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Background: Although immunotherapy with immune checkpoint therapy has been used
to treat head and neck squamous cell carcinoma (HNSCC), response rates and treatment
sensitivity remain limited. Recent studies have indicated that transforming growth factor-β
(TGF-β) may be an important target for novel cancer immunotherapies.

Materials and methods: We collected genomic profile data from The Cancer Genome
Atlas and Gene Expression Omnibus. The least absolute shrinkage and selection operator
method and Cox regression were used to establish a prognostic model. Gene set
enrichment analysis was applied to explore biological functions. Tracking of indels by
decomposition and subclass mapping algorithms were adopted to evaluate
immunotherapy efficiency.

Result: We established a seven TGF-β pathway-associated gene signature with good
prediction efficiency. The high-risk score subgroup mainly showed enrichment in tumor-
associated signaling such as hypoxia and epithelial-mesenchymal transition (EMT)
pathways; This subgroup was also associated with tumor progression. The low-risk
score subgroup was more sensitive to immunotherapy and the high-risk score subgroup
to cisplatin, erlotinib, paclitaxel, and crizotinib.

Conclusion: The TGF-β pathway signature gene model provides a novel perspective for
evaluating effectiveness pre-immunotherapy and may guide further studies of precision
immuno-oncology.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC), originating from the oral cavity, oropharynx,
larynx, and hypopharynx and displaying rapid progression, has become a significant human health
problem (Siegel et al., 2020; Wang Z. et al., 2021; Jia et al., 2021). More than 600,000 new cases of
HNSCC are diagnosed worldwide annually (Siegel et al., 2020). With high malignancy, rapid
progression, and poor prognosis, HNSCC has become the sixth most common cancer worldwide.
The first choice for HNSCC treatment is still surgical salvage, followed by postoperative chemo-and/or
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radiotherapy (Shibata et al., 2021). The recurrence rate following
HNSCC treatment is high at 25–50%, depending on the location of
the tumor, the clinical stage and grade and HPV infection status
(Ho et al., 2014). Treatments of patients with locally advanced
HNSCC remains great challenge (Ang et al., 2014). In recent years,
some patients with cancer have benefited from immunotherapy
(Naidoo et al., 2021). Indeed, immunotherapies have been
approved and widely used for recurrent and metastatic HNSCC;
however, only a relatively small subset of patients, approximately
15–20%, truly benefit from this approach (Lee et al., 2020).
Therefore, exploring the immune microenvironment and
immune resistance mechanisms is crucial and provides support
for evidence-based treatment decisions. Overall, exploring the
genome and microenvironment of HNSCC might provide clues
for identifying biomarkers predicting the effectiveness of
immunotherapy. microenvironment. studies have demonstrated
that esophageal adenocarcinoma cells and xenograft tumors can be
resistant to trastuzumab and pertuzumab by activating TGF-β
signaling, which induces epithelial-mesenchymal transition. Thus,
block TGF-β signaling can increase the anti-tumor efficacies of
trastuzumab and pertuzumab in esophageal adenocarcinoma cells
and xenograft tumors (Ebbing et al., 2017; Ebbing et al., 2019;
Steins et al., 2019). Thus, targeting the TGF-β pathways may
benefit from chemical resistance. As TGF-β pathway-associated
genes are important in the response to tumor therapies,
modulating TGF-β-associated pathway activities and expression
of related genes may greatly impact tumor malignant abilities.
TGF-β comprises a family of growth factors, which play crucial
roles in development, fibrosis, and cancer progression (Nüchel
et al., 2018). TGF-β binding activates type II and then type I
receptors, that in turn activate an increase of SMAD signals
activation (Petiti et al., 2018; Lähde et al., 2021). Studies have
demonstrated that high cancer-associated fibroblast infiltrated
gastric cancer is associated with immunosuppressive

microenvironment regarding to TGF-β alterations (Liu et al.,
2021). TGF-β is also involved in tumor metabolic and immune
microenvironment. The TGF-β inhibition can also promotes
tumor cell death thus obtaining an effective anticancer
immunotherapy immune response (Huang et al., 2021). TGF-β
family genes are crucial immune suppression genes in head and
neck cancer. These genes were associated with decreased survival
probability of head and neck cancer (Budhwani et al., 2021). This
suggesting that TGF-β associated pathway have potential become
an attractive target for future cancer therapy.

