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Abstract: Microarrays are applications of electrical engineering and technology in biology that allow
simultaneous measurement of expression of numerous genes, and they can be used to analyze
specific diseases. This study undertakes classification analyses of various microarrays to compare
the performances of classification algorithms over different data traits. The datasets were classified
into test and control groups based on five utilized machine learning methods, including MultiLayer
Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and
k-Nearest Neighbors (KNN), and the resulting accuracies were compared. k-fold cross-validation was
used in evaluating the performance and the result was analyzed by comparing the performances of
the five machine learning methods. Through the experiments, it was observed that the two tree-based
methods, DT and RF, showed similar trends in results and the remaining three methods, MLP, SVM,
and DT, showed similar trends. DT and RF generally showed worse performance than other methods
except for one dataset. This suggests that, for the effective classification of microarray data, selecting
a classification algorithm that is suitable for data traits is crucial to ensure optimum performance.

Keywords: classification; microarray; machine learning; multilayer perceptron; random forest;
decision tree; support vector machine; k-nearest neighbors

1. Introduction

Microarrays have been developed by combining modern mechanical and electrical
engineering technologies with the existing knowledge in molecular biology. While the
traditional methods allowed researchers to measure the expression of a small number of
genes at a time, the introduction of microarrays enabled the expression analysis of tens of
thousands of genes in a single experiment. This led to the development of experimental
techniques that were capable of generating a large volume of genomic information from
a single cell [1]. Since various genes in an organism mutually affect and regulate their
expressions, microarray data can be used as a tool to analyze specific diseases.

Microarray-based analysis methods can be broadly classified into five categories:
analysis of differentially expressed genes, analysis of differentially expressed gene pairs,
functional annotation, clustering analysis, and classification analysis [2–5]. In this study,
classification analysis was selected for evaluation. The classification analysis method is
a widely used multivariate statistical method that can be used to determine or predict
classes of unknown groups of data. This method has typically been used to analyze cancer
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microarray data, and many recent studies have accurately classified acute myeloid leukemia
and acute lymphoblastic leukemia using this method [6].

Meanwhile, in recent years, classification analysis using RNA-seq data has frequently
been conducted [7–10]. RNA-Seq has advantages for examining transcriptome fine structure
and does not depend on genome annotation for prior probe selection so that it can avoid
the related biases [11,12]. However, it also has some disadvantages. Protocols for RNA-Seq
are still not fully optimized and it requires high cost and high-power computing facilities.
Additionally, if paralogues are present, analysis of the data can be complex. On the
contrary, microarray has well-defined protocols and is relatively low in cost. Standardized
approaches for data are possible with microarray [13]. Therefore, microarray-related studies
are still underway [14–18].

The microarray data used in this study included datasets of samples categorized on
the following bases. First, the datasets representing the presence or absence of a specific
disease were included. Second, the datasets containing either of two similar diseases
were selected for this study. Third, the datasets containing samples obtained from people
with occupations entailing exposure to harmful environments, such as fine dust, and
those obtained from people with other occupations, which are for the control group,
were included. Furthermore, two types of data, i.e., miRNA data and RNA data, were
analyzed. The application of machine learning algorithms to this variety of microarray
datasets can provide a better understanding of the performance of machine learning with
microarray data. The machine learning algorithms used for classifying microarray data
were implemented in Python, followed by cross-validation to calculate the accuracy as a
metric of algorithmic performance.

The rest of the paper is organized as follows: Section 2 describes data sets, data
preprocessing, and classification algorithms; Section 3 shows the results of the classification
algorithm for each data; Section 4 summarizes and discusses the classification results; and,
finally, Section 5 concludes this work.

