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Abstract 

Background:  The ongoing COVID-19 pandemic hit South America badly with multiple waves. Different COVID-19 
variants have been storming across the region, leading to more severe infections and deaths even in places with high 
vaccination coverage. This study aims to assess the spatiotemporal variability of the COVID-19 pandemic and estimate 
the infection fatality rate (IFR), infection attack rate (IAR) and reproduction number ( R0 ) for twelve most affected South 
American countries.

Methods:  We fit a susceptible-exposed-infectious-recovered (SEIR)-based model with a time-varying transmission 
rate to the reported COVID-19 deaths for the twelve South American countries with the highest mortalities. Most of 
the epidemiological datasets analysed in this work are retrieved from the disease surveillance systems by the World 
Health Organization, Johns Hopkins Coronavirus Resource Center and Our World in Data. We investigate the COVID-19 
mortalities in these countries, which could represent the situation  for the overall South American region. We employ 
COVID-19 dynamic model with-and-without vaccination considering time-varying flexible transmission rate to esti-
mate IFR, IAR and R0 of COVID-19 for the South American countries.

Results:  We simulate the model in each scenario under suitable parameter settings and yield biologically reasonable 
estimates for IFR (varies between 0.303% and 0.723%), IAR (varies between 0.03 and 0.784) and R0 (varies between 
0.7 and 2.5) for the 12 South American countries. We observe that the severity, dynamical patterns of deaths and 
time-varying transmission rates among the countries are highly heterogeneous. Further analysis of the model with 
the effect of vaccination highlights that increasing the vaccination rate could help suppress the pandemic in South 
America.

Conclusions:  This study reveals possible reasons for the two waves of COVID-19 outbreaks in South America. We 
observed reductions in the transmission rate corresponding to each wave plausibly due to improvement in nonphar-
maceutical interventions measures and human protective behavioral reaction to recent deaths. Thus, strategies cou-
pling social distancing and vaccination could substantially suppress the mortality rate of COVID-19 in South America.
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Background
The world has been facing devastating public health 
and socioeconomic growth problems in the wake of the 
ongoing COVID-19 pandemic [1, 2]. As of September 
29, 2021, the pandemic has caused more than 230 mil-
lion cases and over 4.7 million deaths across the globe 
[2]. The first countries/regions to be hit by the COVID-
19 pandemic were China, Europe, North America, fol-
lowed by the rest of the world, including South America, 
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Africa, and the Western Pacific [3–5]. The two countries 
in South America with the lowest COVID-19 morbid-
ity and mortality cases are Guyana and Suriname, which 
reported 792 and 893 deaths, respectively, by Septem-
ber 29, 2021 [6, 7]. Moreover, Brazil and Peru are two of 
the hardest-hit countries in terms of either total deaths 
or deaths per capita in South American region, with the 
second wave heavily driven by new variants, such as, P.1 
variant [2, 8, 9]. By May 31, 2020, about 75.3% (4,196 
of 5,570) municipalities across all five administrative 
regions of Brazil reported COVID-19 cases, including 
206,555 (40.2%) recoveries and 29,314 (17.5%) fatali-
ties [10]. Subsequently, by July 28, 2021, the total deaths 
in Brazil and Peru were 553,272 and 196,138, respec-
tively. In particular, the Peruvian government updated its 
COVID-19 data and reported that 0.5% of the population 
had died of the disease. This caused Peru and Brazil to be 
the first and seventh-most COVID-19 affected countries 
globally in terms of deaths per capita rate (https://​coron​
avirus.​jhu.​edu/​data/​morta​lity). Moreover, owing to the 
increased morbidity and mortality cases of COVID-19 
in South America, the situation was especially challeng-
ing in the Amazon region, following high infection attack 
rates [10, 11].

The rate of COVID-19 vaccination is dramatically 
increasing worldwide, and South American countries 
are scrambling to catch up by creating openings for vac-
cine diplomacy to reach the target for vaccinating at least 
60–70% of the population. The region represents approx-
imately 16% and 24% of the global cases and deaths as of 
October 4, 2021. However, only about 7% of the world-
wide vaccine doses have been administered in South 
America, according to the World Health Organization 
(WHO) report [2]. In comparison, as of October 6, 2021, 
at least one dose of a COVID-19 vaccine has been admin-
istered to over 46% of the world’s population. And more 
than 6 billion doses of vaccines have been administered 
so far, globally, with over 23.6 million administered each 
day [12], see Additional file 1: Table S1.

