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Abstract

Background: Memantine, a noncompetitive N-methyl-D-aspartate receptor antagonist, has been approved for use in 
Alzheimer’s disease, but an increasing number of studies have investigated its utility for neuropsychiatric disorders. Here, we 
characterized a novel compound, fluoroethylnormemtantine (FENM), which was derived from memantine with an extra Fluor 
in an optimized position for in vivo biomarker labeling. We sought to determine if FENM produced similar behavioral effects 
as memantine and/or if FENM has beneficial effects against fear, avoidance, and behavioral despair.
Methods: We administered saline, FENM, or memantine prior to a number of behavioral assays, including paired-pulse 
inhibition, open field, light dark test, forced swim test, and cued fear conditioning in male Wistar rats.
Results: Unlike memantine, FENM did not produce nonspecific side effects and did not alter sensorimotor gating or 
locomotion. FENM decreased immobility in the forced swim test. Moreover, FENM robustly facilitated fear extinction learning 
when administered prior to either cued fear conditioning training or tone reexposure.
Conclusions: These results suggest that FENM is a promising, novel compound that robustly reduces fear behavior and may 
be useful for further preclinical testing.
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Introduction
N-methyl-D-aspartate (NMDA) receptor (NMDAR) function 
has been increasingly implicated in the pathophysiology 
of neuropsychiatric diseases, including mood disorders 
and Alzheimer’s disease (AD) (Paul, 1997; Ravindran and 

Stein, 2009; Barkus et  al., 2010; Steckler and Risbrough, 
2012; Ates-Alagoz and Adejare, 2013; Lakhan et al., 2013; Liu 
et  al., 2019). Expressed abundantly throughout the brain, 
NMDARs play a vital role in excitatory neurotransmission 
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and synaptic plasticity. Accordingly, disruption of NMDAR 
function, whether due to natural disease causes or pharma-
cological intervention, can significantly alter cognitive func-
tion and emotionality. A number of novel NMDAR antagonists 
have been demonstrated as efficacious treatments against 
a variety of neuropsychiatric disorders. For instance, (R,S)-
ketamine is widely known for its rapid-acting, long-lasting 
antidepressant actions as well as its efficacy in treating 
treatment-resistant depression (Berman et  al., 2000; Zarate 
et  al., 2006; aan het Rot et  al., 2010; Murrough et  al., 2013). 
Moreover, intranasal (S)-ketamine (Spravato), a stereospecific 
derivative of (R,S)-ketamine that specifically targets NMDARs, 
was recently approved by the FDA as an adjunctive treatment 
for treatment-resistant depression and has shown strong, 
rapid efficacy for reducing symptoms of depression, including 
suicidality (Daly et al., 2018, 2019; Fedgchin et al., 2019; Popova 
et al., 2019; Fu et al., 2020; Ionescu et al., 2020; Nijs et al., 2020; 
Perez-Ruixo et  al., 2020; Saad et  al., 2020; Wajs et  al., 2020; 
ClinicalTrials.gov, NCT0260929, NCT02094378, NCT02133001, 
NCT02343289, NCT02345148, NCT02606084, NCT02611505, 
NCT02674295, NCT02857777, NCT03298906). Previous studies 
have also shown that (R,S)-ketamine–induced NMDAR in-
hibition may also prevent stress-induced behavioral despair 
as well as attenuate learned fear when administered prior 
to stress (Amat et al., 2016; Brachman et al., 2016; McGowan 
et  al., 2017; Dolzani et  al., 2018; Mastrodonato et  al., 2018; 
Pham et al., 2018; Chen et al., 2020b). Despite these promising 
studies, (R,S)-ketamine presents a challenge for clinical devel-
opment because of its nonspecific side effects, including psy-
chotropic actions and high abuse potential. Therefore, efforts 
are currently underway to develop NMDAR antagonists with 
similar efficacy but reduced side effects.