In this study, we comprehensively examined TGF-β-
associated genes and related immune infiltration in HNSCC,
evaluating their clinical significance in predicting prognosis
and evaluating therapies effectiveness.

MATERIALS AND METHODS

Data Collection
Flowchart of the study protocol of TGF-β-related characteristics
related to the prognosis of HNSCC is listed in Figure 1. We used
open datasets from The Cancer Genome Atlas (TCGA) (https://
cancergenome.nih.gov/) and Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/) databases, including the
GSE65858, GSE75538 and GSE117973 chip datasets. The
TGF-β mRNA expression status and correlating tumor
immune microenvironment evaluation indicators in HNSCC
and corresponding normal tissues were analyzed through the
SangerBox database (http://sangerbox.com/Tool). We identified
the p value as 0.001, with a fold change of 1.5.

Data Preprocessing
RNA-seq data from TCGA HNSCC and GEO HNSCC with
unreliable and incomplete clinical data were removed. The

FIGURE 1 | The workflow of TGF-β pathway signature-associated HNSCC prognosis analysis.
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clinical statistical information of HNSCC patients after data
pretreatment is shown in Table 1.

Prognostic Risk Model Construction Based
on TGF-β Pathway Genes
To construct the TGF-β associated prognostic model, we
downloaded HNSCC transcriptional data from public
database. All selected data were screened and selected with
complete gene expression information and clinical
information. We applied 54 TGF-β -related genes, univariate
survival analysis and Lasso Cox multivariate analysis to
determine the risk score of seven key genes. High and low risk
groups are divided by selecting the best threshold. Therefore, we
determined that λ = 0.0086 would obtain the optimal model. In
addition, we selected seven genes at λ = 0.0086 as targets for the
next step. The final 7-gene signature formula is as follows: risk
score = 0.0003 p BCAR3-0.062 p ID2 + 0.112 * NOG +0.009p
SERPINE1 + 0.177 SLC20A1 + 0.106 p THBS1-0.351 p TR IM33.

The HNSCC RNA-seq data from TCGA were identified as the
training set. We adopted univariate Cox proportional risk
regression to construct and predict a TGF-β-associated gene
model (54 in total). Overall survival data were analyzed by
using the R package survival COXPH function. We defined
the threshold for filtering as p < 0.05. In this study, we
selected five genes with hazard ratios (HRs) larger than one
and two genes with HRs less than 1.

Univariate and Multivariate Cox Regression
Analyses
Univariate Cox regression analyses of the correlation between
TGF-β-associated gene expression and HNSCC clinical prognosis
information were carried out by Cox proportional hazards
regression analysis. Genes with p < 0.05 were considered
significant. Determination of genes in the TGF-β-specific
module closely related to prognosis in HNSCC were explored.

Cox Regression Analysis
We utilized the R software package glmnet for least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis to determine the greatest impact on the prognosis of
HNSCC. LASSO applies an L1-regularization penalty, ρ, to
estimate a penalized precision matrix to illustrate indicators
with the highest contribution (Love et al., 2016). In the
LASSO model, the minimum criterion (λ) based on 10-fold
cross validations and 1,000 iterations is chosen. The selected
genes were then included in a multivariate Cox regression model,
and those gene sets with the best prognostic value were identified
by positive selection and reverse elimination methods.