Although several effective vaccines are currently avail-
able [13], yet, the nonpharmaceutical interventions 
(NPIs) measures and other factors (such as the influ-
ence of human behavior and provision of adequate medi-
cal resources) [11, 14] continue to play significant roles 
in the apparent flattening of the epidemic curves and 
help in reducing the mortality of COVID-19 across the 
globe. Such as changes in human behavior, social distanc-
ing, and usage of face masks [11]. Other factors/control 
measures include plausible pre-existing serological cross-
reactivity against SARS-CoV-2 [15], herd immunity [16], 
availability of medical resources [17], meteorological fac-
tors [18, 19], reduction in global transportation [20, 21], 
and use of effective mask [22]. These factors have resulted 

in highly geographical heterogeneity for COVID-19 
transmission. Moreover, the spatiotemporal variability 
of COVID-19 pandemic has been studied across differ-
ent levels through various indices [23–25]. Some coun-
tries in South America, such as Chile, have portrayed 
significant positive impact following implementing NPIs 
and other containment measures against COVID-19, 
including localized lockdowns, banning of large gather-
ings, night-time curfew, and school and country border 
closures [26]. These control measures helped significantly 
in suppressing the morbidity and mortality rates [26, 27]. 
The dynamic data dashboards (such as the Johns Hop-
kins Coronavirus Resource Center) reporting COVID-
19 cases and deaths highlighted significant geographical 
variations in the epidemic patterns of COVID-19 world-
wide [2, 7, 28]. Since the beginning of the pandemic, a lot 
of growing body of COVID-19 modeling studies estimat-
ing the COVID-19 morbidity and mortality burdens have 
been published (see, for instance, [5, 14, 29–34] and the 
references therein).

Besides, small changes in the genetic code of viruses 
occur during transmission. These changes are called 
“mutations”. Most of the mutations are transient, and 
some may persist to become more severe outbreak. The 
genetically modified version of the virus with one or 
more new mutations from the original version is known 
as a “variant” [35]. According to the COVID-19 Genomic 
UK Consortium (COG-U.K.) [36], thousands of COVID-
19 mutations are being detected, but few of them are 
likely to threaten public health [37–39]. Some studies 
shows that most viruses’ mutations are not harmful and 
could not cause any severe infection [38, 40]. The trans-
missibility and severity of SARS-CoV-2 likely increased 
due to some devastating mutations, such as the muta-
tion in D614G amino acid. These evolved mutations may 
result from natural selection, and the steady increase of 
the G614 variant at regional stages could designate a fit-
ness gain to this variant [41, 42]. This mutation could 
increase the efficiency of the viral cell fusion to the host 
cell. Therefore, these variants have higher transmission 
rates [43].

The P.1 variant with N501Y, E484K, and K417T muta-
tions was first detected by the Japanese authorities on 
January 6, 2021, from four travellers who arrived at 
Tokyo Haneda Airport Japan after returning from Brazil 
four days earlier [44]. Health authorities and epidemiolo-
gists are still investigating if this variant is more severe, 
besides its higher transmission rate, or could detriment 
current diagnostics or vaccines [35, 38]. The P.1 line-
age was linked with increased severity and reinfection 
scenarios [45–47]. Previous reports on SARS-CoV-2 
genomic sequences highlighted that P.1 is more trans-
missible of up to 1.7–2.4 fold and previous infection by 

https://coronavirus.jhu.edu/data/mortality
https://coronavirus.jhu.edu/data/mortality


Page 3 of 11Musa et al. Infectious Diseases of Poverty           (2022) 11:40 	

non-P.1 gives about 54–79% of the protection against P.1 
infection compared with non-P.1 lineages [48]. The muta-
tions of this variant include the N501Y, which has some 
similarities with the variants identified in South Africa 
and the United Kingdom (UK) [38]. Currently, three 
COVID-19 variants are considered the most dangerous 
ones, raising more public health concerns. These are the 
lineage B.1.1.7 variant identified in the UK with N501Y 
mutation (which has now evolved to include the E484K 
mutation in the UK) [49]; lineage B. 1.351 identified in 
South Africa; and the lineage P.1 variant identified in Bra-
zil [36, 44]. These variants are called “variants of concern 
(VOCs)” [38, 50]. Since they can potentially reduce anti-
body neutralization and increase affinity for ACE2 recep-
tors, which results in increased severity and could even 
lead to death, they are also linked to higher viral trans-
missibility, increased disease severity, and possible eva-
sion of immunity, potentially impacting reinfection and 
vaccine effectiveness [9, 40, 51].

