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A B S T R A C T   

This systematic review investigates the interactions of microplastics (MPs) and nanoplastics (NPs) 
with bryophytes, incorporating findings from 11 articles identified through a comprehensive 
database search using a combination of keywords. The review explores mechanisms such as 
adsorption and internalization by which MPs and NPs are present in bryophytes and examines the 
ecological ramifications, including changes in bryophyte community structure and impacts on 
ecosystem functions such as nutrient cycling, soil formation, habitat provision, water balance, and 
erosion control. Despite providing valuable insights, this review highlights several critical 
knowledge gaps that warrant further investigation. Future research should address the following 
areas: the long-term effects of MPs and NPs on bryophyte health and survival, the mechanisms of 
MP and NP uptake and translocation within bryophytes, and the broader ecological consequences 
of plastic pollution on bryophyte-dominated ecosystems. Additionally, studies should explore the 
effectiveness of various mitigation and management strategies, including advanced waste man
agement techniques and innovative technologies, in reducing plastic pollution and protecting 
these vital ecosystems.   

1. Introduction 

Microplastics (MPs) and nanoplastics (NPs) have become pervasive pollutants in various environments, raising concerns about 
their impact on ecosystems and human health. Studies have identified MPs as contaminants in aquatic habitats globally, with 
wastewater treatment plants serving as significant sources of MPs, particularly through sewage contaminated by fibers from washing 
clothes [1]. MPs are small plastic particles up to 5 mm in size [2]. NPs, on the other hand, are even smaller plastic particles, typically 
defined as being below 1000 nm or 100 nm, depending on the specific definition used [3]. Research has documented the presence of 
MPs in ocean habitats worldwide and in freshwater ecosystems [4], emphasizing the global distribution and environmental persistence 
of these pollutants. The prevalence of MP particles across marine, freshwater, or even atmospheric systems has captured the attention 
of scientists, politicians, and members of the public worldwide these days [5] because they cause detrimental effects on biota [6]. 
Among them, blue MPs were mainly comprised of fragments and lines (most probably fishing lines and plastic straws) [7]. When MPs 
are exposed in the natural environment, absorption of chemical contaminants and the formation of biofilms further enhance their 
complexity [8]. The issue raises concern since MPs are considered vectors of endocrine-disrupting compounds (EDCs) in the aquatic 
environment [9]. 

Bryophytes, which include mosses, liverworts, and hornworts, are vital for ecosystems due to their multifaceted roles. These small, 
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often-overlooked non-vascular plants are foundational in many habitats, contributing significantly to biodiversity and ecological 
processes [10]. Bryophytes are essential for nutrient cycling as they decompose organic material, releasing nutrients back into the soil 
[11]. They aid in soil formation by trapping and stabilizing soil particles, preventing erosion, and maintaining soil moisture [12]. 
Furthermore, bryophytes provide microhabitats for numerous microorganisms, invertebrates, and fungi, enhancing habitat complexity 
and supporting a diverse range of species [13]. Their ability to retain water helps regulate water balance in ecosystems [12], and their 
sensitivity to environmental changes makes them valuable bioindicators for assessing ecosystem health and detecting pollution or 
climatic shifts [14]. 

However, the bryophyte community is increasingly threatened by the presence of MPs and NPs in the environment. MPs and NPs 
can infiltrate bryophyte habitats through air and water [15]. These plastics can physically damage plant tissues, obstructing their 
ability to absorb water and nutrients. Additionally, MPs and NPs may carry toxic substances that can be absorbed by bryophytes, 
leading to physiological stress, reduced growth, and impaired reproductive capabilities [16]. The accumulation of these plastics in 
bryophyte-dominated ecosystems can disrupt nutrient cycling and soil formation processes, ultimately affecting the entire ecological 
community. Understanding the impact of MPs and NPs on bryophytes is crucial for developing strategies to mitigate pollution and 
protect these essential components of ecosystems. 