Prognosis Prediction of TGF-β-Associated
Genes
To determine correlations between TGF-β-associated gene
expression and HNSCC prognosis, we applied the Wilcoxon
test and divided HNSCC patients into two subgroups based on
TGF-β expression level. The optimal cutoff point for gene
expression was obtained based on the R package “survminer”
(cutoff = −0.007). The threshold is −0.007, in which the groups
with a risk score greater than −0.007 were high risk groups, and
those with a risk score less than −0.007 was identified as low risk
groups We used Kaplan-Meier curves to evaluate the prognostic
value of various clinical features through the R package
‘survminer’ (CRAN.R-project.org/package = survminer). This
method has been described in a previous study (Alcala et al.,
2019; Zhuang et al., 2020).

Somatic Mutation Analysis
To evaluate somatic mutations in HNSCC, we applied the
package TCGA biolinks in R and downloaded mutation
annotation files. Somatic single-nucleotide polymorphisms and
indels in tumor samples were called using the MuTect2 (http://
www.broadinstitute.org/cancer/cga/mutect) pipeline Genome
Analysis Toolkit (GATK; Broad Institute, Cambridge, MA,
United States). We counted differences in the number of

TABLE 1 | The clinical information of HNSCC patients from different cohorts.

Clinical features TCGA-HNSC GSE65858 GSE75538 GSE117973

OS/PFS
Alive 297 176 11 55(PFS)
Dead 220 94 3 22(PFS)

Gender

Female 136 47 6 17
Male 381 223 8 60

T stage

T1 36 35 - 7
T2 149 80 - 30
T3 136 58 - 17
T4 184 97 - 23

N stage

N0 244 94 - 36
N1 83 32 - 17
N2 162 132 - 24
N3 9 12 - 0

M stage

M0 491 - - -
M1 6 - - -

Stage

I 27 18 - -
II 81 37 - -
III 93 37 - -
IV 316 178 - -

Age

≤65 340 184 12 53
>65 177 86 2 24

Grade

G1 61 - - 1
G2 303 - - 46
G3 124 - - 30
G4 7 - - 0
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mutant genes in the samples. Furthermore, we screened out genes
with mutation frequencies greater than three and used the chi-
square test to screen genes with significantly high-frequency
mutations in each subtype, with a selection threshold of p < 0.05.

Gene Set Enrichment Analysis (GSEA)
GSEA was performed to examine different biological processes
with GSEA software (http://software.broadinstitute.org/gsea).
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were used for hierarchical analysis for high-
and low-risk groups of HNSCC patients. The R package
clusterProfiler (https://guangchuangyu.github.io/software/
clusterProfiler) (v3.14.0) was employed to process the KEGG
and GO analyses. We identified the number of random sample
permutations as 1,000, and enriched gene sets with a nominal p <
0.05 and 25% cutoff on false discovery rate (FDR) were defined as
significant.

Immune Infiltration Scores Estimation
We applied the “ESTIMATE” R package to assess overall immune
infiltration indicators based on the medium scores of
ImmuneScore, StromalScore, and ESTIMATEScore (Ghatalia
et al., 2019). We also calculated the proliferation score of all
cells. These proliferation scores were obtained from previous
study (Thorsson et al., 2018).

Tumor Immune Dysfunction and Exclusion
(TIDE)
The TIDE algorithm was used to link individual immunotherapy
responses with the TIDE web tool (Netherlands Cancer Institute,
Amsterdam, Netherlands, available from http://shinyapps.
datacurators.nl/tide/). TIDE is used to estimate the spectrum
and frequency of small insertions and deletions (indels) generated
in a pool of cells by genome editing tools such as CRISPR/Cas9,
TALENs and ZFNs. In this study, we applied TIDE to estimate
the likelihood of immunotherapy response.

Cell Culture and Quantitative Real-Time
Reverse Transcriptase–Polymerase Chain
Reaction
The human nasopharyngeal carcinoma cell NPC and human
immortalized nasopharyngeal epithelial cell NP69 were
purchased from FuHeng (Shanghai, China). The cell line
NP69 was cultured in KM medium, and the cell line NPC was
cultured in Dulbecco’s modified Eagle medium supplemented
with 10% fetal bovine serum (ThermoFisher Scientific, Waltham,
MA, United States). Cell lines were grown at 37 °C in a humidified
incubator containing 5% CO2.