The P.1 variant has been detected in over 70 countries 
[44], including the United States, Canada, Belgium, Tur-
key, India, Brazil and Peru, as of September 29, 2021. It 
is currently storming across the South American region, 
leading to more severe cases and deaths even in places 
with high vaccination coverage. The resurgence of the 
second wave in South America would be an essential les-
son for the rest of the world to tighten and improve the 
current control measures. Peru, a country of around 30 
million people, is currently one of the world’s hardest-hit 
countries with a COVID-19 mortality of about 200,000 
(which makes the death per capita the highest globally by 
June 1, 2021) [7, 52, 53]. A case resurgence was observed 
in April 2021 that has been declared the deadliest month 
for Peru since the pandemic began [52, 54, 55]. The  P.1 
variant  was likely the cause of over 40% of  the infec-
tions in Lima, the capital of Peru [55]. Health authori-
ties are investigating another strain called C.37, which 
first emerged in Peru in August 2020 and has raised 
public health concerns, especially among the neighbour-
ing countries such as Argentina, Chile, and Ecuador 
[56]. Colombia also experienced similar scenario with 
Peru, where occupancy in intensive-care units hit 90% 
in the capital, Bogotá, and hospitals in other cities were 
nearly overwhelmed [55]. Several cross-sectional studies 
suggested that  the P.1 variant was up to 2.2 times more 
contagious and 61% more capable of reinfecting peo-
ple than the original SARS-CoV-2 virus [38, 55, 57, 58]. 
Many countries in South America that experienced sharp 
increased in cases and deaths have, for the most part, 
not done extensive genomic sequencing to determine 
how many people been infected by P.1 [9]. Some reports 
show that the P.1 variant was the primary driver of the 
pandemic in the region [9]. Therefore, it is essential to 

determine infection fatality rate (IFR), infection attack 
rate (IAR) and reproduction number ( R0 ), which helps 
shed more light and understanding on the transmis-
sion and control strategies of emerging and re-emerging 
infectious diseases, including the COVID-19.

The IFR, IAR and R0 are some of the most crucial epi-
demiological parameters for estimating the actual burden 
of disease spreads and are used to assess the effectiveness 
of control measures. It is imperative to have accurate and 
up-to-date estimates of these parameters in different 
populations to develop essential benchmarks to under-
stand the epidemics’ spread to guide public health practi-
tioners and policymakers in planning effective and 
sustainable policy for COVID-19 prevention and control. 
Furthermore, numerous epidemiological models have 
been proposed and used to study the transmission 
dynamics of SARS-CoV-2. For instance, a boosted regres-
sion tree (BRT) and multivariable logistic regression 
models were employed by Tao et al. [59] to identify the 
relative contribution and effect size of the risk factors 
associated with the asymptomatic cases and IFRs for 
COVID-19 in Hong Kong. They found that males and 
older cohorts were associated with higher IFR than 
females and younger cohorts. According to Buss et  al., 
the basic reproduction number ( R0 ) for Amazonas was 
estimated at 2.5–3.0 during the hugely unmitigated out-
break [10, 11], which indicates high transmission poten-
tial of the virus to spread and cause large outbreaks. 
Moreover, the expected infection attack rate (IAR, i.e., 
proportion of the total population being infected) in a 
homogeneously mixed population during unmitigated 
outbreak was estimated at 89–94% for Amazonas, Brazil 
[60]. When the percentage of infected individuals exceeds 
the herd immunity threshold of 60–67% (which can be 
calculated using the relation 

100× (1− (1/R0)
 ), each 

infection generates less than one secondary case, thus, 
incidence declines [61].