Interestingly, although many alternative NMDAR antag-
onists (e.g., rapastinel, MK-801) have shown promising anti-
depressant results in both rodents and humans, to date, these 
compounds have failed to show significant efficacy in redu-
cing depressive symptoms compared with placebo controls 
in clinical trials (Ates-Alagoz and Adejare, 2013; Moskal et al., 
2014; Newport et al., 2015; Gerhard et al., 2016; Yang et al., 2016; 
Kato et al., 2018; Kadriu et al., 2019; Kato and Duman, 2020; 
ClinicalTrials.gov, NCT02192099, NCT02267629, NCT02932943, 
NCT02943564, NCT02943577, NCT02951988, NCT03002077, 
NCT03352453, NCT03560518, NCT03575776, NCT03614156, 
NCT03668600, NCT03799900, NCT03814733, NCT03855865). 
One such drug is memantine, a noncompetitive open-channel 
NMDAR antagonist (Kishi et al., 2017a). Memantine is clinic-
ally used as a treatment for AD and has been shown to im-
prove memory, awareness, and the ability to perform daily 
tasks (Kishi et al., 2017b). Although some early studies indi-
cated that memantine may exhibit antidepressant efficacy, 
a longitudinal study showed that memantine is no better 
than placebo at managing symptoms of depression (Moryl 
et al., 1993; Kishi et al., 2017a). Therefore, despite its lack of 

antidepressant actions, memantine does exert pro-cognitive 
effects. Thus, examining analogues of memantine may re-
veal novel NMDAR antagonist compounds that can improve 
cognition as well as exhibit antidepressant and/or anxiolytic 
efficacy.

Recently, a novel radiolabeled compound, [18F]- 
fluoroethylnormemantine (FENM), was derived from memantine 
as a novel positron emission tomography (PET) tracer (Salabert 
et  al., 2015, 2018). With a Ki of 3.510-6 M and high lipophilicity 
(logD = 1.93), [18F]-FENM stabilized 40 minutes after injection with 
approximately 0.4% of the original dose present in the brain. 
Combined ex vivo autoradiography and immunohistochemistry 
indicated that [18F]-FENM strongly colocalizes with NMDARs in 
the cortex and cerebellum. Intriguingly, this colocalization is 
blocked by injection of (R,S)-ketamine, suggesting that FENM 
exhibits a lower affinity to the NMDAR receptor than (R,S)-
ketamine. Moreover, because both compounds bind to phen-
cyclidine sites in the NMDAR channel pore, these data suggest 
that the compounds may also exert similar behavioral effects. 
However, while the antidepressant-like effects of FENM remain 
unknown, recent data indicate that FENM enhances cognitive 
function and exerts neuroprotective properties in a mouse 
model of AD (Couly et  al., 2020). In this study, Couly and col-
leagues found that FENM reversed deficits in long-term memory, 
navigation, and place learning, and object recognition in a 
pharmacological model of AD. Interestingly, compared with the 
effects of memantine, the authors showed that FENM improved 
spatiotemporal orientation in the Hamlet test while memantine 
did not affect behavior. FENM’s behavioral actions were found 
to correspond with a reduction in inflammatory cytokines 
and neuronal cell loss in the hippocampus. Thus, although 
FENM shows potential for enhancing cognition and protecting 
age-related brain impairments, it is still unknown whether the 
drug can reverse stress-related maladaptive behaviors.

Here, we aimed to characterize the effects of FENM 
on avoidance behavior, behavioral despair, and extinc-
tion learning in rats. A  single injection of saline, FENM, or 
memantine was administered acutely prior to a range of be-
havioral assays, including paired-pulse inhibition (PPI), open 
field (OF), forced swim test (FST), and cued fear conditioning 
(FC) and extinction. FENM did not affect sensorimotor be-
havior or avoidance behavior. FENM decreased behavioral 
despair in the FST and reduced fear behavior when adminis-
tered at a variety of timepoints prior to cued FC and extinction 
training. These data indicate that FENM is a novel compound 
with robust fear-reducing properties and is a promising can-
didate for preclinical development as a potential treatment 
for fear-related disorders.

METHODS

For a full description of Methods, please refer to the Supplemental 
Methods.