This review aims to comprehensively analyze the effects of MPs/NPs on bryophytes within diverse ecosystems. By synthesizing 
current knowledge and research findings, this review intends to elucidate the mechanisms of interaction between plastic particles and 
bryophytes, assess the physiological and ecological impacts on these organisms, and discuss the implications for broader ecosystem 
dynamics. Furthermore, it aims to identify research gaps, challenges, and future directions in this emerging field, offering insights to 
guide future studies and management strategies concerning plastic pollution’s impact on bryophyte-dominated ecosystems. 

2. Materials and methods 

To retrieve peer-reviewed articles and conference proceedings on MP and NP interactions in bryophytes, a systematic review 
following PRISMA guidelines was conducted. Online searches were performed using Google Scholar, PubMed, ScienceDirect, and 
JSTOR databases. Additional references cited by various authors were included if they were not identified in the initial searches. The 
search strategy employed keywords such as “Detection,” “Presence,” “Abundance,” “Accumulation,” “Contamination,” “Uptake,” 
“Exposure,” AND “Microplastics,” AND “Bryophytes.” This keyword combination initially yielded 390 publications in Google Scholar, 
six publications in PubMed, 39 publications in ScienceDirect, and 0 publications in JSTOR. 

Literature was accessed and screened based on inclusion and exclusion criteria (Table 1). In reviewing data literacy, the publication 
year, title, and abstract were examined to identify relevant topics. The full text was then reviewed, focusing on MP and NP interactions 
in bryophytes, results, and conclusions to determine the suitability of the data as sources up to April 2024. Qualitative and quantitative 
analyses were conducted to provide a comprehensive overview of MP/NP research in bryophytes. All 11 selected relevant publications 
were read in full to gather necessary information for the analysis. The discussion of results emphasized identifying research gaps and 
opportunities in this emerging field. 

3. Synthesis of evidence 

In total, the author obtained 11 relevant publications dealing with the interaction between plastic particles and bryophytes, 
covering various database records up to 2024, as shown in Table 2. 

3.1. MP contamination across bryophyte families 

MPs and NPs have been identified in multiple species of bryophytes, all belonging to the group of mosses from various families, 
including Sphagnaceae, Hylocomiaceae, Fontinalaceae, Hypnaceae, Pottiaceae, Brachytheciaceae, and Grimmiaceae. Notably, some 
families such as Sphagnaceae, Hylocomiaceae, Hypnaceae, and Brachytheciaceae are mentioned multiple times, indicating recurring 
observations of MP contamination within these groups (Table 1). 

3.2. Comprehensive analysis of MPs/NPs in bryophytes 

3.2.1. Sources and pathways of MP and NP pollution in bryophytes 
MPs and NPs originate from a variety of sources, broadly classified into primary and secondary categories. Primary MPs are 

manufactured at small sizes for specific industrial applications [28,29], such as in cosmetics (e.g., microbeads), personal care products, 

Table 1 
The exclusion and inclusion criteria in the literature search.  

Criteria Description 

Exclusion Editorials, letters, book, encyclopedia, Non-English publication, Duplicate publication 
Inclusion There is no limit on research location, Detecting microplastics in bryophytes, Microplastics contamination in bryophytes, Examining size, shape and 

type of microplastics in bryophytes, Accumulation of microplastics in bryophytes, Uptake of microplastics in bryophytes, Presence of microplastics in 
bryophytes, and Abundance of microplastics in bryophytes  

W. Sawangproh                                                                                                                                                                                                        



Heliyon10(2024)e36360

3

Table 2 
The presence of MPs in different species of bryophytes, the types and sizes of MPs, detection methods, sources of plastic particles, interactions of MPs with bryophytes, effects, and the localization of plastic 
particles in bryophytes.  