This study investigates spatiotemporal variability of 
the COVID-19 pandemic, as well as estimates IAR, IFR 
and R0 for the twelve most affected countries in South 
America, namely; Argentina, Bolivia, Brazil, Chile, 
Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, 
Uruguay, and Venezuela. Epidemiologically speaking, 
the higher number of these parameters indicates that the 
epidemic  would persists and spreads in the population. 
We investigate the range of SARS-CoV-2 transmission 
scenarios in these countries and assess the pandemic’s 
key drivers, such as pharmaceutical and NPIs measures. 
Notably, we examine the transmission trends and iden-
tify the main epidemic drivers in the region (e.g., human 
behavioral changes, social distancing, and minimal or 
partial compliance of other NPIs measures by the gen-
eral public). Further, we will compare the results of each 
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scenario to reveal possible reasons for the current fluc-
tuations (rise and fall) in mortality that would help assess 
mitigation strategies and inform public health responses 
and policymakers for effective control of the outbreak.

Methods
Epidemic data
We retrieved the COVID-19 datasets from differ-
ent sources. Epidemiological time-series datasets for 
COVID-19 cases and deaths are from publicly available 
reports collected and compiled by the WHO disease sur-
veillance systems (dashboard) [2]. Similar data can also 
be obtained from Our World in Data via [62, 63]. In 
particular, confirmed cases and deaths in "Our World 
in Data" come from the COVID-19 Data Repository by 
the Center for Systems Science and Engineering (CSSE) 
at Johns Hopkins University (JHU) [64]. In case of vacci-
nation, the data were obtained from [65]. Other datasets 
analyzed include (i) COVID-19 related data for Brazil, 
which was collected and compiled by the Brazil Ministry 
of Health disease surveillance report through the Secre-
tariat Health Surveillance (SVS) available from [66, 67], 
(ii) state-level population data for Brazil [68], (iii) state-
level datasets for COVID-19 cases and deaths for Brazil 
[69], (iv) state-level daily mortality datasets for Severe 
Acute Respiratory Illness (SARI) obtained from hospi-
talized patients (a good proxy of COVID-19 deaths) are 
available from [70], (v) SARG data (hospitalized SARI 
cases, first symptom onset date) for Brazil [71]; and (vi) 
additional information on the COVID-19 situation report 
for Peru were obtained from [72].

Our analysis focuses on the 12 most-affected countries 
with SARS-CoV-2 mortalities in South American region 
to estimate IFR, IAR and R0(t) . For the geographical loca-
tions of these countries, see the map in Additional file 1: 
Fig. S3.  For each country, the case incidence and mor-
tality data were used. It is worth stating that the current 
study did not assess the individual patient’s data; hence 
no ethical approval and patient consent is required. Fur-
ther, we used COVID-19 death for Peru after official cor-
rection [53]. Consequently, the revised death data in Peru 
is in line with "excess deaths" figures, which researchers 
have used in estimating the under-ascertainment of cases 
in Peru and other countries. Excess death accounts for 
the total number of extra deaths over time in comparison 
to the average level in the 5-year pre-pandemic period. 
For Brazil, we used the severe-acute-respiratory-infec-
tion-hospitalized deaths, larger than the official COVID-
19 deaths cases and is believed to be more accurate 
reflection of the actual scenario. We show the reported 
COVID-19 deaths and vaccination coverage over time in 
Fig. 1.

Epidemic model
We adopted a susceptible-exposed-infectious-recovered 
(SEIR)-based model with time-varying transmission rate 
β(t) implemented as an exponential cubic spline function 
of time. Other key epidemic parameters were estimated 
to compare fitting performance in each scenario. We 
divided the total human population, N (t) , at time, t , into 
the mutually exclusive compartments of susceptible S(t) 
(individuals who are at risk of the COVID-19 infection), 
exposed E(t)  (individuals who are exposed to COVID-
19), infectious (including asymptomatic, mild, and severe 
cases) I(t) , hospitalized severe cases H(t) , and recovered 
R(t) individuals. And the compartment D(t) accounts 
for the total number of people who die due to COVID-
19 infection. The model, represented in Fig.  2, is given 
by the following system of coupled differential equa-
tions. Details of the parameters of the model are given in 
Table 1.