Significance Statement
N-methyl-D-aspartate (NMDA) receptors have been previously implicated as a potential target for the prevention and treatment 
of stress-related psychiatric disorders. Recently, a novel NMDA receptor antagonist, fluoroethylnormemantine (FENM), was de-
rived from memantine. Here, using a variety of behavioral assays, we characterized the behavioral properties of FENM in rats. 
We found that FENM significantly reduced behavioral despair and facilitated extinction learning without altering sensorimotor 
function. Our findings indicate that FENM may be a suitable compound for further preclinical testing in a variety of stress-based 
behavioral assays.
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Rats

Three hundred male Wistar rats were purchased from 
Janvier Labs (Le Genest-Saint-Isle, France). Rats were or-
dered at 250–274 g and were tested after 1 week of acclima-
tization. Rats were kept 2 per cage in a 12-hour-light/-dark 
(6:00 am–6:00 pm) colony room at 22°C. Food and water were 
provided ad libitum. Rats were used once per behavioral ex-
periment. All procedures were approved by a local ethics com-
mittee (French Ministry of Health and Research Authorization 
N°APAFIS#3571-2015091614517975v7) in accordance with the 
European Communities Council Directive (2010/63/EU) and 
the European Union guidelines.

Drugs

All drugs were resuspended in saline and made fresh for each 
experiment.

FENM
FENM was administered in a single dose at 1, 3, 5, 10, or 20 mg/
kg of body weight. FENM was generated by M2i (Saint-Cloud, 
France).

Memantine
Memantine was administered in a single dose at 1, 3, or 10 mg/
kg of body weight. Memantine was provided by M2i (Saint-Cloud, 
France) and purchased from TCI Chemicals (Tokyo, Japan).

Behavioral Methods

All behavioral tests were performed in the active phase.

PPI
The apparatus consisted of 4 startle chambers (SRLAB, San 
Diego Instruments, CA) containing a transparent Plexiglas tube 
(diameter 8.2 cm, length 20 cm) mounted on a Plexiglas frame 
within a ventilated enclosure. Acoustic noise bursts were pre-
sented via a speaker mounted 24 cm above the tube. Throughout 
the session, a background noise level of 68 dB was maintained. 
A  piezoelectric accelerometer mounted below the frame de-
tected and transduced motion within the tube. Startle amp-
litudes were defined as the average of 100 1-ms stabilimeter 
readings collected from stimulus onset. Rats were run in groups 
of 4. Each rat was put into the PPI chamber for a 5-minute ac-
climatization period with a 68-dB background noise. Following 
this period, 10 startle pulses (120 dB, 40-ms duration) were pre-
sented with an average inter-trial interval of 15 seconds. Then, 
no stimulus (background noise, 68 dB), prepulses alone (72, 76, 
80, or 84 dB, 20-millisecond duration), startle pulses alone, and 
prepulses followed (80 millisecond later) by startle pulses, were 
presented 10 times, randomly distributed over the next 32 min-
utes. The percentage of PPI induced by each prepulse intensity 
was calculated as: 100[(SP − SPP)/SP], with SP being the average 
startle amplitude following the startle pulses and SPP being the 
average startle response following the combination of a certain 
prepulse and the startle pulse.

OF
The OF test was conducted in an arena (43.2 cm × 43.2 cm) with 
transparent acrylic walls and white floor (Med Associates Inc., 
St. Albans, VT). Rats were individually placed in the OF arena 
for 120 minutes. Locomotor activity was monitored using a two 
16-beam infrared system. Data from the first 30 minutes were 

included in analysis. Velocity and total distance travelled were 
analyzed using the Activity Monitor software (Med Associates).

Light Dark Test (LDT)
The apparatus for the light/dark test consisted of a box 
(40 cm × 40 cm × 32 cm) divided into dark (black walls, floor and 
roof, 5 lux) and light (white walls and floor, no roof, 600 lux) com-
partments of equal volume (40 × 40 × 32 cm). The compartments 
were connected via a small opening (10 × 10 cm) enabling tran-
sition between the 2 boxes. Rats were placed in the light com-
partment, and the time spent in each compartment during the 
10 minutes test was assessed online via a video camera located 
above the box. Behavior was automatically analyzed using video 
tracking software (View Point, Lyon, France).

FST
For the FST, rats were individually placed into glass cylinders 
(40 cm high, 18 cm in diameter) containing 28 cm of water at 
23°C  ± 2°C for 15 minutes (pre-swim) and then gently dried and 
returned to their home cages. They were placed again in the 
cylinders 24 hours later, and the 6-minute FST was conducted. 
All sessions were recorded with an automated video tracking 
system (View Point). The total duration of immobility as well as 
bursting were measured throughout the second trial.

