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Rationally repurposed nitroxoline inhibits preclinical models
of Epstein—Barr virus-associated lymphoproliferation
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Abstract

Repurposing of currently used drugs for new indications benefits from known experience with those agents. Rational
repurposing can be achieved when newly uncovered molecular activities are leveraged against diseases that utilize those
mechanisms. Nitroxoline is an antibiotic with metal-chelating activity used to treat urinary tract infections. This small
molecule also inhibits the function of bromodomain and extraterminal (BET) proteins that regulate oncogene expression in
cancer. Lymphoproliferation driven by the Epstein—Barr virus (EBV) depends on these same proteins. We therefore tested
the efficacy of nitroxoline against cell culture and small animal models of EBV-associated lymphoproliferation. Nitroxoline
indeed reduces cell and tumor growth. Nitroxoline also acts faster than the prototype BET inhibitor JQ1. We suggest that this

rational repurposing may hold translational promise.

Introduction

Repurposing of known drugs, also referred to as reposition-
ing, for cancer treatment offers substantial benefits over
development of new therapeutic compounds. For example, an
established track record of clinical use allows for swifter
indication as standard of care because safety profiles already
benefit from a wealth of prior experience. While repositioning
often occurs through serendipity, rational repurposing may
arise when new molecular properties or mechanisms of
actions are discovered. We were encouraged by newfound
regulation of epigenetics to explore preclinical validation of
the small molecule antibiotic nitroxoline for the treatment of
lymphoproliferation driven by the Epstein—Barr virus (EBV).

Nitroxoline is an antibiotic prescribed for decades in
Europe to treat urinary tract infections [1]. Antibacterial
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activity can be attributed to the compound’s ability to
chelate metal ions [2, 3] and dispel biofilms [4]. Years of
use has led to a good understanding of nitroxoline phar-
macokinetics [5]. A high-throughput screen discovered
inhibition of human cell proliferation and subsequent work
in mouse models of cancer revealed related efficacy against
human urothelial carcinoma and invasive ductal carcinoma
xenografts [6]. Potential antitumor properties include the
ability to inhibit methionine aminopeptidase [6] and
cathepsin B [7]. Efforts at repurposing nitroxoline have
uncovered molecular mechanisms of anticancer activity
[8, 9] and succeeded against human xenografts in mouse
models of clear cell renal cell carcinoma [10], multiple
myeloma [11], and glioma [12]. A more recent high-
throughput screen identified nitroxoline as a competitive
inhibitor of the bromodomain and extraterminal (BET)
family of chromatin regulators [13]. This new molecular
activity suggests repurposing against cancers that leverage
these particular epigenetic proteins for proliferation.

EBV immortalizes B cells by co-opting BET protein
function. Epigenetic deregulation during cancer results in the
formation of super-enhancers dependent on BET proteins
such as BRD4 to drive the expression of oncogenes [14].
Infection by EBV can similarly assemble super-enhancers
consisting of viral proteins and BRD4 [15]. These viral
proteins are expressed in what is termed type III EBV
latency, a stereotyped transcription program found in most
cases of EBV-associated posttransplant lymphoproliferative
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disease (PTLD) [16]. The prototype BET inhibitor JQI
reduces growth of EBV-associated lymphoproliferation in
cell culture [15, 17]; we also further demonstrated efficacy in
a mouse model [17]. Unfortunately, no BET inhibitors are
approved for clinical use [18]. We therefore hoped to help
validate the repurposing of the antibiotic nitroxoline against
EBV-associated lymphoproliferation.

Lymphoblastoid cell lines (LCLs) serve as a model of EBV-
associated lymphoproliferation similar to that observed in
PTLD. We grew the EBV-positive GM12878 and 721 LCLs in
culture [17, 19]. GM12878 is a suspension cell line without
translocations that was derived from B lymphocytes trans-
formed by EBV and is frequently examined in epigenetic
studies [20]; 721 was derived independently but similarly [21].
The type III viral latency transcription programs of GM12878
and 721 LCLs [19] match those observed in most cases of

Fig. 1 Nitroxoline reduces a
proliferation of EBV-
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EBV-associated PTLD [16]. We treated cells with nitroxoline
(Sigma-Aldrich, St. Louis, MO, USA), JQI (Selleck Chemi-
cals, Houston, TX, USA), or a DMSO vehicle control as
previously described for JQ1 [17]. Proliferation was measured
by counting cells. Viability was measured with trypan blue,
which detects membrane integrity. Metabolic activity was
measured with PrestoBlue Cell Viability Reagent (Thermo
Fisher Scientific, Waltham, MA, USA), which detects reducing
power. Cell counts and trypan blue exclusion were measured
on a Countess II FL. Automated Cell Counter (Thermo Fisher
Scientific, Waltham, MA, USA) after seeding GM 12878 cells
at a density 0.3x10° cells mlI™!' and culturing for 3 days.
PrestoBlue Cell Viability Reagent was measured on a Spark
multimode microplate reader (Tecan, Ménnedorf, Switzerland)
at an absorbance wavelength of 570nm after seeding
GM12878 or 721 cells at a density 0.1 x 10° cells ml~' and
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culturing for up to 3 days. Statistical comparisons were made
with paired Student’s ¢ tests.