Total RNA was extracted from NP69 and NPC cells using
TRIzol reagent (Invitrogen Life Technologies, Waltham MA,
United States), followed by reverse transcription according to
the manufacturer’s instructions (Takara, Japan). The specific
quantitative primers used are listed in Supplementary Table
S1. Samples were assessed by quantitative real-time reverse
transcriptase–polymerase chain reaction (qRT-PCR) using

an Agilent Mx3005P using SYBR qPCR Mix (MQ10201s,
Monad Biotech, Wuhan, China). Human glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) was used as an
endogenous control. Relative expression levels were
defined according to the 2−ΔΔCt method. Each experiment
was performed in triplicate.

Statistical Analysis
We calculated correlations with the Pearson correlation
coefficient, and differences between subgroups were
determined by the Wilcoxon test or Kruskal–Wallis test. The
data are expressed as means ± SD. A two-tailed p-value less than
0.05 was defined as statistically significant.

RESULTS

Univariate andMultivariate Risk Analyses of
the Training Set
The workflow of this study is depicted in Figure 1. To select
proper protective factors and risk factors, we applied TCGA-
HNSCC datasets as a training set; GSE65858, GSE75538, and
GSE102995 were used as external independent validation
datasets. These datasets were obtained from GEO database,
which were used for verified the accuracy of the model.

Risk Model Construction and Validation
We adopted LASSO Cox regression to obtain the change
trajectory of each independent variable, as illustrated in
Figure 2A. The expression levels of the identified seven genes
in human nasopharyngeal carcinoma cell NPC and human
immortalized nasopharyngeal epithelial cell NP69 are shown
in Figure 2B. We applied 10-fold cross-validation techniques
to avoid performance bias with all prediction methods
(Figure 2C). We also calculated the risk score for each sample
in the dataset TCGA-HNSCC according to the TGF-β expression
level and plotted the risk score distribution of the samples, as
shown in Figure 2D. The different expression of seven different
signature genes with the increase of risk value was assessed. High
expression of BCAR3, NOG, SERPINE1, SLC20A1, and THBS1
was identified as a risk factor associated with a high risk score.
Conversely, high expression of ID2 and TRIM33 was associated
with low risk, constituting a protective factor (Figure 2D).
Furthermore, we used the R software package and receiver
operating characteristic (ROC) curve analysis to evaluate
prognostic factors. We analyzed the classification efficiency for
prognosis prediction, and areas under the curve (AUCs) at 1, 3
and 5 years were 0.64, 0.65, and 0.55, respectively, as indicated in
Figure 3C. An AUC = 0.64 at 1 year was the most reliable
indicator for survival prediction with this 7-gene model
(Figure 2E). To further investigate clinical prognosis between
the high- and low-risk score subgroups, we applied the R package
“survminer” with the cutoff = -0.007. The Kaplan-Meier curve
indicated that the difference between the high-and low-risk score
subgroups was highly significant (p < 0.0001) (Figure 2F). In
total, 318 samples were assigned to the high-risk group and 199 to
the low-risk group. We downloaded validation datasets such as
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GSE65858, GSE75538, and GSE102995 and applied the same
gene models and coefficients. As the GSE65858 dataset lacked
NOG gene expression, we used a six-gene model in further
validation. The results of the three external validation datasets
were highly consistent with those of the training sets. Overall, the

high-risk score subgroup had a poorer prognosis than the low-
risk score subgroup (Figures 2G–I). The forest plot showed that
TGF-β signaling pathway-associated gene-based characteristics
might be major risk factors for HNSCC (HR = 2.069, 95%CI =
1.582–2.698, p < 0.001) (Figure 2I).