Cued FC
Cued FC occurred in a standard conditioning chamber 
(Context A) (VCF-007, Med Associates) kept inside a sound-
attenuating cubicle. This chamber had the internal dimen-
sions of 30 × 24 × 33  cm, with aluminum sidewalls, an opaque 
polycarbonate rear wall, and a transparent Plexiglas door. The 
grid floor was connected to a shock scrambler and shock gen-
erator, and approximately 0.2 mL of 1% ammonium hydroxide 
was put in the collection pan. The chamber was dark except for 
2 infrared light sources located above the training box (NIR200, 
Med Associates). Rats received 3 tone-shock pairings at 180 sec-
onds, 381 seconds, and 582 seconds, following placement in the 
chamber and the launching of the Med Associates program. 
Each tone was 20 seconds long and each shock, which followed 
the tone, lasted 1 second. Each foot shock was 1.0 mA based on 
prior pilot studies.

Extinction
Thirty minutes before either extinction session, rats were in-
jected with saline or FENM and placed into context B. Context B 
was the same darkened chamber as Context A but with a white 
plastic floor and curved wall inserts scented with 1% acetic acid 
in the collection pan. Each extinction session had twenty-four 
20-second tone presentations, separated by 35 seconds. Videos 
were scored by hand by an experimenter blind to treatment 
group to avoid software-induced false freezing. Freezing was 
quantified over the entire session.

Statistical Analysis

All data were analyzed using Prism 7.0 and 8.0 (GraphPad 
Software, La Jolla, CA). Alpha was set to .05 for all analyses. Data 
were confirmed as normally distributed with equal variance 
using a Shapiro-Wilk normality test and by calculating the vari-
ance. A 1-way, 2-way, or repeated-measures ANOVA (RMANOVA) 
was conducted where appropriate. Post-hoc analysis was con-
ducted when the overall ANOVA (e.g., drug) was significant or 
when the interaction between the 2 factors (e.g., drug × tone or 
drug × time) was significant. Post-hoc Dunnett’s tests were used 
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to determine the statistical significance of multiple experi-
mental groups against a single control group. All statistical tests 
and P values are listed in supplementary Table 1.

RESULTS

Memantine, But Not FENM, Decreases Prepulse 
Inhibition in Rats

Reduced PPI is indicative of deficient sensorimotor gating and 
is present in various neuropsychiatric disorders, including 
schizophrenia and Tourette’s syndrome. It has previously 
been shown that memantine can impair normal PPI startle 
responses (Swerdlow et al., 2009). We therefore sought to de-
termine whether FENM would affect sensorimotor gating 
similarly to memantine. Rats were administered saline, 
memantine (10  mg/kg), or FENM (5, 10, or 20  mg/kg). Thirty 
minutes later, rats were tested in a PPI assay (Figure 1a). 
Memantine, but not FENM, reduced prepulse inhibition of 
the startle response compared with saline controls (Figure 
1b; RMANOVA drug: F(4,55) = 2.94, P = .0283, pulse: F(3,165) = 68.35, 
P < .0001, drug × pulse: F(12,165) = 0.5241, P = .8970; Dunnett’s mul-
tiple comparisons: Sal vs memantine (10 mg/kg): P = .0103, Sal 
vs FENM (5 mg/kg): P = .4591, Sal vs FENM (10 mg/kg): P = .7847; 
Sal vs FENM (20  mg/kg): P = .9824). When mean freezing was 
averaged across the entire trial, memantine, but not FENM, 
significantly lowered the mean startle response (Figure 1c; 
ANOVA drug: F(4,55) = 2.94, P = .0283; Dunnett’s multiple com-
parisons: Sal vs memantine (10 mg/kg) P = .0103, Sal vs FENM 
(5  mg/kg) P = .4591, Sal vs FENM (10  mg/kg) P = .7847, Sal vs 
FENM (20 mg/kg) P = .9824). These results indicate that FENM 
does not alter sensorimotor gating like its parent compound 
memantine.