Nitroxoline reduces growth of EBV-associated lympho-
proliferation in cell culture. Nitroxoline reduces growth of
the GM12878 LCL by decreasing the proliferation of new
cells (Fig. 1a), decreasing viability (Fig. 1b), and decreasing
metabolic activity (Fig. 1c). Viability is perturbed at a
higher concentration than proliferation and metabolic
activity because membrane integrity is usually impacted at a
later stage of cell death than cell count and reducing power.
To demonstrate generality, nitroxoline also decreases
metabolic activity of the 721 LCL (Fig. 1c). These effects
are observed at low pM concentrations achievable in
humans [22, 23]. We previously demonstrated that the
prototype BET inhibitor JQI reduces growth of GM12878
cells both in cell culture and in a mouse model [17]. To
compare nitroxoline with JQI, we measured metabolic
activity of GM12878 cells over a time course (Fig. 1c).
Nitroxoline reduces metabolic activity much more potently
than JQ1 under these conditions. After 8h and 1 day,
JQ1 shows very little effect on reducing power, only
achieving substantial growth inhibition after 2 days.
Nitroxoline shows moderate effects after 8 h and even as
early as 4 h, achieving substantial growth inhibition after
1 day. Nitroxoline therefore acts with faster kinetics than
JQ1. Encouraged by these results in cell culture, we then
tested the efficacy of nitroxoline in a small animal model of
cancer.

Fig. 2 Nitroxoline reduces a 1000
proliferation of EBV-

immortalized LCLs in an animal 800
model. a Expansion of engrafted
GM12878 cells in NSG mice
treated with nitroxoline.
Expansion is measured as tumor
volume. Error bars represent the
standard deviation of n =8
mice. b Health of NSG mice
treated with nitroxoline. Health 0e
is measured as weight. Error 0
bars represent the standard

deviation of n =8 mice
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We assessed efficacy in a mouse model with LCL xeno-
grafts as previously described for JQ1 [17]. Nitroxoline was
suspended in soybean oil for dosing. Weight was also mea-
sured in addition to tumor size. Statistical comparisons were
made with Mann—Whitney—Wilcoxon rank sum tests.

Nitroxoline reduces growth of EBV-associated lympho-
proliferation in a small animal model. A dose of 80 mg kg™
intraparietal nitroxoline daily reduces tumor sizes after
~2 weeks (Fig. 2a). Tumor volume decreases by ~40%. No
toxicity is observed during the time course as weight, a
gross indicator of health, is not affected by nitroxoline
treatment (Fig. 2b). A lower dose of 40 mgkg~! intrapar-
ietal nitroxoline daily also reduces tumor sizes by ~40-50%
after ~2 weeks (Fig. 2a) without weight loss (Fig. 2b).

We cautiously note that we did observe statistically
insignificant mortality in the nitroxoline group with extended
treatment. Prolonged dosing beyond the ~2-week time frame
of tumor size reduction without mortality (Fig. 2a) resulted in
loss of mice. With 80 mgkg ™" nitroxoline, two out of eight
mice did not survive, one lost on day 15 and another on day
21. With 40mgkg ™! nitroxoline, one out of eight mice did
not survive, lost on day 19. These differences in survival were
not significant according to a Fisher exact test. The cause of
mortality is unclear given the lack of weight loss up to
(Fig. 2b) and inclusive of those time points (data not shown).
No abnormal findings were observed during animal care
(data not shown). We find it difficult to speculate with con-
fidence that either BET inhibition or metal chelation is related
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to mouse death. Technical error during repeated intraper-
itoneal dosing is possible. Other experiments treating mice
with nitroxoline at higher doses for longer times also showed
no increased mortality compared to vehicle [10]. Additional
investigation into the long-term safety profile of nitroxoline
may nonetheless be necessary.

Even though work remains, PTLD treatment strategies
could benefit from additional options [24, 25]. A rationally
repurposed drug may allow safe and rapid translation
into the clinic. Nitroxoline indeed reduces the growth of
EBV-associated lymphoproliferation in both cell culture
and a mouse model. We contend that our preclinical studies
support usage of the antibiotic nitroxoline against EBV-
associated malignancies as seen in PTLD.
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