0.02

Minimum number of peaks 1

ADAP Aligner Min confidence (0 to 1) 0.05
Retention time tolerance 0.1 (min)

m/z tolerance 0.1 (m/z)
Score threshold (0 to 1) 0.75

Score weight (0 to 1) 0.1
Retention time similarity Cross-correlation

Gap filling Peak finder multithreaded
Intensity tolerance 0.1%

m/z tolerance 0.2 m/z
retention time tolerance 0.1 min

The files were submitted for processing by the spectral networks algorithm (GNPS) in
three files: mgf file of the EI spectra deconvoluted by Mzmine 2, a quantification table of
the peaks generated by Mzmine 2 and a metadata table, with information on the samples,
such as LC50, taxonomy, coding, etc. In GNPS, the data were adjusted as follows: fragment
ion mass tolerance of 0.5 Da; min matched peaks of 5; score threshold of 0.5. The advanced
search options were: library class bronze; top history per spectrum of 1 and NIST and GNPS
spectral libraries. In advanced network options: min pair cos 0.6 and network topK 10. For
more details of the network on the GNPS, access: https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=e980401aaf22484f83adead45f6012dc, accessed on 30 November 2021.

http://gnps.ucsd.edu
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e980401aaf22484f83adead45f6012dc
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e980401aaf22484f83adead45f6012dc
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Network visualization was performed in Cytoscape v.3.4.3. Node colors and sizes
were mapped based on the metadata files, and the edge thickness attribute set to reflect
cosine similarity scores, with thicker lines indicating greater similarity [65,66].

Supplementary Materials: The following supporting information can be downloaded, Figures S1–S5
represent GC-EI/MS chromatograms of commercial essential oils tested for larvicidal activity against
Ae. aegypti larvae. Essential oils: Juniperus communis (Cupressaceae); Origanum majorana (Lamiaceae);
Cymbopogon martini (Poaceae); Boswellia carteri (Burseraceae); Mentha piperita (Lamiaceae); Citrus
aurantium var. amara (Rutaceae); Eucalyptus citriodora (Myrtaceae); Eucalyptus globulus (Myrtaceae);
Lavandula angustifolia (Lamiaceae); Lavandula hybrida (Lamiaceae); Cymbopogon flexuosus (Poaceae);
Cymbopogon nardus (Poaceae); Cedrus atlantica (Pinaceae); Rosmarinus officinalis (Lamiaceae); Citrus
aurantium subsp. Bergamia (Rutaceae); Perlagonium graveolens (Geraniaceae); Litsea cubeba (Lauraceae);
Salvia sclareia (Lamiaceae); Amyris balsamifera (Rutaceae) and Eucalyptus staigeriana (Myrtaceae).
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20. Čajka, T.; Hajšlová, J. Gas chromatography–high-resolution time-of-flight mass spectrometry in pesticide residue analysis:
Advantages and limitations. J. Chromatogr. A 2004, 1058, 251–261. [CrossRef] [PubMed]

21. Segers, K.; Declerck, S.; Mangelings, D.; Heyden, Y.V.; Van Eeckhaut, A. Analytical techniques for metabolomic studies: A review.
Bioanalysis 2019, 11, 2297–2318. [CrossRef]

22. Bandeira, N.; Tsur, D.; Frank, A.; Pevzner, P.A. Protein identification by spectral networks analysis. Proc. Natl. Acad. Sci. USA
2007, 104, 6140–6145. [CrossRef]

23. Fox Ramos, A.E.; Alcover, C.; Evanno, L.; Maciuk, A.; Litaudon, M.; Duplais, C.; Bernadat, G.; Gallard, J.F.; Jullian, J.C.; Mouray,
E.; et al. Revisiting Previously Investigated Plants: A Molecular Networking-Based Study of Geissospermum laeve. J. Nat. Prod.
2017, 80, 1007–1014. [CrossRef]

24. Aksenov, A.A.; Da Silva, R.; Knight, R.; Lopes, N.P.; Dorrestein, P.C. Global chemical analysis of biology by mass spectrometry.
Nat. Rev. Chem. 2017, 1, 54. [CrossRef]

25. Yang, J.Y.; Sanchez, L.M.; Rath, C.M.; Liu, X.; Boudreau, P.D.; Bruns, N.; Glukhov, E.; Wodtke, A.; De Felicio, R.; Fenner, A.; et al.
Molecular networking as a dereplication strategy. J. Nat. Prod. 2013, 76, 1686–1699. [CrossRef] [PubMed]
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