2. Materials and Methods
2.1. Data Acquisition

Microarrays are highly dense arrays of DNA molecules with known nucleotide se-
quences aggregated on a small slide [19]. Microarrays may be used to assess the overall
expression of a large number of genes and contribute to a genome-based analysis of bio-
logical phenomena [20,21]. MicroRNAs (miRNAs) are short RNA molecules consisting
of approximately 22 nucleotides and are involved in the post-transcriptional regulation
of gene expression. miRNAs are known to regulate the expression of over 60% of human
genes and are associated with various diseases [22].

The miRNA and RNA datasets were acquired from the Gene Expression Omnibus
repository at the National Center for Biotechnology Information (GEO-NCBI) [23]. Among
the datasets available for lung cancer, chronic obstructive pulmonary disease (COPD),
and cardiovascular disease (CVD), wherein each representative disease was induced by
exposure to fine dust, we acquired four datasets with clear control groups and relatively
large sample sizes. Furthermore, we acquired two microarray datasets that compared the
profiles of occupations with and without exposure to fine dust, respectively. Some of the
datasets used in this study also included information on smoking, sex, age, and BMI, in
addition to miRNA and RNA. While all datasets were associated with exposure to a fine
dust to some extent, their classification criteria and data traits were distinct as follows:

Dataset 01, titled “MicroRNA profiling of chronic lung disease for the Lung Genomics
Research Consortium”, provided miRNA data on patients with COPD and interstitial lung
disease (ILD), which are two similar pulmonary diseases. COPD is a lung disease caused
by repeated exposure to a noxious agent resulting in irreversible airflow limitation and ILD
is a loosely defined group of diseases characterized by changes in the interstitium of the
lung, causing pulmonary restriction and impaired gas exchange [24].
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Dataset 02, titled “The site and nature of terminal bronchiolar destruction in chronic
obstructive pulmonary disease (COPD)”, provided RNA data of patients with COPD
besides that of healthy subjects [25].

Dataset 03, titled “Genome-wide screening of transcriptional modulation in non-
smoking female lung cancer in Taiwan”, provided RNA data of non-smoking females with
lung cancer and those without lung cancer [26].

Dataset 04 was titled “Differences in monocyte miRNA profiles between patients
with coronary artery disease and healthy controls”. This dataset included miRNA data
from healthy subjects and patients with CVD, which is one of the primary causes of death
in humans [27].

Dataset 05 was titled “Transcriptomic changes in the nasal epithelium associated
with diesel engine exhaust exposure”. Diesel engine exhaust (DEE) is one of the primary
causes of air pollution worldwide, which can affect the human body. This RNA dataset
was collected from those working in diesel engine factories, along with those working
without DEE exposure as the control group, for a detailed analysis of genes affected by
air pollution [28].

Dataset 06, titled “Expression of viral and human microRNAs in blood in the Beijing
Truck Driver Air Pollution Study”, provided miRNA data collected from the blood samples
of truck drivers exposed to air pollution, with that of office workers as the control group.
This dataset was constructed to investigate the association between air pollution exposure
and clinical outcomes [29].

Since the sample traits listed in the six datasets not only included occupation but also
BMIs and smoking status, we were able to conduct classification experiments on various
features, such as truck driver/office worker, obese/non-obese, and smoking/non-smoking.
All datasets used for the experiments are listed in Table 1 with their titles, classification
groups, variable counts, and sample counts.

Table 1. Six datasets used in our experiments.

No. Dataset Classification Variables Samples

01 MicroRNA profiling of chronic lung disease for the Lung
Genomics Research Consortium COPD vs. ILD 438 319

02 The site and nature of terminal bronchiolar destruction in
chronic obstructive pulmonary disease (COPD) COPD vs. control 19,718 117

03 Genome-wide screening of transcriptional modulation in
non-smoking female lung cancer in Taiwan Lung cancer vs. control 54,675 120

04 Differences in monocyte miRNA profiles between patients
with coronary artery disease and healthy controls CVD vs. control 461 105

05 Transcriptomic changes in the nasal epithelium associated
with diesel engine exhaust exposure Diesel vs. control 19,718 79

06 Expression of viral and human microRNAs in blood in the
Beijing Truck Driver Air Pollution Study

Truck driver vs. office worker
Obese vs. non-obese

Smoker vs. non-smokers
734 252

Table 2 shows an example microarray data (miRNA data indicating the effects of air
pollution on truck drivers) used in the experiments. The rows specify the gene names
and values, whereas the columns specify the sample names. The miRNA data used in the
experiments represent the expression of each gene for each sample in a matrix form.