In the above equations, the  dot above the variables 
denotes the time differentiation. The parameter β(t) rep-
resents the time-varying transmission rate, σ is the infec-
tiousness onset rate, γ is the rate of loss of infectiousness, 
and κ represents the removal rate (due to death or recov-
ery) of hospitalized cases. The parameter θ denotes 
the ratio of severe cases out of all infected cases and π 
represents the proportion of mortality out of severe 
cases. Hence, the overall CFR (or IFR) is equivalent to 
θπ . We note that the exact definitions of H , θ , and π are 
not important, since we only fit death data, rather than 
infected or hospitalized cases. Thus, the most impor-
tant parameter is the IFR, i.e., the product θπ . In order 
to further simplify the model, we assume θ ≈ π , thus the 
IFR is θ2 . Possible reason for making this assumption 
was due to the unavailability of COVID-19 hospitalized 
severe cases data. We have tested alternatively where one 
of the two is fixed at some small values and yielded simi-
lar results. The class of H serve as an intermediate sta-
tus (also a delay class) between infectives and deaths. We 
assumed all parameters of the model to be constant with 
the exception of time-varying β(t) . It is important to note 
that the demographic processes (i.e., births and natural 
deaths processes) are not included in the current model 
since the timescale of the COVID-19 pandemic is much 
shorter than the usual demographic timescale [73, 74].

Ṡ = −
βSI
N

,

Ė =
βSI
N

− σE,

İ = σE − γ I ,

Ḣ = θγ I − κH ,

Ḋ = πκH ,

Ṙ = (1− θ)γ I + (1− π)κH .
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Following previous studies [75, 76], we define the 
transmission rate, β(t) , as an exponential cubic spline 
function, i.e., β(t) = exp(cubic_spline) , with n nodes 
evenly distributed over the study period. We set time 
step size to be one day and integrated Ḋ for one day and 
yielded the simulated daily deaths Dt . We defined the 
reported deaths as Ct , which follows a negative binomial 
distribution

where τ denotes the over-dispersion of reporting, and 
accounts for the measurement noise due to surveillance 
and heterogeneity among individuals. When τ = 0 , this 
is reduced to a Poisson distribution. Namely, we assumed 

Ct ∼ NegativeBinomial(mean = Dt , variance = Dt(1+ τDt)),

the reporting is an over-dispersed Poisson process, which 
is widely used and biologically reasonable.

Moreover, the following set of parameter values are 
used for the simulation results, that is, the mean latent 
period ( σ ) as two days, the mean infectious period ( γ ) as 
three days, and the mean duration of hospitalization ( κ ) 
as eight days. We assumed that due to the time discre-
tization in the simulation, the period should be slightly 
be higher than these values. Thus, the sum of the mean 
latent period and infectious period are 6.07  days with a 
1-day time step size (the sum approaches five days only 
when time step size approaches zero), which is close to 
the estimated generation time (GT, the sum of the mean 
latent and infectious period in an SEIR setting) by con-
siderable amount of literature [14, 74, 77–80]. The mean 

Fig. 1  Simulations of the model with vaccination for the COVID-19 deaths per million population (black curve, in square root scale such that we 
can see the small values) for the 12 Southern American countries, and the red and blue curve, respectively, represent partly one-dose vaccinated 
and fully two-dose vaccinated individuals. The data were retrieved from Our World in Data accessible via [62, 65]. The figure was generated using 
the Free Statistical Software R with version 4.1.2
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duration from infection to death is about 14.57 days (with 
a 1-day time step size), which is biologically reasonable 
[81]. We note that many previous studies used longer 
generation time, which is against the reported GT esti-
mates of COVID-19, which may lead to overestimating 
R0 [74]. We assumed that the initial susceptibility propor-
tion is 95% to reflect the fact that some proportion of the 
population (e.g., children) are less susceptible [82]. We 
assumed that the initial infectious population was lower 
than 10,000. The initial exposed and infectious popula-
tions are equal. The initial H cases are 1/10 of the initial 
infectious cases. The initial deaths are 1/10 of those of the 
H cases. We fixed n = 9 in the cubic spline. We assumed  
θ between [0.055 and 0.085], thus IFR was between 
[0.3%, 0.72%], see Fig.  3. Similarly, the results in Addi-
tional file 1: Figs. S1, S2 for the transmission dynamics of 
COVID-19 in 12 South American countries obtained by 
varying θ , fixed π , and different n . The estimates of IAR, 
IFR, and R0 are roughly consistent. If we assume COVID-
19 confirmed deaths are accurate, with estimated IFR, 