FENM Does Not Alter Locomotion or Avoidance 
Behavior in Rats

Memantine has previously been shown to reduce ambulatory 
activity and rearing when administered acutely before the OF 
(Kos and Popik, 2005). Here, we sought to determine if FENM, 
similarly to its parent compound, also altered locomotor be-
havior. Rats were administered saline, memantine (10  mg/kg), 
or FENM (5, 10, or 20 mg/kg) and 30 minutes later placed into 
an OF (Figure 2a). Memantine, but not FENM, decreased ambu-
latory [Figure 2b; ANOVA: drug F(4,55) = 14.19, P < .0001; Dunnett’s 
multiple comparisons: Sal vs memantine (10  mg/kg) P < .0001, 
Sal vs FENM (5 mg/kg) P = .8133, Sal vs FENM (10 mg/kg) P = .9259, 
Sal vs FENM (20  mg/kg) P = .0939], vertical [Figure 2c; ANOVA: 
drug F(4,55) = 14.430, P < .0001; Dunnett’s multiple comparisons: 
Sal vs memantine (10  mg/kg) P < .0001, Sal vs FENM (5  mg/kg) 
P = .9720, Sal vs FENM (10 mg/kg) P = .1678, Sal vs FENM (20 mg/
kg) P = .9993], and stereotypic [Figure 2d; ANOVA: F(4,55) = 10.86, 
P < .0001; Dunnett’s multiple comparisons: Sal vs memantine 
(10 mg/kg) P < .0001, Sal vs FENM (5 mg/kg) P = .9933, Sal vs FENM 
(10 mg/kg) P = .95, Sal vs FENM (20 mg/kg) P = .9998] counts in the 
OF. All groups spent a comparable amount of time in the center 
(Figure 2e; ANOVA: drug F(4,55) =  0.449, P = .4487). These data show 
that, unlike memantine, FENM does not alter locomotion.

Next, to further expand on on the locomotor effects, we 
utilized an LDT. Here, rats were again administered saline, 
memantine (1, 3, or 10 mg/kg), or FENM (1, 3, or 10 mg/kg) 30 min-
utes before the LDT (supplementary Figure 1a). The time spent 
in the light compartment did not differ between the groups 
(supplementary Figure 1b; ANOVA: drug F(6,76) = 2.13, P = .0595). As 
observed in the OF assay, memantine (10 mg/kg), but not FENM, 
significantly reduced the number of transitions between the 
light and dark compartments [supplementary Figure 1c; ANOVA: 
drug F(6,76) = 2.314, P = .0416; Dunnett’s multiple comparisons: Sal 
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vs memantine (1 mg/kg) P = .5480, Sal vs memantine (3 mg/kg) 
P = .0533, Sal vs memantine (10  mg/kg) P = .0174, Sal vs FENM 
(1 mg/kg) P = .8739, Sal vs FENM (3 mg/kg) P = .9781, Sal vs FENM 
(10 mg/kg) P = .3863]. These data suggest that FENM does not sig-
nificantly alter avoidance behavior.

FENM Decreases Behavioral Despair in Rats

Previous data suggest that memantine may reduce behavioral 
despair in rats (Moryl et  al., 1993). Here, we sought to test if 
FENM altered behavioral despair (Figure 3a). Male Wistar rats 
were given a 15-minute preswim trial, which functioned as an 
initial stressor (Porsolt et  al., 1977). Twenty-four hours later, 
saline, memantine (1, 3, or 10 mg/kg), or FENM (1, 3, or 10 mg/

kg) was injected, and 30 minutes later, a second FST session 
was administered for 6 minutes. Here, drug dosages for both 
memantine and FENM were chosen in accordance with a pre-
vious study indicating that lower doses of memantine (e.g., 1, 3, 
or 10 mg/kg) can reduce behavioral despair in rodents (Almeida 
et  al., 2006). Consistent with this publication, memantine (1, 
3, and 10 mg/kg) decreased immobility time [Figure 3b and d; 
RMANOVA: drug F(6,77) = 3.649, P = .0031, time F(5,385) = 68.02, P < .0001, 
drug × time F(30,385) = 1.503, P = .0461; Dunnett’s multiple compari-
sons: Sal vs memantine (1 mg/kg) P = .0435, Sal vs memantine 
(3  mg/kg) P = .1678, Sal vs memantine (10  mg/kg) P = .0007; 
ANOVA: drug F(6,77) = 4.558, P = .0005; Dunnett’s multiple compari-
sons: Sal vs memantine (1 mg/kg) P = .0133, Sal vs memantine 
(3 mg/kg) P = .0283, Sal vs memantine (10 mg/kg) P = .0001] and 

Sal 10 5 10 20
0

200

400

600

800

C
en

te
r T

im
e 

(s
ec

)

Memantine FENM

(mg/kg)

Sal 10 5 10 20
0

50

100

150

200

Ve
rti

ca
l C

ou
tn

s 
(n

o.
)

***

Memantine FENM

(mg/kg)

Sal 10 5 10 20
0

1000

2000

3000

4000

5000

St
er

eo
ty

pi
c 

C
ou

nt
s 

(n
o.