2.2. Data Preprocessing

Feature scaling is a kind of data preprocessing to improve the performance of machine
learning algorithms [30]. Normalization and standardization are the two most commonly
used feature scaling techniques in machine learning. Normalization rescales the values
into a range of [0, 1] and standardization rescales data to have a mean of 0 and a standard
deviation of 1. The choice of normalization or standardization depends on data and machine



Genes 2022, 13, 494 4 of 18

learning algorithms. There is no simple rule that determines when to use normalization
or standardization. Therefore, it is necessary to apply both methods and compare the
results to know which method is better [31]. In this study, only normalization was applied,
because normalization showed generally good performance according to the comparison.
However, there were cases where standardization was better than normalization, and the
results according to these feature scaling methods were attached to Appendix A.

Table 2. Example of miRNA dataset.

bkv-miR-B1-3p 3.024651 3.111211 3.32755 . . .
ebv-miR-BART10 3.657308 3.65909 3.785608 . . .
ebv-miR-BART12 7.352826 7.256859 6.621343 . . .

. . . . . . . . . . . . . . .
kshv-miR-K12-3 3.809819 4.034557 3.718077 . . .

The equation for normalization used in this study is given as follows:

xi
new :=

xi − xmin
xmax − xmin

(1)

If there are no negative values in the dataset, the values are scaled to a range between
0 and 1, and if there are negative values, the values are scaled to a range between −1 and 1.
As the microarray datasets used in this study did not contain any negative values, all of
them were scaled to a range [0, 1].

2.3. Classification Algorithm

Machine learning is a subfield of artificial intelligence in which algorithms are devel-
oped to allow systems to train based on a given dataset and execute activities that are not
specified in the code [32] Machine learning can be further categorized into supervised or
unsupervised learning based on whether or not the given data are labeled. In supervised
learning such as support vector machines, decision trees, and neural networks, systems use
the features of the given data to predict their labels. On the other hand, in unsupervised
learning such as clustering, the system is trained entirely on the unlabeled input values. In
this study, supervised learning was used to classify the microarray data.

MLP is a layered neural network with one or more hidden layers between the input
and output layers [33]. The network is a feedforward network in which the layers are
directed as per the order: input, hidden, and output layers, and there is no connection
between the nodes of the same layer or between the output and input layers [34]. MLP uses
activation functions, typically the sigmoid or rectified linear unit (ReLU) functions. The
sigmoid function provides a value between 0 and 1 as output, enabling the neural network
to make subtle classifications of the data. However, this characteristic of the sigmoid
function poses a disadvantage, i.e., with deeper networks; the output of the function is
heavily biased towards either end of the range, leading to a derivative value close to 0. To
solve this problem, the ReLU function was proposed, which returns 0 for an input value
smaller than 0 but returns the original input value for one larger than 0. This does not lead
to derivative values converging to zero, even with deeper networks. The equation for the
ReLU function is as follows:

f (x) = x+ ≡ max(0, x) =
{

0 (x < 0)
x (x ≥ 0)

(2)

where x is the input to a neuron.
Some optimizers that enhance and stabilize the learning rates of MLP include stochastic

gradient descent, momentum, nesterovated gradient, and adaptive moment estimation
(Adam). Adam was selected for this study, owing to its high computational efficiency,
low memory requirements, and scalability in large datasets [35]. The default value of the
learning rate, which controls the step size in weight updates, was set to 0.01 since the
learning rate of 0.01 is known to be effective in preventing underfitting [36].
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SVM is a machine learning algorithm proposed by Vapnik [37]. It is a highly general-
izable classifier typically used for classification and regression analysis. SVM classifies a set
containing elements of various classes in an N-dimensional space into several subsets using
the (N-1)-dimensional hyperplane of the maximum margin [38]. The algorithm is currently
being used in a wide range of fields including text, handwriting, facial, object recognition,
and bioinformatics [39]. The SVM provides different outputs based on the values of two
parameters: C, specifying the degree of error permitted, and γ, specifying the curvature of
the boundary.