FIGURE 2 | Construction and validation of the TGF-β-associated prognostic risk score model. (A) The trajectory of each selected gene in TGF-β pathways. (B)
Expression levels of hub genes in human nasopharyngeal carcinoma cell NPC and human immortalized nasopharyngeal epithelial cell NP69 by qRT-PCR. (C) The
confidence interval of each lambda. (D)Correlations and distribution of risk score, survival time and survival status and expression levels of the seven selected genes. (E)
The classification efficiency of prognostic prediction for HNSCC at 1 year, 3 years, and 5 years. (F) The survival curve between high- and low-risk scores of the
seven-gene signature. (G) The survival curve between high- and low-risk score subgroups in GSE65858. (H) The survival curve between high- and low-risk score
subgroups in GSE755538. (I) The survival curve between high- and low-risk score subgroups in GSE117973. (J) Forest plots of risk scores in different datasets.
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Comparison of Molecular Profile Mutations
To gain insight into the mutational mechanisms of HNSCC, we
calculated the tumor mutation burden (TMB) as the number of
somatic mutations for each patient. However, patients in the high-
and low-risk score subgroups showed no significant difference in TMB
(p = 0.07) (Figure 3A) or number of mutated genes (p = 0.067)
(Figure 3B). Given a set of mutational signatures, we calculated the
presence of somatic mutations to reveal signatures for these five genes
(TP53, CDKN2A, SYNE1, PKHD1L1, andPEG3) and foundnonsense
mutations andmissensemutations to be themost commonmutations.
In addition, the most frequent genetic lesion in HNSCC was in TP53,
followed by CDKN2A, SYNE1, PKHD1L1, and PEG3 (Figure 3C).

Clinical Signatures Between Different Risk
Score Subgroups
In further investigating clinical signatures between the high- and
low-risk score subgroups, we determined that there was no
significant difference in T stage (p = 0.62), N stage (p = 0.84), M
stage (p = 0.39), sex (p = 0.62), or age (p = 0.98) (Supplementary
Figure 1A-F). In contrast, a significant difference in grade was
observed (p = 0.00045) (Supplementary Figure 1G). In addition, we
further analyzed overall survival as related to the clinical signature
between these two subgroups. The Kaplan mire curve revealed a
significant difference for male sex (p < 0.0001) (Figure 4A), age over

65 years (p = 0.0023) (Figure 4B), younger and equal to 65 years old
(p= 0.00044) (Figure 4C), T1-T2 stags (p= 0.031), T3-T4 stages (p<
0.0001) (Figure 4E), N1 stage (p = 0.0078) (Figure 4F), M0 stage
(p < 0.0001) (Figure 4G), M1-M2 stages (p = 0.037) (Figure 4H),
grade 1–2 (p = 0.0053) (Figure 4I), and grade 3–4 (p = 0.00083)
(Figure 4J). Overall survival analysis showed no significant
difference between the high- and low-risk score subgroups for
female sex e and N0 stage (Figure 4L).

Clinical Signature Independent Validation
To assess the independence of the clinical signature as a prognostic
factor, we applied multivariate analyses and the Cox proportional
hazards regressionmodel and determined that clinical characteristics
such as age (p = 0.022, HR = 1.4 (1.05.1.88)), stage (p = 0.002, HR =
2.16 (1.34.3.5)) (Figure 4M and N), and risk score type were
significantly associated with prognosis. Overall, the seven-gene
signature model has good predictive value for HNSCC.