Bryophyte species Group of 
Bryophytes 

Family Types/Size of 
plastic particles 

Detection method 
(s) 

Source of 
plastic 
particles 

Sample 
tested 

External 
adsorption/ 
accumulation 

Internal 
uptake 

Effects 
occurred 

Plastic particle tissue 
localization 

(Putative) 
mechanisms 

Reference 

Sphagnum palustre L. Moss Sphagnaceae Polystyrene 
nanoparticles 
(NPs) 

Fluorescent 
microscopy 

Freshwater 
ecosystems 

Lab 
experiment 

Yes Yes Cell 
membrane 
damage 

Substantial clusters 
predominantly adhered to 
the surface of leaves, 
while individual 
nanoparticles were found 
within hyalocysts (empty 
cells with pores measuring 
5–10 μm in diameter) and 
the cytoplasm. 

The adsorption of 
nanoparticles 
is a result of 
particle 
aggregation, 
while 
their 
internalization 
occurs due to 
their small size. 

[17] 

Hylocomium 
splendens 

Moss Hylocomiaceae MPs (0.83–1.20 
mm), Synthetic 
dye Indigo 
(C16H10N2O2) 

Stereo microscopy 
& Raman 
microscopy 

Atmospheric 
deposition 

Field 
sampling 

NA NA NA NA NA [18] 

Fontinalis antipyretica Moss Fontinalaceae MPs (5–25 mm), 
MPs (0.001–5 
mm), commonly 
plyethylene and 
polyamide type 6 

FT-IR microscropy Freshwater 
ecosystems 

Field 
experiment 

NA Yes? NA NA NA [19] 

Pleurozium schreberi Moss Hylocomiaceae MPs (0.03–4.51 
mm), mainly fibres 
and fragments 

Stereo microscopy Atmospheric 
deposition 

Field 
experiment 

Yes Yes? NA NA NA [20] 

Hypnum 
cupressiforme 

Moss Hypnaceae MPs (<5 mm), 
mostly microfibres 

FT-IR microscropy Atmospheric 
deposition 

Field 
sampling 

Yes Yes? NA NA NA [21] 

Hypnum 
cupressiforme 

Moss Hypnaceae MPs (<5 mm), 
mostly filamentous 

FT-IR microscropy Atmospheric 
deposition 

Field 
experiment 

Yes Yes NA NA NA [22] 

Sphagnum spp. Moss Sphagnaceae MPs (0.8–65.4 μm) Dark-field color- 
spectral imaging 
microscopy 

Atmospheric 
deposition 

Commercial 
Sphagnum 
moss 

NA NA NA NA NA [23] 

Cinclidotus aquaticus Moss Pottiaceae MPs (polyethylene, 
polystyrene and 
polypropylene) 

Stereo microscopy 
& Raman 
microscopy 

Freshwater 
ecosystems 

Microcosm 
experiment 

Yes NA Mild response 
i.e., changes 
in fatty acid 
metabolism 

Adsorbed to the surface of 
the moss 

Adsorption [24] 
Rhynchostegium 

raparioides 
Moss Brachytheciaceae 

Pseudoscleropodium 
purum 

Moss Brachytheciaceae MP fibers and 
fragments 

Atmospheric 
deposition 

Field 
sampling 

Yes NA NA NA NA [25] 

Moss sample Moss NA MPs (PET, PS, PP, 
and PE) 

TED-GC-MS and 
Raman 
microspectroscopy 

Atmospheric 
deposition 

Field 
sampling 

Yes NA NA NA NA [26] 

Grimmia critina Moss Grimmiaceae MPs and 
microrubbers 
(MRs) 

Stereo microscopy 
& Raman 
microscopy 

Atmospheric 
deposition 

Field 
sampling 

Yes NA NA NA NA [27] 

Remark: NA = not available. 
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cleaning agents, and industrial abrasives (pellets and flakes) [30]. The intentional use of primary MPs, such as solid polymer particles 
in agriculture and cosmetics, is a subject of discussion regarding environmental safety and innovation [31], leading to their direct 
release into the environment [32]. Secondary MPs, on the other hand, result from the fragmentation of larger plastic debris due to 
environmental weathering processes like UV radiation, mechanical abrasion, and chemical degradation [33–36]. The pervasive use of 
plastics in modern society ensures that MPs and NPs are continually introduced into the environment [37] through waste misman
agement [38], runoff [39], and atmospheric deposition [40]. 