In this study, the RBF (radial basis function)-SVM was used for its specialization in
nonlinear factors. The RBF kernel function is expressed as follows [40]:

K
(
xi, xj

)
= exp

(
−γ‖xi − xj‖

)2 (3)

where ‖xi − xj‖2 is the squared Euclidean distance between the two vectors xi and xj.
The RBF kernel requires predetermined values for the C and γ parameters since the C

and γ value that shows the highest performance varies according to the size of the dataset.
The value with the highest performance among 0.001, 0.01, 0.1, 1, 10, and 100 was selected
to obtain experimental results. The six values are the most generally used for the γ value
of RBF-SVM.

DT is an analytical method in which a tree-like structure consisting of decision rules
is constructed to classify data into several subsets [41]. A tree is a collection of layered
nodes and branches. Top-down algorithms are generally used to construct decision trees,
and the selection of classification variables and threshold values is crucial in each step
of constructing the tree from the top to the bottom. Without a limit on the depth of the
decision tree, the tree can become infinitely deep and complex. Thus, trees without pruning
may result in overfitting, which may be prevented by limiting the tree depth. In this study,
the maximum tree depth parameter, max_depth, was set to 3 to avoid overfitting [42].

RF is an ensemble classification algorithm based on decision trees trained on randomly
selected subsets of data and features. The number of trees in the forest was limited to 100
since a forest with more than 100 trees is known to be able to cause overfitting [43]. For
each node, the random forest randomly selects explanatory variables and provides the
optimal output using the set of selected explanatory variables. However, the algorithm is
unstable due to the instability in datasets or variability in classifiers, which cause even a
small change in data to lead to a different result. To circumvent this issue, RF is usually
performed with bagging and bootstrapping [44].

KNN algorithm, proposed by Cover and Hart in 1968, is a nonparametric method
used in classification or regression [45]. KNN intuitively classifies unlabeled samples based
on the inter-sample similarity observed in the training set. A small value of the number
of neighbors provided as a parameter leads to a complex decision boundary in the model
and consequent overfitting, while a large value leads to a simple decision boundary and
underfitting. Thus, it is important to determine an appropriate value for this parameter.
In this study, the value showing the highest performance was set as the value of the core
parameter of KNN, n_neighbors, individually for each dataset.

Cross-validation refers to averaging the performances of k models, each generated
from a different partition of the dataset. k-fold refers to partitioning the dataset into k
subsets using k-1 of them as the training sets and the remaining as the validation set. This
process is repeated k times. The evaluation of models using this approach ensures that the
entire data is used as both training and validation data, leading to a lower likelihood of
overfitting. As usual, we set k as 10, partitioning the dataset into 10 subsets, for performing
cross-validation.

In this study, the accuracy of the classification model is defined as
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Accuracy =
1
n

n−1

∑
0

1(ŷi = yi) (4)

where n is the number of samples, ŷi is the predicted value of the i-th sample, yi is the
corresponding actual value, and 1(x) is an indicator function.