Signaling Pathway Enrichment Analysis
When analyzing signaling pathway enrichment, we found that
the high-risk score subgroup was enriched in hypoxia and EMT
pathways (Figure 5A). To deeply explore prognosis-associated
biological pathways, we obtained 13 positively correlating genes.
The heatmap in Figure 5B illustrated that the expression level of
these genes in the high- and low-risk score subgroups. GO

FIGURE 3 | The TMB and somatic mutation information between high- and low-risk score subgroups. (A) TMB score between the high- and low-risk subgroups
showed no significant difference. (B) The number of mutated genes between the high- and low-risk subgroups was not significantly different. (C)Mutation characteristics
of significantly mutated genes in the subgroups.
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classification includes biological process (GO-BP), cell
component (GO-CC), and molecular function (GO-MF)
categories. We identified 10 pathways as enriched in BP
annotations (Figure 5C), seven in CC annotations
(Figure 5D) and three in MF annotations (Figure 5E). KEGG
analysis showed six biological signaling pathways to be involved
in HNSCC regulation (Figure 5F).

Immune Cell Infiltration and Inflammatory
Features
To investigate the relationship between risk score and immune
cell infiltration and inflammatory characteristics in patients with
HNSCC, we evaluated three immune microenvironment scores,

namely, the stromal score, immune score, and ESTIMATE score,
and found that the stromal score (Figure 6A) and ESTIMATE
score (Figure 6B) were significantly higher in the high-risk group
than in the low-risk group. Conversely, no significant difference
was found for the immune score (Figure 6C). Moreover, immune
cell infiltration evaluations indicated significant differences in the
proportions of 11 types of immune cells in the subgroups
(Figures 6D,E). Among them, the proportions of resting
memory CD4+ T cells, resting NK cells, M0 macrophages and
activated mast cells in the low-risk group were significantly lower
than those in the high-risk group, whereas proportions of natural
B cells, memory B cells, CD8+ T cells, follicular helper T cells,
activated NK cells, regulatory T cells and resting mast cells were
significantly higher in the low-risk group.

FIGURE 4 | The difference in clinical signature-based prognosis between high- and low-risk score subgroups in TCGA-HNSC. (A–L) The overall survival
comparison between the high- and low-risk score subgroups with regard to female, male, age >65, age ≤65, T1-T2, T3-T4, N0, N1, M0, MI-MII, G I-II, and G III-IV. (M)
Correlations between clinical features and risk score through univariate regression analysis. (N) Correlations between clinical features and risk score through multivariate
regression analysis.
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To probe inflammatory activity associated with risk scores, we
examined relationships between seven metagene clusters,
whereby differences represent different inflammatory and
immune responses. The characteristics based on the TGF-β
pathway were explored, and detailed information on these
metagenes is provided in Figure 6F.

To verify the gene expression details observed, gene set
variation analysis (GSVA) was utilized to calculate scores for
the corresponding clusters of seven metagene clusters. Our results
showed that the risk score correlated positively with IgG, LCK
and MHC-II and with IgG, interferon and MHC-I (Figure 6G).
At the same time, we compared differences of these seven scores

FIGURE 5 | The TGF-β pathway gene-based high-risk score subgroup is related to tumor-associated biological signaling pathways. (A) The “HALLMARK” term
enrichment plot between the high- and low-risk score subgroups. (B) The heat map shows the most correlating gene expression levels in the subgroups. (C) The
enrichment ratio of the top ten gene ontologies through GO-BP analysis. (D) The enrichment ratio of the top ten gene ontologies through GO-CC analysis. (E) The
enrichment ratio of the top ten gene ontologies through GO-MF analysis. (F) The enrichment ratio of the top ten gene ontologies through KEGG analysis.
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in the high- and low-risk subgroups and found that IgG and LCK
scores were significantly higher in the latter but that interferon
and MHC-I scores were significantly higher in the former
(Figure 6H).

Difference in Clinical Effect Between High-
and Low-Risk Score Subgroups After
Immunotherapy and Chemical Therapy
To evaluate potential differences in clinical effects between
immunotherapy and chemotherapy, we adopted TIDE
software and found that the high-risk score subgroup had a

markedly higher TGF-β response (p = 3.4e-23) (Figure 7A),
proliferation score (p = 0.038) (Figure 7B), wound healing score
(p = 0.016) (Figure 7C), and exclusion score (p = 1.2 e-21)
(Figure 7D) compared with low-risk score subgroup. However,
macrophage regulation (Figure 7E) and dysfunction (Figure 7F)
showed no significant difference between the subgroups. The
TIDE prediction therapy survival curve suggested that the FALSE
group had a better prognosis (p = 0.021) (Figure 7G), and the
TIDE score was much higher in the high-risk score group than in
the low-risk score group (p = 5.7e-14) (Figure 7H).