In this review, the main sources of plastic particles, including MPs and NPs, on bryophytes were predominantly from atmospheric 
deposition [18,20–23,25–27] and freshwater ecosystems [17,19,24]. Atmospheric deposition was identified as the source in seven 
studies, while freshwater ecosystems were cited in three studies (Table 2). This indicates that bryophytes, due to their widespread 
distribution and surface characteristics, are effective in capturing plastic particles from both air and water environments, underscoring 
their potential role as indicators of environmental plastic pollution. 

Illustrating the pathway of plastic particles in the environment, Fig. 1 summarizes how bryophytes come into contact with MPs 
through deposition from the air, transport via water, and soil contamination. These pathways highlight the pervasive nature of MP 
pollution and its potential impact on bryophyte communities. 

3.2.2. Types and sizes of plastic particle detected on/in bryophytes 
The 11 publications on MPs and NPs in bryophytes report various types and sizes of plastic particles detected (Table 2). Polystyrene 

NPs and MPs ranging from 0.83 mm to 65.4 μm were identified, including synthetic dye Indigo (C16H10N2O2), polyethylene, polyamide 
type 6, and polypropylene. The sizes of MPs varied widely, from less than 5 mm–25 mm, with common forms being fibers and 
fragments. Several studies highlighted that MPs were predominantly microfibers and filamentous particles used in clothing [41–43]. 
Additionally, polyethylene terephthalate (PET), polystyrene (PS), and microrubbers (MRs) were detected among the identified plastic 
types. This variety in types and sizes underscores the extensive presence and potential for bioaccumulation and ecological implications 
of plastic pollution in bryophyte communities. 

3.2.3. Distribution of plastic particles in natural habitats and bryophytes 
The publication search in Table 2 indicated that wind and water currents might play significant roles in the transportation and 

dispersion of plastic particles [44] into bryophyte habitats such as forest species [21] and freshwater species [19]. These findings 
underscore the widespread distribution of MPs/NPs and their infiltration into seemingly undisturbed natural habitats, highlighting the 
urgent need for comprehensive research on their ecological impacts. 

The distribution of MPs and NPs in natural habitats, particularly in river systems, is influenced by various factors. Land use types, 
such as runoff, rainstorms, atmospheric deposition, and sewage discharge, significantly impact the transport of them from land to 
rivers [45]. Estuaries, as transitional zones between rivers and oceans, play a crucial role in the migration of MPs and NPs [46]. 
Additionally, river flow speed and anthropogenic activities around rivers affect the distribution and accumulation of MPs and NPs in 

Fig. 1. The pathway of MPs contaminating the natural habitats of bryophytes. (Created with MagicStudio).  
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surface water and sediments [47]. 
Studies have shown that fibrous MPs are a predominant component in river sediments, with particle size influencing their retention 

in riverbed sediment [48,49]. Modeling approaches have also been employed to understand the pathways and transport of MPs in river 
systems, evaluating their impacts on water quality and exploring mitigation strategies [50]. 

Overall, these findings emphasize the pervasive nature of plastic pollution in natural environments and raise concerns about its 
potential impacts on bryophyte ecosystems. The wide range of plastic types and sizes detected suggests multiple sources and pathways 
for plastic contamination in these habitats. Understanding the distribution and accumulation patterns of MPs and NPs in bryophytes 
and their natural habitats is crucial for assessing their ecological consequences and developing effective mitigation strategies to protect 
these sensitive ecosystems. Further research is warranted to elucidate the mechanisms of interaction between MPs and NPs and 
bryophytes, as well as their broader implications for environmental health. 