Table 3 shows the types of classification algorithms used in the experiment, parameters
used in algorithm design, and values used for parameters. We conducted nested cross-
validation for parameter tuning and evaluation of SVM and KNN. For each fold of cross-
validation, these two classification algorithms were tested with different parameter values
to achieve optimal performance. For the other three classification algorithms, MLP, DT, and
RF, predetermined values known to be effective in improving performance were used for
parameter values [36,42,43]. For the SVM model, a model with a linear SVM kernel was
used, and the C and γ values were obtained through a grid search of the training set in
each fold resulting in different values across models. For the KNN model, a value between
1 and 58 was specified for each model as the number of neighbors used to find the optimal
value. Thus, the range of the parameter values and the optimal k value were different for
each model. The MLP classification model generated two hidden layers since it has been
verified effective in other studies for disease diagnosis [46]. Each hidden layer contained
10 neurons and used the ReLU activation function. Adam was used as the gradient descent
algorithm with an initial learning rate of 0.01 and was executed over 500 epochs. The DT
model was generated with a maximum tree depth of three. The RF model generated a
random forest of 100 trees.

Table 3. Parameters of classification algorithms.

Algorithm Parameter Explanation Parameter Value

MLP

Hidden_layer_sizes Size of the hidden layer 10, 10
Activation Activation function used in multilayer neural network ReLU

Solver Function used for weight optimization Adam
Learning_rate Controls the degree of weight update 0.01

Max_iter Maximum number of iterations 500

SVM
C Controls tradeoff between smooth decision boundary and

classifying training points correctly 0.001, 0.01, 0.1, 1, 10, 100

γ Defines how far the influence of a single training point reaches 0.001, 0.01, 0.1, 1, 10, 100
DT Max_depth Sets the maximum depth of tree 3
RF N_estimators Sets the number of decision trees. 100

KNN N_neighbors Number of neighbors to search 1–58

Models using MLP, SVM, DT, RF, and KNN were implemented in Python, as men-
tioned earlier, and the source code was attached as File S1. Optimal models were developed
by tuning the parameters. All possible parameter values were tested, especially for SVM
and KNN, and the results were compared to each other. The classification models were
trained and tested using the system with NVIDIA Tesla K80 GPU, Intel Core i5-6200 CPU
@ 2.30 GHz, and 8 GB memory.

3. Results
3.1. Classification of Lung Disease Data (COPD/ILD)

Dataset 01 provided miRNA data for patients with COPD or ILD, which are two similar
pulmonary diseases. All samples of the patients diagnosed with ILD or COPD were ob-
tained from the Lung Tissue Research Consortium (LRTC). The dataset included 319 sub-
jects, of which 183 had ILD and 136 had COPD [24,47].

Table 4 shows the classification results for COPD and ILD obtained using five different
algorithms: MLP, RF, DT, SVM, and KNN. The results show that SVM, MLP, and KNN had
accuracies of over 80%. Figure 1 shows a heatmap of SVM accuracies with different values
of C and γ, the two core parameters of SVM, displayed on a color gradient. SVM achieved
the highest accuracy when both the C and γ values were 0.001.
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Table 4. Classification results for Dataset 01 (COPD/ILD).

MLP SVM DT RF KNN

Accuracy 85.70% 87.40% 74.50% 73.30% 84.00%
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RF and DT, using tree structures, showed lower accuracy than the others. RF had a
lower accuracy (73.3%), and all five classification algorithms classified the patients with
COPD from those with ILD with more than 70% accuracy.

3.2. Classification of COPD Data (COPD/Control)

Dataset 02 included microarray data from 77 patients with COPD and 40 healthy
subjects [25].

Table 5 shows the classification results for COPD and ILD using five different algorithms:
MLP, RF, DT, SVM, and KNN. SVM had the highest accuracy (99%) in classifying the subjects
based on the presence or absence of COPD. The heatmap (Figure 2) shows that the highest
accuracy was achieved with a C value of 0.001 and a γ value of 0.001, 0.01, or 0.1.
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Table 5. Classification results for Dataset 02 (COPD/control).

MLP SVM DT RF KNN

Accuracy 81.70% 99.00% 81.70% 68.30% 90.00%

While RF had the lowest accuracy (68.3%), the algorithms generally had accuracies
over 80%, thus classifying the subjects with a disease satisfactorily.