We further analyzed differences in immunotherapy and
chemotherapy among different subtypes of immune molecules.

FIGURE 6 | Immune-associated evaluations between high- and low-risk score subgroups. (A) The stromal score was greatly higher in the high-risk score
subgroup. (B) There was no significant difference in immune score between the high- and low-risk subgroups. (C) The immune score was markedly higher in the high-
risk score subgroup. (D) The immune cell distribution in the high- and low-risk subgroups. (E) Comparisons of involved immune cells between the two subgroups. (F)
Heat map landscape of clinical feature distribution in the high- and low-risk score subgroups. (G) Correlations between ssGSEA scores of seven immune-
associated genes. (H) Score comparisons of immune-associated genes between the high- and low-risk subgroups.
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Subclass mapping was used to compare the similarity between the
high-low risk subgroups in our TCGA-HNSC dataset and
immunotherapy patients in the GSE78220 dataset: the lower
the p value, the higher the similarity. For TCGA-HNSC, the
low-risk score group was more sensitive to PD1 treatment

(Figure 7I). This result was consistent with the TIDE results,
indicating that low-risk group patients will benefit more from
immunotherapy. The results also showed that the high-risk score
subgroup was more sensitive to the traditional chemotherapy
drugs cisplatin (p = 0.69e-10) (Figure 7J), erlotinib (p = 0.0017)

FIGURE 7 | Differences in immunotherapy and clinical efficiency. (A) The TGF-β response was much higher in the high-risk score group than in the low-risk score
group. (B) The proliferation score was slightly higher in the high-risk score subgroup. (C) There was no significant difference in macrophage regulation between the two
subgroups. (D) The wound healing score was higher in the high-risk score subgroup. (E)Overall survival time prediction between true and false immunotherapies based
on TIDE analysis tools. (F) The TIDE score was significantly higher in the high-risk score subgroup. (G) The dysfunction score was not significantly different between
the two subgroups. (H) The exclusion score was much higher in the high-risk score subgroup. (I) Low-risk score subgroup patients might be more sensitive to anti-PD1
immunotherapy. (J)Box plots of the estimated IC50 for cisplatin showed that the high-risk score subgroup had a lower IC50 level. (K)Box plots of the estimated IC50 for
erlotinib showed that the high-risk score subgroup had a lower IC50 level. (L) The box plots of estimated IC50 for paclitaxel showed that the high risk score subgroup had
a lower IC50 level. (M) Box plots of the estimated IC50 for crizotinib showed that the high-risk score subgroup had a lower IC50 level.
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(Figure 7K), paclitaxel (p = 3.4e-11) (Figure 7L) and crizotinib
(p = 8.3e-08) (Figure 7M). Overall, this risk score model provides
a novel basis for HNSCC patient treatment options.