3.3. Specific mechanisms of MPs and NPs interaction with bryophytes 

3.3.1. Adsorption and accumulation on bryophyte surfaces 
Among the 11 publications on MPs and NPs in bryophytes, external adsorption and accumulation were examined. Eight studies 

confirmed the external adsorption and accumulation of plastic particles on bryophytes (Table 2), emphasizing their ability to adhere to 
the surfaces of these non-vascular plants. Three publications did not provide relevant data on this interaction, indicating gaps in the 
literature. This recurring observation of external adsorption and accumulation underscores the potential for bryophytes to serve as 
indicators of plastic pollution in various ecosystems. 

Despite the limited understanding of the mechanisms of MPs and NPs interactions with bryophytes in literature published since 
2000, recent research suggests that submicron plastics (SMPs <1 μm) physically interact with bryophytes through adsorption and 
accumulation on their surfaces [51]. Bryophytes have a high surface area relative to their volume [52], making them effective at 
capturing airborne and water-suspended particles, including MPs [17–27]. The leaf-like structures (phyllids) and rhizoids of bryo
phytes provide numerous sites for the physical adherence of MPs [53]. Environmental factors such as wind, water flow, and precip
itation facilitate the deposition of these particles onto bryophyte surfaces. Once adhered, MPs can persist on bryophytes, potentially 
affecting their photosynthetic efficiency by shading light or altering their surface chemistry [53]. 

3.3.2. Uptake and internalization of plastic particles 
In the 11 publications on plastic particles in bryophytes, internal uptake was a key focus. Five studies suggested the possibility of 

internal uptake of plastic particles by bryophytes, indicated by a “Yes/Yes?” due to varying levels of evidence and confirmation 
(Table 2). Six publications did not provide relevant data on internal uptake, highlighting significant gaps in the literature. The po
tential internalization of MPs and NPs in bryophytes warrants further research to understand the extent and implications of such 
uptake for these plants and the broader ecosystem. Once inside bryophyte cells, plastic particles are believed to travel through their 
internal structures, potentially interfering with cellular processes. Internalization of NPs might affect enzymatic activities in bryo
phytes, potentially leading to genotoxicity and oxidative damage, thereby impacting their health [54]. Understanding the pathways 
and impacts of MP and NP internalization in bryophytes is crucial for assessing ecological risks. 

As shown in Table 2, both MPs and NPs have the potential to be easily taken up and internalized by bryophytes due to their small 
size [17,53]. Evidence shows that NPs can penetrate plant tissues through passive diffusion [17,51,55] or active transport mechanisms 
[56]. However, a review by Tang in vascular plants [54] suggested that MPs can also be internalized by specific plant cells through 
mechanisms such as endocytosis and taken up via roots, accumulating and being transported in vascular bundles via transpiration 
through stomata in leaves. These mechanisms may differ in non-vascular plants like bryophytes, as transpiration through stomata is 
not known [52]. In bryophytes, stomata are present only in the capsule wall of mosses and hornworts (but not in liverworts) during the 
sporophytic phase [57], where they are implicated in the drying and dehiscence of the sporangium [58] and in facilitating carbon 
uptake by sporophytes [59]. 

3.4. Physiological effects of MPs and NPs on bryophytes 

3.4.1. Photosynthesis and growth 
The literature on the physiological impacts of MPs and NPs on bryophytes is limited, as shown in Table 2. However, existing studies 

suggest that MPs and NPs may obstruct light penetration and gas exchange [60], thereby impairing photosynthesis in bryophytes. 
Capozzi et al. [17] found that polystyrene NPs reduced growth rates and chlorophyll levels in peat moss (Sphagnum palustre), indicating 
stress and disrupted photosynthesis. Molin et al. [61] associated MP pollution with reduced respiration in flowering vascular plants 
submerged in marine environments, such as seagrass (Zostera marina) and its epiphytes, suggesting similar effects in bryophytes. Cao 
et al. [62] demonstrated that 1 μm MP inhibited growth and reduced photosynthetic pigment content in the freshwater algae Chlorella 
pyrenoidosa, inducing oxidative stress and damaging cell membranes. Lee et al. [63] reviewed the broader effects of MPs and NPs on 
cellular mitochondrial function, noting increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential 
[64]. Consequently, prolonged exposure to MPs and NPs could stunt growth and impair reproductive success in bryophytes. 