3.3. Classification of Lung Cancer Data (Lung Cancer/Control)

Dataset 03 provided miRNA data for healthy subjects and patients with lung can-
cer [26]. This dataset was used to comparatively analyze non-smoking female patients with
lung cancer and healthy subjects [48,49].

Table 6 shows the classification results between patients with lung cancer and healthy
subjects using the five classification algorithms. The DT and SVM showed high accuracies
of 95% each. The lowest accuracy was 73%, suggesting that all algorithms classified between
the two groups with an accuracy of more than 73%.

Table 6. Classification results for Dataset 03 (lung cancer/control).

MLP SVM DT RF KNN

Accuracy 73.30% 95.00% 95.00% 88.30% 83.30%

Figure 3 shows a heatmap of the SVM accuracies with different C and γ values
displayed on a color scale. The highest accuracy was achieved with a C value of 0.001 and
γ values of 0.001, 0.01, or 0.1. The lowest accuracy was 73%, suggesting that all algorithms
classified between the two groups well.
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3.4. Classification of CVD Data (CVD/Control)

Dataset 04 provided the miRNA data of 40 males with premature CVD and 40 healthy
males of the same age, measured using microarrays [27,50,51]

Table 7 shows the classification results between the CVD and control using the five
classification algorithms. All algorithms were able to classify between the patients with
CVD and healthy subjects with an accuracy of over 50%. However, SVM had the highest
accuracy (77%), which was achieved with a C value of 0.001 and a γ value of 0.01.
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Table 7. Classification results for Dataset 04 (CVD/control).

MLP SVM DT RF KNN

Accuracy 68.30% 77.00% 55.30% 58.30% 68.30%

Figure 4 shows a heatmap of the SVM accuracies with different C and γ values
displayed on a color scale. The highest performance was observed when the C value was
0.001, and the γ value was 0.01.
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3.5. Classification of Diesel-Exposure Data (Diesel Factory Worker/Control)

Dataset 05 provided RNA data of factory workers exposed to DEE and those not
exposed to DEE [28,52]. The algorithms attempted to classify these using microarray data.

Table 8 shows the classification results of the diesel factory workers and control
subjects using the five classification algorithms.

Table 8. Classification results for Dataset 05 (diesel factory worker/control).

MLP SVM DT RF KNN

Accuracy 80.00% 63.30% 40.00% 45.00% 90.00%

Figure 5 shows a heatmap of the SVM accuracies with different C and γ values
displayed on a color scale. The highest performance was achieved when the C and γ values
were both 0.001. Figure 6 shows the accuracy of the KNN classification algorithm obtained
at different values of k plotted as a graph. KNN achieved the highest accuracy, with a k
value of five. MLP and KNN showed high accuracies in this experiment. However, the
tree-structure algorithms, random forest, and decision tree failed to classify this data well
with an accuracy of less than 50%.
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3.6. Classification of Occupation Data (Truck Driver/Office Worker)

Dataset 06 provided miRNA data on truck drivers with high exposure to air pollution,
as well as office workers with relatively low exposure to air pollution [29]. All participants
were residents of the Beijing metropolitan area and had been working for at least two years
at the same location at the time of data collection. None of the participants took any regular
medications, such as anti-inflammatory drugs or aspirin. For each participant, this dataset
provided miRNA data collected over two days with an interval of 1–2 weeks in between [53,54].

This dataset listed occupations, BMIs, and information on whether the subjects smoked
or not as traits of each sample. This enabled us to conduct further classification experiments,
such as truck driver/office worker, obese/non-obese, and smoking/non-smoking. Using
this dataset, we classified the differences between truck drivers and office workers.