DISCUSSION

TGF-β is involved in many biological functions in epithelial,
endothelial, and neural tissues, in the immune system, and in
wound repair (Massagué, 2012). TGF-β is a multifunctional
cytokine, and its receptors play a crucial role in cancer initiation
and progression through a range of activities in the regulation of
cell proliferation, differentiation, apoptosis, and migration (Gencer
et al., 2017). After activation of TGF-β signaling, TGF-β-associated
ligands bind to corresponding receptors I and II (de la Cruz-Merino
et al., 2009) and then transfer extracellular signals to nuclear
components through canonical TGF-β pathways, such as the TGF-
β/Smad pathway, and noncanonical TGF-β pathways, such as the p38/
mitogen-activated protein kinase (MAPK) pathway, GTP pathway,
PI3K/AKT pathway, and NF-κB pathway (Patil et al., 2011; Bataller
et al., 2019;Chang andPauklin, 2021;Choi et al., 2021;Hou et al., 2021).
TGF-β has often been implicated in carcinogenesis, and studies have
demonstrated that TGF-β has both oncogenic and tumor-suppressive
functions in cancer regulation mechanisms (Yu and Feng, 2019;
Belitškin et al., 2021). The antitumor ability of TGF-β functions
occur through cytostatic and proapoptotic effects (Ahmadi et al.,
2019). Inactivation of the antitumor function of TGF-β might lead
to cancer initiation. Overexpression of TGF-β might have
immunosuppressive effects on tumoral cells (Tsai et al., 2018), thus
facilitating tumor progression in various cancers (Shao et al., 2018).
Studies have reported that TGF-β pathway-associated genomic
alterations account for approximately 40% of cancers (Korkut et al.,
2018). TGF-β also play an important role in create an
immunosuppressive tumor microenvironment. TGF-β signaling also
reported play key role in mediating fibroblast phenotypic
transformation through NOX4 in related to Human papillomavirus
associated HNSCC patients (Wang et al., 2022). The TGF-β associated
genes function as important tumor-microenvironment factors, and
have been reported that activate the increased expression of the EMT
transcription factor Slug in HNSCC (Ingruber et al., 2022).

In the present study, we demonstrated that in HNSCC, TGF-β-
associated genes are related to a high TMB. Based on 54 TGF-β
pathway-related genes, we constructed a 7-gene prognostic riskmodel,
which exhibited stable robustness in internal and external validation
sets. Furthermore, this model was to well predict HNSCC prognosis.

Immunotherapies can provide great benefit to patients who
respond. Immunotherapeutics, such as immune checkpoint
inhibitors, are considered to stimulate immune-mediated
anticancer reactivity by interrupting the immune inhibitory
pathway. Immunotherapies may result in long-term tumor
regression, but the overall response rates are limited, especially
for solid tumors (Baysal et al., 2021). HNSCC is an
immunosuppressive disease, and immune checkpoint inhibitors
are emerging as a promising therapy for patients with HNSCC.
Studies have reported that recurrent/metastatic HNSCC has a
better response to combination and single treatments, such as
cetuximab/platinum/5-FU, pembrolizumab/platinum/5-FU or

pembrolizumab alone. Nivolumab also shows better efficacy
than other single agents (Wang H. et al., 2021; Hsieh et al.,
2021), and cetuximab has an established role in HNSCC
treatment (Hsieh et al., 2021).

In general, the discovery of predictive biomarkers and
prognosis-related gene models may provide novel clues
regarding presurgical and immunotherapy efficiency decision-
making processes for individual patients.

In this study, we adopted GSEA to analyze pathways in high-
and low-risk subgroups, among which tumor-related pathways
were more enriched in the former, such as hypoxia and the EMT
pathways. We calculated and functionally annotated genes
associated with risk. Through TIDE and submap mapping
analyses, we found that the low-risk group may be more
suitable for immunotherapy and that the high-risk group is
more sensitive to cisplatin, erlotinib, paclitaxel and crizotinib,
as based on IC50 analysis.

In conclusion, our findings demonstrate that a TGF-β-
associated gene-based prediction model has good efficiency for
HNSCC clinical immunotherapy decision making and prognosis
prediction.
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Supplementary Figure S1 |Comparisons of risk scores among clinical features.
(A) Comparison of risk scores among T stage-based subgroups. (B)
Comparison of risk scores among N stage-based subgroups. (C)
Comparison of risk scores among M stage-based subgroups. (D)

Comparison of risk scores among clinical stage-based subgroups. (E)
Comparison of risk scores among sex-based subgroups. (F) Comparison of
risk scores among age-based subgroups. (G) Comparison of risk scores
among grade-based subgroups.
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