3.4.2. Nutrient uptake and metabolism 
Bryophytes rely on efficient nutrient uptake mechanisms, including cell wall cation exchange capacities (CEC) [65] and water 

absorption, facilitated by their unique physiological structures [66]. The presence of MPs/NPs on bryophyte surfaces can block 
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nutrient absorption sites or alter nutrient availability in the surrounding environment. In a study by Changmai et al. [67], it was found 
that increasing concentrations of PVC-microplastic (2.5, 5, 7.5, and 10 % w/w) in the soil did not cause any observable phytotoxic 
symptoms, such as chlorosis or necrosis, in tomato plants. However, there was a dose-dependent reduction in plant growth-related 
parameters, including height, leaf area, stem diameter, and plant fresh and dry weight. It is possible that MPs/NPs internalized by 
bryophyte cells may interfere with cellular nutrient transport mechanisms, leading to nutrient imbalances and metabolic dysregula
tion. However, the study of changes in nutrient uptake and metabolism induced by MPs and NPs impairing essential physiological 
processes necessary for bryophyte growth, reproduction, and adaptation to environmental stresses is scarce in the current literature. 
Understanding the effects of MPs/NPs on the nutrient uptake of bryophytes is critical for evaluating their ecological impacts and 
developing strategies to mitigate plastic pollution in terrestrial ecosystems. Further research is necessary to elucidate the long-term 
consequences of plastic exposure on bryophyte populations and their interactions within ecological communities. 

4. Ecological consequences 

4.1. Alterations in bryophyte community structure and diversity 

The infiltration of MPs and NPs into natural habitats can significantly alter the community structure and diversity of bryophytes. 
Bryophytes are particularly sensitive to environmental changes [68,69]. Studies have indicated that MPs can affect substrate quality 
and have ecotoxicological impacts on biota [70–72], raising questions about shifts in bryophyte species composition and abundance. 
The presence of MPs might favor certain bryophyte species that can tolerate or exploit these pollutants, thereby reducing overall 
species diversity. Changes in community structure could have cascading effects on ecosystems, as different bryophyte species 
contribute uniquely to their habitats. Zhang et al. [73] tested six common MPs (EPS, PET, HDPE, PP, PLA, and PA6) with either 
homogeneous or heterogeneous distribution in soil. Results showed that plant biomass was generally higher in homogeneous treat
ments for PET and PP, but lower for PLA. In heterogeneous treatments, biomass varied depending on the MP type. EPS decreased 
community evenness, while PET increased it. Therefore, future research should examine the numerous interactions between MPs and 
soil quality, as well as their ecotoxicological impacts on bryophyte communities, within the broader context of global environmental 
change. 

4.2. Effects on bryophyte roles in nutrient cycling and moisture retention 

Bryophytes play a crucial role in nutrient cycling and moisture retention within their ecosystems [66]. The introduction of MPs into 
bryophyte habitats can disrupt these essential functions. MPs can interfere with plants’ ability to absorb water and nutrients [74], 
potentially altering their growth and physiological processes. Furthermore, the adsorption of organic pollutants by MPs can lead to the 
bioaccumulation of harmful substances in bryophyte tissues, affecting their health and their ability to participate in nutrient cycling 
[75]. This disruption can lead to a decrease in the efficiency of nutrient and water retention, impacting the broader ecological pro
cesses. Therefore, future research in environmental toxicology should address the toxicological assessment of the combined effects of 
MPs, NPs and their sorbed pollutants on bryophytes. 