)

***

Memantine FENM

(mg/kg)

Sal 10 5 10 20
0

500

1000

1500

2000

Am
bu

la
to

ry
 C

ou
nt

s 
(n

o.
)

***

Memantine FENM

(mg/kg)

B

A

D E

C

Figure 2. Fluoroethylnormemantine (FENM) does not alter locomotion or exploratory behavior in the open field. (a) Experimental protocol. (b–d) Memantine, but not 

FENM, significantly reduced locomotion, rearing, and stereotypic behavior, respectively, in the open field (OF) compared with saline-administered rats. (e) Time in the 

center of the OF was comparable across all drug groups. (n = 12 male rats/group). Error bars represent ± SEM. ***P < .0001. Abbreviation: OF, open field.



524 | International Journal of Neuropsychopharmacology, 2021

increased bursting duration in the FST (supplementary Table 1) 
(Almeida et al., 2006). FENM (10 mg/kg) exerted a trending re-
duction in overall immobility time and was effective in reducing 

mean immobility time (Figure 3c–d; RMANOVA: drug F(6,77) = 3.649, 
P = .0031, time F(5,385) = 68.02, P < .0001, drug × time F(30,385) = 1.503, 
P = .0461. Dunnett’s multiple comparisons: Sal vs FENM (1 mg/
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saline. FENM (10 mg/kg) reduced overall immobility time, but this decrease was not significant. (d) Memantine (1, 3, and 10 mg/kg) and FENM (10 mg/kg) significantly 

reduced mean immobility time, averaged over minutes 3–6, in the FST. (n = 12 male rats/group). Error bars represent ± SEM. *P < .05, **P < .01, ***P < .0001. Abbreviation: 

FST, forced swim test. 
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kg) P = .5903, Sal vs FENM (3 mg/kg) P = .9161, Sal vs FENM (10 mg/
kg) P = .0504; ANOVA: drug F(6,77) = 4.558, P = .0005; Dunnett’s mul-
tiple comparisons: Sal vs FENM (1 mg/kg) P = .3384, Sal vs FENM 
(3 mg/kg) P = .6842, Sal vs FENM (10 mg/kg) P = .0125] as well as 
increasing bursting duration (supplementary Table 1). These 
data indicate that FENM is effective at reducing behavioral 
despair.

FENM Attenuates Learned Fear and Facilitates 
Extinction Learning in Rats

Next, we aimed to determine whether FENM could have ef-
fects in attenuating fear behavior when administered at various 
timepoints before or after stress or extinction learning. In these 
experiments, rats were not administered memantine due to 
previous data indicating that memantine does not alter fear 
learning or memory in wild-type rodents during cued FC (Dong 
et  al., 2008; Ishikawa et  al., 2016). Rats were administered a 
single injection of saline or FENM (5, 10, or 20 mg/kg) 30 min-
utes prior to 3-shock cued FC. The next 2 days, rats were placed 
into a novel context and reexposed to the conditioned stimulus. 
During both tests 1 and 2, freezing was assayed in rats as a 
measure of learned fear behavior (Figure 4a).