Table 9 shows the classification results for truck drivers and office workers using the
five classification algorithms. In general, the accuracies were low in classifying occupations.
Figure 7 shows a heatmap of the SVM accuracies with different C and γ values displayed
on a color scale. The highest accuracy was achieved when both C and γ values were 0.001.
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Table 9. Classification results for Dataset 06 (truck driver/office worker).

MLP SVM DT RF KNN

Accuracy 53.00% 51.00% 45.30% 51.70% 59.00%
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In this experiment, KNN showed the highest accuracy among the five classification
algorithms. Figure 8 shows the accuracy of the KNN classification algorithm at different
values of k plotted as a graph. KNN achieved the highest accuracy with a k value of 24. The
decision tree correctly classified less than half of the dataset.
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was based on occupation.

In the next experiment, the algorithms were applied to classify the same dataset by
obesity (obese/non-obese). In this experiment, subjects with a BMI of 25 or higher were
classified as obese. The WHO (World Health Organization, Geneva, Switzerland) uses the
cutoff point of BMI for defining obesity as 30 [55], however, the lower cutoff point of 25 is
usually used for identifying obesity for Asians [56].
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Table 10 shows the classification results of the obese and control subjects using the five
classification algorithms. The algorithms used miRNA data to classify obese and non-obese
subjects better than when classifying the subjects by occupation.

Table 10. Classification results for Dataset 06 (Obesity/non-Obesity).

MLP SVM DT RF KNN

Accuracy 76.30% 76.50% 72.30% 66.30% 80.30%

Figure 9 shows a heatmap of the SVM accuracies with different C and γ values
displayed on a color scale. The highest accuracy was achieved with a C value of 0.001 and a
γ value of 0.001 or 0.01. Figure 10 shows the accuracy of the KNN classification algorithm
at different values of k plotted as a graph. The best performance was recorded with a k
value of 3, and other algorithms also performed the classification adequately.
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The next experiment also used the same dataset to classify the subjects based on
whether or not they smoked.

Table 11 shows the classification results between smokers and non-smokers using the
five classification algorithms. The classification results based on smoking showed lower
accuracies than those obtained based on obesity but higher than those obtained based
on occupation.

Table 11. Classification results for Dataset 06 (smoker/non-smoker).

MLP SVM DT RF KNN

Accuracy 54.50% 63.50% 64.50% 60.50% 65.00%

Figure 11 shows a heatmap of SVM accuracies with different C and γ values displayed
on a color scale. The highest accuracy was achieved when the C and γ values were both
0.001. Figure 12 shows the accuracy of the KNN classification algorithm at different values
of k represented as a graph. KNN and DT classified the data adequately, with KNN
achieving the highest accuracy, with a k value of eight.
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Figure 12. Classification accuracy according to k parameter of KNN on Dataset 06 when classification
was based on smoking habits.
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4. Discussion

Experiments were conducted to classify microarray data into two groups using ma-
chine learning. In the first experiment, wherein incidences of COPD and ILD were classified,
all five algorithms distinguished two groups with an accuracy of more than 70%. The
second experiment aimed to classify the data regarding the differences between patients
with COPD and healthy subjects. In this experiment, SVM showed the highest accuracy
(99%) in contrast to RF (random forest), which showed the lowest accuracy (68.3%). In
the third experiment, classification was carried out to differentiate between lung cancer
patients and healthy people, and the DT (decision tree) and SVM models showed high
accuracies. In the fourth experiment, subjects in the dataset were classified based on the
difference between patients with CVD and control groups. SVM showed higher accuracy
(77%) than the other algorithms. The fifth experiment was aimed at differentiating between
factory workers with and without exposure to DEE. In this case, KNN classified the dataset
optimally and was able to distinguish between the two groups with an accuracy of 90%,
while RF and DT displayed low accuracies. The sixth experiment was performed to classify
the individuals by occupation, obesity, and smoking habits. When classifying by occupa-
tion, all the algorithms showed low accuracy. KNN showed good accuracy of 80.3% in the
classification based on obesity. However, all algorithms were also inadequate in classifying
the same dataset based on smoking and displayed a mean accuracy of 61.5%.