we can also estimate the total infection in each country 
and the IAR. Moreover, we used the standard approach 
of the next-generation matrix technique to compute R0 
(see Additional file 1: Sect. 6) [83], which determines the 
number of COVID-19 secondary cases generated by a 
typical case if an infected person is placed into an entirely 
susceptible population.

Extended epidemic model with vaccination
Here, the initial model was extended by incorporating 
the vaccination scenario. The COVID-19 vaccination rate 
( v(t) ) represents the proportion of a population admin-
istered with COVID-19 vaccine per day. The COVID-19 
vaccination data can be retrieved via [2, 62, 65]. The rate 
at which susceptible individuals get vaccinated is given 
by ṽ(t) = v(t)/(1−

∫ t−
0 v(s)ds) , where ṽ(t) represent the 

proportion of susceptible individuals who received a vac-
cine per day. We split the population into two subpopu-
lations, i.e., fully vaccinated and not fully unvaccinated. 
We focus our analysis to the not fully unvaccinated group 
with the second dose or first dose for previously infected. 
The dynamic model is represented by the following cou-
pled system of nonlinear ordinary differential equations.

The basic theoretical analysis of the model with vac-
cination was provided in Sect.  S6. In the above model,   
the  parameter η = 0.85 denotes the proportion of the 
population that becomes fully protected over the study 
period. The model did not consider reinfection scenario 
since it has been reported to be at low rate with consider-
ably milder symptoms [8]. Considering that the infection 
risk is not uniformly homogenous and some individuals 
have stronger immunity than others, we assumed that at 

Ṡ = −
βSI
N

− ηṽS,

Ė =
βSI
N

− σE,

İ = σE − γ I ,

Ḣ = θγ I − κH ,

Ḋ = πκH ,

Ṙ = ηṽS + (1− θ)γ I + (1− π)κH .

Fig. 2  Schematic diagram of COVID-19 model without vaccination

Table 1  Parameters of the model

Parameter description Symbol Value

Time-varying transmission rate β(t) Variable

Infectiousness onset rate σ 1/2 day−1  

Rate of loss of infectiousness γ 1/3 day−1  

Removal rate of hospitalized cases κ 1/8 day−1  

Ratio of severe cases out of all infected cases θ Variable

Proportion of mortality out of severe cases π Variable

Proportion of fully protected individuals due to vaccination η 0.85

Proportion of susceptible individuals who received COVID-19 vaccine per day ṽ(t) Based on data
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least 5% of the population have pre-existing cross-immu-
nity from other coronaviruses [12]. The initial exposed 
and infectious people were equal and randomly chosen in 
the range [0, 0.001] from the total population. H class has 
1/10 of that in the infectious class, and Death (D) class 
has 1/10 of that in the H class.

We adopted a partially observed Markov process 
(POMP) model using maximum likelihood-based iter-
ated filtering technique to fit the mortality data [84]. One 
of the uniqueness of our proposed model is that it allows 
time-varying flexible transmission rate ( β(t) ), which was 
taken as an exponential cubic spline [85–87] to account 
for the simultaneous impact of the all-possible interven-
tions, including vaccination. For details on the fitting 
processes, see pseudo code in Additional file 1: Sect. S7 
and https://​kingaa.​github.​io/​sbied/.

Results and discussion
In Fig. 3, we depicted the fitting results for the top twelve 
South American countries with COVID-19 mortality. 
The time series of weekly confirmed COVID-19 deaths 
was denoted as red line, the median of 1,000 simulations 
was denoted as black circle line, and the basic reproduc-
tion number is a blue dashed line, i.e., R0(t) = β(t)/γ . 
The shaded region denotes the 95% confidence region of 
1,000 simulations. We observed that there were dispari-
ties and similarities in the transmission rate across the 
twelve countries.