4.3. Implications for ecosystem functions where bryophytes are key species 

Bryophytes are often key species in their ecosystems, contributing to soil formation, stabilizing substrates, and providing habitat for 
various microorganisms and invertebrates [12,13]. The ecological consequences of MP contamination in bryophyte-dominated hab
itats are profound. The impairment of bryophytes’ health and function due to MP pollution can lead to weakened soil structure and 
increased erosion [76]. Moreover, the decline in bryophyte health can reduce habitat availability for other species [68], thereby 
diminishing biodiversity. The overall ecosystem function can be compromised, affecting everything from water filtration to the 
support of food webs. Understanding and mitigating the impact of MPs on bryophytes is crucial for preserving the integrity of these 
ecosystems. 

5. Methodological approaches in studying MP/NP effects on bryophytes 

5.1. Experimental designs and field studies 

To understand the impacts of MPs and NPs on bryophytes, researchers have employed a variety of experimental designs and field 
studies (Table 2). Laboratory experiments often involve exposing bryophyte samples to known concentrations of MPs under controlled 
conditions, allowing for the detailed examination of physiological and/or biochemical responses [17–21]. These studies are com
plemented by field research, which involves collecting bryophyte samples from environments with varying levels of MP contamination 
[21–23,25]. Field studies provide valuable insights into real-world scenarios, capturing the complexity of natural ecosystems and the 
multitude of factors influencing bryophyte health and function. Combining laboratory and field approaches enables a comprehensive 
understanding of how MPs affect bryophytes across different contexts. 
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5.2. Techniques for detecting and quantifying MPs in bryophytes 

Detecting and quantifying MPs in bryophytes is a critical aspect of this research. Table 2 summarizes the current techniques used for 
detecting and characterizing plastic particles in bryophytes. These diverse detection methods highlight the range of techniques 
available for identifying and analyzing MPs and NPs in bryophytes. Notably, several techniques such as stereomicroscopy, FT-IR, SEM, 
Pyr-GC/MS, and Raman spectroscopy are employed for the identification and quantification of MPs in environmental samples. Each 
technique has its limitations and quality control requirements for accurate results [77]. 

Advanced analytical techniques like Fourier-transform infrared (FT-IR) spectroscopy and Raman spectroscopy are commonly used 
to identify and characterize MPs in environmental samples [78]. Both methods are effective, allowing for precise determination of 
plastic type and size, but sometimes a combination is needed for reliable identification, especially for colored particles. For particles 
smaller than 400 μm, Raman imaging detected about 35 % more MPs than FT-IR imaging, particularly for those under 20 μm, although 
Raman imaging took longer. The study suggests dividing smaller MPs into two size ranges: 500–50 μm for quick FT-IR analysis and 
50–1 μm for detailed Raman analysis [78]. 

Microscopic techniques, such as scanning electron microscopy (SEM) and fluorescence microscopy, are also employed to visualize 
and measure MPs within samples [77]. Additionally, the application of optical and electron microscopy for analyzing and charac
terizing MPs/NPs in aquatic environments is described by Girão [79]. Scanning Electron Microscopy/Energy Dispersive Spectroscopy 
(SEM/EDS) is particularly important for identifying MP-associated pollutants, such as toxic metals. These techniques provide detailed 
images of MP particles, helping to understand their distribution and interaction with bryophyte tissues. Combining these methods with 
chemical analysis enables researchers to quantify the concentration of MPs and assess their potential effects on bryophytes. 

5.3. Limitations and challenges in current research methods 

Despite the advancements in methodology, studying the effects of MPs and NPs on bryophytes presents several limitations and 
challenges. One significant challenge is the difficulty in replicating natural conditions within laboratory settings, which may not fully 
capture the complexity of field environments. Additionally, the detection and quantification of NPs remain particularly challenging 
due to their extremely small size and the limitations of current analytical techniques. Furthermore, there is a need for standardized 
protocols and methodologies to ensure consistency and comparability across different studies [77]. The variability in MP types, sizes, 
and environmental concentrations also adds to the complexity of research [80], making it difficult to draw broad conclusions. 
Addressing these challenges is essential for advancing our understanding of MP impacts on bryophytes and informing effective 
environmental policies and conservation strategies. 