Figure 13 summarizes the accuracies of each machine learning classification algo-
rithm on all datasets used in the experiments. Datasets 01–04 concerned specific diseases,
such as lung cancer, CVD, and COPD, while datasets 05–06 compared the data between
two different occupational groups. The machine learning model that showed the highest
performance varied across datasets. Although SVM showed the highest performance on
Datasets 01–04 and KNN showed the highest performance on Datasets 05–06, it is not rea-
sonable to conclude that SVM or KNN is the best method for microarray data because only
some of the various microarray data were tested in this study. However, it was obviously
observed that the two tree-based methods, DT and RF, showed similar trends in results
and the remaining three methods, MLP, SVM, and KNN, showed similar trends. Both DT
and RF are implemented in a tree structure, so it seems that they show similar trends on
microarray data. DT and RF generally showed worse performance than other methods
except for the result of Dataset 03.
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Figure 13. Accuracies for the tested classification algorithms.

Furthermore, the heatmaps for Datasets 02 and 03, which were classified by SVM
with substantially high performances, displayed clearer boundaries for C values than the
heatmaps for other datasets where the performance of SVM was poorer.

Among the dataset used, Datasets 01, 04, and 06 are the miRNA datasets and others are
the mRNA datasets. Figure 14 shows the accuracies of each machine learning classification
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algorithm on mRNA datasets and miRNA datasets separately. The difference in the
performance of each model according to the two cases (miRNA and mRNA) was not
clear. However, it can be observed that the performances of the tree-based models (RF, DT)
were consistently worse than those of the distance-based model (MLP, SVM, KNN) with
miRNA datasets. On the contrary, with mRNA datasets, the performances of the tree-based
model were sometimes better or worse.
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Figure 14. Results of the tested classification algorithms reorganized into miRNA and mRNA data;
(a) accuracies for miRNA datasets; (b) accuracies for mRNA datasets.

5. Conclusions

In this paper, microarray data with various traits were classified into two groups using
various representative machine learning methods, MLP, SVM, DT, RF, and KNN. In the
experiments, diverse classification criteria were applied, such as classification between
two similar diseases, classification between people with and without diseases, and clas-
sification between two occupational groups. The accuracies by the five machine learning
methods with these various datasets were compared. The results suggest that the best-
performing machine learning model varies across datasets. However, it was observed that
the tree-based methods, DT and RF, showed similar trends in results and the remaining
methods, MLP, SVM, and KNN, showed similar trends. DT and RF generally showed
worse performance than other methods except for one dataset.

Although only microarray data were dealt with in this paper, the methodology of this
study is similarly applicable to RNA-seq data, which is known to be more sensitive in de-
tecting differential expression and offers increased dynamic range. So, further study using
the latest RNA-seq with the methods in this paper is needed. It will be interesting to verify
whether similar results are derived in experiments using RNA-seq data as experiments on
microarray data.
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Appendix A. The Effect of Normalization and Standardization

The effect of normalization and standardization for all the experiments performed in
this study was compared through experiments. Table A1 compares the accuracy of classifi-
cation algorithms according to normalization and standardization. The result averaged the
accuracy of all experiments performed in this study. The higher accuracy between stan-
dardization and normalization was expressed in bold. The better feature scaling method
was different depending on the machine learning model. According to the table, normal-
ization showed better performance for SVM, DT, and KNN, and standardization showed
better performance for MLP and RF. Normalization was better on average over all machine
learning algorithms with the microarray data used in this study.

Table A1. The average of the accuracy obtained through eight experiments after feature scaling using
normalization and standardization.

MLP SVM DT RF KNN AVG

Normalization 70.40% 78.49% 69.80% 66.67% 75.70% 72.21%
Standardization 73.11% 66.38% 69.49% 71.31% 65.77% 69.21%
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