Figure  3a–l have similarities, as seen from the simu-
lation results. Each country is experiencing (or have 
experienced) at least two waves of COVID-19 epidemic 
with different time-varying effective reproduction num-
ber ( R0(t) ). The first peak of COVID-19 deaths reached 
around mid-October to November 2020 in Argentina, 

Fig. 3  Model fitting results for the 12 South American countries with the highest COVID-19 deaths (represented by panels a–l). The time-series 
plots for the weekly reported COVID-19 deaths are represented in red line with simulation median (in black) and the basic reproduction number, 
R0(t) , in the dashed blue line. The shaded region represents the 95% confidence interval of the simulation. The panels a–l represents the infection 
attack rate (IAR) for the 12 countries, respectively, with π = θ , and n = 9 . The resurgence of deaths in Brazil and Peru could be explained by 
the resurgence of R0(t) due to the emergence of new variants and relaxing of nonpharmaceutical interventions measures. Note that π , θ and 
n represent proportion of mortality out of severe cases, ratio of severe cases out of all infected cases, and number of nodes, respectively. The 
COVID-19 confirmed cases and deaths data come from [64]

https://kingaa.github.io/sbied/
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Bolivia, Brazil, Colombia, Guyana, Paraguay, Suriname, 
and Venezuela. The first peak of COVID-19 deaths 
reached around July–August 2020, and the second peak 
reached around February 2021 in Chile, Ecuador, and 
Peru. By March–April 2021, the peak of the second wave 
in deaths was still in the process of descending in Argen-
tina, Bolivia, Colombia, Suriname, and Uruguay. While, 
the peak of the second wave was still increasing in Brazil, 
Chile, Ecuador, Guyana, Paraguay, Peru, and Venezuela. 
The peak seems to be levelling out in Chile by around 
June–July, 2020. The trends of COVID-19 in Brazil and 
Peru, the hardest-hit countries (represented by the panel 
(c) and (i) of Fig. 3), have similarity. Based on the time-
varying basic reproduction number, R0(t) , each of these 
two countries show at least two-waves trends of COVID-
19 mortalities, which is currently ongoing by September 
2021. The peak of deaths slightly follows the peak of R0(t) . 
The slightly ascending R0(t) in Brazil and Peru around 
December 2020 predicted a rise in death cases within the 
next couple of weeks. Further, we observed a slight dif-
ference in the reproduction number across the cities of 
Brazil and Peru (see Additional file 1: Figs. S3, S4), which 
could be due to the differences in human behaviour, NPIs 
compliance, and availability of health resources.

Infection fatality rate
We estimated the COVID-19 IFR for the 12 South Amer-
ican countries with the most deaths, as shown inside 
each panel of Fig.  3. The estimated IFR (or infection to 
reported death ratio) is shown inside each panel (a) to (l). 
The IFR varies between 0.303% and 0.723%. Most coun-
tries in the region experienced similar trends of COVID-
19 mortalities. Peru has been the hardest hit country 
and, thus, has the highest IFR of 0.723%. The IFR was 
approximately similar for Brazil, Chile, Colombia, Para-
guay, and Suriname (with IFR of 0.772%, 0.516%, 0.722%, 
0.608%, and 0.649%, respectively) and significantly higher 
than the IFR for other countries. Guyana has the lowest 
IFR, estimated at 0.303%, followed by Bolivia, Venezuela, 
Ecuador, Argentina, and Uruguay (with IFR of 0.315%, 
0.342, 0.394, 0.404, and 0.44, respectively), probably due 
to underreporting of deaths [88]. We note that our IFR is 
smaller than the reported raw case-fatality rates since not 
all infections will be reported. For instance, according to 
Ramirez et al. [89], the raw case fatality rate of COVID-
19 in Argentina, Bolivia, Chile, Paraguay, and Brazil, by 
June 3, 2021, was estimated at 3.11%, 3.42%, 1.09%, 1.09%, 
5.61%, respectively [88]. Our estimated IFR for Brazil is 
lower than our estimated IFR in Manaus, Brazil [61], the 
most affected city in Brazil. Further, a recent report by 
Rivera et al. [90] revealed that the IFR for most countries 

in South America varies between 0.87% and 7.14%, with a 
95% confidence interval of 0.34% to 10.76%.