6. Mitigation and management strategies 

6.1. Potential strategies to reduce MP pollution 

Mitigating MP pollution requires a multifaceted approach that addresses both primary and secondary sources of contamination. 
One effective strategy involves improving waste management practices to minimize plastic leakage into the environment. Research 
indicates that an integrated waste management system focusing on the four R’s hierarchy (reduce, reuse, recycle, recover) and 
enhancing the life-cycle of plastics is essential to reduce energy and resource consumption, prevent harmful emissions, and decrease 
the amount of mismanaged plastic waste reaching the oceans [81]. Additionally, strategies such as recycling and recovery of plastic 
waste, particularly polyethylene terephthalate (PET), play a significant role in reducing energy and resource depletion, avoiding 
harmful emissions, and minimizing the quantities of mismanaged plastic waste entering the environment [82]. Innovative technol
ogies, such as electrocoagulation processes, natural coagulation, membrane filtration, and sand filtration in wastewater treatment 
plants [31,83–85], also hold promise in capturing MPs before they enter aquatic and terrestrial ecosystems. Immediate and vigorous 
action is essential to curb plastic waste generation and accumulation, underscoring the importance of international collaboration in 
achieving substantial reductions in plastic pollution [86]. 

6.2. Management practices to protect bryophyte habitats from MP contamination 

Protecting bryophyte habitats from MP contamination requires tailored management practices that consider the unique ecological 
characteristics of these organisms. Conservation efforts should prioritize minimizing direct sources of MPs in sensitive habitats such as 
forests, wetlands, and freshwater ecosystems where bryophytes thrive. This includes implementing buffer zones around bryophyte-rich 
areas to reduce runoff carrying MPs, adopting sustainable land use practices that minimize disturbance to natural habitats, and 
promoting revegetation initiatives to enhance ecosystem resilience. Monitoring programs specifically targeting bryophyte commu
nities can provide early detection of MP impacts, guiding adaptive management strategies to mitigate further contamination. 

6.3. Future research directions and policy implications 

Future research on MPs and bryophytes should focus on expanding our understanding of ecological interactions and long-term 
impacts. Key research priorities include investigating the mechanisms of MP uptake and accumulation in bryophyte tissues, assess
ing the bioaccumulation and transfer of MPs through food webs, and elucidating the synergistic effects of MPs with other 
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environmental stressors. Integrating advanced analytical techniques and modeling approaches will be essential for quantifying MP 
loads in bryophyte habitats and predicting their ecological consequences. Policy implications should emphasize the integration of MP 
management into broader environmental policies, promoting interdisciplinary collaborations between scientists, policymakers, and 
stakeholders to develop effective mitigation strategies. Strengthening international regulations and standards for monitoring and 
reducing MP pollution will be critical for safeguarding bryophyte habitats and preserving ecosystem health for future generations. 

7. Conclusion 

In conclusion, this review underscores the pervasive presence of MPs and NPs in bryophyte-dominated ecosystems and highlights 
their profound impact on these crucial plant communities. The evidence synthesized reveals that MPs and NPs are widely distributed in 
bryophytes, originating from atmospheric deposition and freshwater systems, and affecting various bryophyte families. The interac
tion mechanisms, including adsorption, accumulation, and potential internalization of these particles, have been observed, though 
further research is needed to fully elucidate their implications. The physiological effects, such as altered photosynthesis, reduced 
growth, and disrupted nutrient uptake, point to significant challenges for bryophyte health and ecosystem functions. Ecological 
consequences extend to altered community structures, disrupted nutrient cycling, and compromised roles in moisture retention. 
Methodological advancements are needed to overcome challenges in detecting and quantifying these pollutants, and comprehensive 
field studies must be conducted to understand real-world impacts better. Future research should address the gaps identified, such as the 
mechanisms of internal uptake and long-term ecological impacts, and explore synergistic effects with other environmental stressors. 
Developing integrated management strategies and international policies is crucial to mitigating MP and NP pollution and protecting 
bryophyte habitats and broader ecosystem health. 
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