Infection attack rate
Similarly, we estimated the corresponding IAR for the 
twelve South American countries, see Fig.  3a–l. The 
IAR was shown in the title of each panel (a) to (l) (in 
bold font). The IAR varies between 0.03 and 0.784. By 
June 2021, Peru was the hardest-hit country with the 
highest COVID-19 mortality in terms of per capita 
rate. Peru has an estimated IAR of 78.4%, which means 
78.4% of the population has been infected. The IAR for 
Peru was significantly higher than the rest of the South 
American region. Venezuela has the lowest IAR, which 
was estimated at 3%, likely due to better compliance of 
COVID-19 containment measures, such as better social 
distancing policies and other human behaviour fac-
tors. While for the remaining countries, the IARs vary 
between 11.1% and 47.4%. Most countries have also 
shown similar wave patterns in the region, especially as 
the second wave transmits faster in most countries.

Assessing the effect of vaccination
We studied the model "with" and "without" vaccination 
to evaluate the effect of the vaccination on the overall 
transmission dynamics. The model without vaccination 
was reconstructed by rerunning the fitted model with 
v(t) = 0 . Our model was the simplest model to explore 
vaccination’s effect. However, one could incorporate 
V as a compartment to represent the proportion of the 
vaccinated population with low immunity response and 
susceptible to breakthrough infection. Our preliminary 
testing/analysis showed that these two models yielded 
similar results (as in Fig.  3). Moreover, the proposed 
model captured well the epidemiological scenarios for 
COVID-19 dynamics in South America by identifying 
the key factors that enhanced the transmission in the 
region. For instance, social and environmental factors, 
human behaviors, partial or low compliance of pharma-
ceutical and NPIs measures, which in combination helps 
to investigate the actual dynamics of SARS-CoV-2 in 
South America and beyond. We also integrate our find-
ings based on our proposed model to assess the duration 
and intensity of those factors, especially the pharma-
ceutical and NPIs measures that are crucial and needed 
to maintain or strengthen control and prevention of 
SARS-CoV-2.

In this paper, we chose one strain model rather than 
two strain model to examine the transmission patterns of 
SARS-CoV-2 in the South American countries since our 
death data are not strain-specific. We assumed full cross-
immunity between strains, and most parameter settings 
are considered to be constant and identical to two strains 
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(e.g., wild strain and P.1 strain). Although the two strains 
model could capture more dynamics and better explain 
the situation in the South American region, we used one 
strain model, which also works well with a flexible trans-
mission rate. This work can be extended by employing 
two strain models to explore more dynamics features of 
SARS-CoV-2 in South America. Also, as future work, we 
plan to extend the model by adding more vital dynamics 
(e.g., demographic processes) to assess the model with 
and without vaccination qualitatively.

Conclusions
In this study, we developed a methodology to estimate 
the IFR, IAR and reproduction number of COVID-19 
in South American countries. In particular, we used 
an SEIR-typed model with time-varying flexible trans-
mission rate. We observed that the initial reproductive 
number between countries in South America varies for 
some reasons, such as differences in vaccinations uptake, 
NPIs compliance, healthcare standards, and socioeco-
nomic status. We also found reductions in IAR, IFR and 
reproductive number (transmission rate) corresponding 
to each wave, which were likely due to the differences in 
vaccination rates, human protective behavior reaction to 
recent deaths, or NPIs compliance. Those measures could 
be relaxed when the recent deaths decrease, and seems 
more biologically reasonable than assuming reproductive 
number to be constant. The drop-in reproductive number 
was not due to the depletion in susceptibility or transmis-
sibility, since, in our model, we disentangled these two 
signals. Thus, this fluctuation in the transmission rate 
would lower the expected attack rate after each wave. 
Moreover, we also observed that the initial reproduction 
number of COVID-19 for hardest-hit countries (such as 
Brazil and Peru) was high, owing to the low NPIs compli-
ance and fewer vaccines uptake. Overall, our results sug-
gested that increasing the vaccination rate coupled with 
NPIs and other basic preventive measures, such as pro-
viding adequate medical resources and improving public 
health awareness programmes, could effectively suppress 
the pandemic’s impact in South America.
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