During the training session, there was no significant dif-
ference in freezing across all groups (Figure 4b–c; RMANOVA: 
drug F(3,28) = 1.219, P = .3212, time F(3,84) = 178.2, P < .0001, drug × time 
F(9,84) = 1.574, P = .1364. 2-way ANOVA: drug F(3.112) = 1.562, P = .2027, 
tone F(3,112) = 161.5, P < .0001, drug × tone F(9,112) = 1.426, P = .1852). 
During tone test 1, one day after training, rats administered FENM 
at 5 and 10 mg/kg exhibited significantly reduced freezing com-
pared with controls during tones 9–16 [Figure 4d–e; RMANOVA: 
drug F(3,28) = 11.62, P < .0001, time F(24,672) = 11.6, P < .0001, drug × time 
F(72,672) = 6.451, P < .0001; Dunnett’s multiple comparisons: Sal vs 
FENM (5 mg/kg) P = .0001, Sal vs FENM (10 mg/kg) P < .0001, Sal 
vs FENM (20  mg/kg) P = .6682; 2-way ANOVA: drug F(3,112) = 11.62, 
P < .0001, tone F(3,112) = 21.87, P < .0001; drug × tone F(9,112) = 9,659, 
P < .0001; Dunnett’s multiple comparisons: Sal vs FENM (5 mg/kg) 
P = .0178, Sal vs FENM (10 mg/kg) P < .0001, Sal vs FENM (20 mg/kg) 
P = .9040]. Rats given FENM (20 mg/kg) showed reduced freezing 
during tones 1–8 but increased freezing during tones 17–24 
compared with saline controls (Figure 4e). The following day, 
during tone test 2, FENM at 10 and 20, but not 5 mg/kg, signifi-
cantly reduced overall freezing compared with saline [Figure 4f; 
RMANOVA: drug F(3,28) = 46.46, P < .0001, time F(24,672) = 15.35, P < .0001, 
drug × time F(72,672) = 4.664, P < .0001; Dunnett’s multiple compari-
sons: Sal vs FENM (5  mg/kg) P = .9857, Sal vs FENM (10  mg/kg) 
P < .0001, Sal vs FENM (20  mg/kg) P < .0001]. Rats administered 
FENM at 10 and 20  mg/kg froze significantly less than saline-
administered rats during all epochs of the testing session [Figure 
4g; 2-way ANOVA: drug F(3,112) = 66.81, P < .0001, tone F(3,112) = 41.62, 
P < .0001; drug × tone F(9,112) = 4.666, P < .0001; Dunnett’s multiple 
comparisons: Sal vs FENM (5  mg/kg) P = .7523, Sal vs FENM 
(10 mg/kg) P < .0001, Sal vs FENM (20 mg/kg) P < .0001]. Rats in the 
FENM (5 mg/kg) group showed enhanced freezing during tones 
1–8 but reduced freezing during tones 9–16 compared with sa-
line controls (Figure 4g). These data show that FENM adminis-
tered prior to stress can attenuate learned fear in male rats in a 
dose- and time-specific manner.

We then sought to test whether FENM could alter fear be-
havior when administered after cued FC, prior to extinction 
learning. Rats were administered a 3-shock cued FC training ses-
sion. The next day, rats were administered a single injection of 
saline or FENM (5, 10, or 20 mg/kg). Thirty minutes later, rats were 
placed into a novel context and reexposed to the conditioned 

stimulus. The third day, rats were reexposed to the conditioned 
stimulus. Freezing behavior was quantified during all training 
and testing sessions (Figure 5a). During training, there was 
no difference in freezing between all groups (supplementary 
Table 1). The following day, during tone test 1, FENM at 5 mg/
kg, but no other doses, significantly reduced overall freezing 
compared with saline [Figure 5b; RMANOVA: drug F(3,27) = 6.298, 
P=.0022, time F(24,648) = 6.808, P < .0001, drug × time F(72,648) = 4.643, 
P < .0001; Dunnett’s multiple comparisons: Sal vs FENM (5 mg/kg) 
P = .0424, Sal vs FENM (10 mg/kg) P = .3284, Sal vs FENM (20 mg/
kg) P = .4934]. During tones 9–16, but no other epochs, rats ad-
ministered FENM (5 and 20 mg/kg) froze significantly less than 
saline-administered control rats [Figure 5c; 2-way ANOVA: drug 
F(3,108) = 4.723, P = .0039, tone F(3,108) = 9.777, P < .0001; drug × tone 
F(9,108) = 6.892, P < .0001; Dunnett’s multiple comparisons: Sal vs 
FENM (5 mg/kg) P = .0376, Sal vs FENM (10 mg/kg) P = .7276, Sal 
vs FENM (20  mg/kg) P = .3011]. Subsequently, during tone test 
2, FENM (5 or 10 mg/kg) attenuated freezing during tones 9–16 
while FENM (20 mg/kg) reduced freezing during the last half of 
the testing session [Figure 5d–e; RMANOVA: drug F(3,27) = 6.802, 
P = .0015, time F(24,648) = 18.81, P < .0001, drug × time F(72,648) = 2.906, 
P < .0001; Dunnett’s multiple comparisons: Sal vs FENM (5 mg/
kg) P = .1890, Sal vs FENM (10 mg/kg) P = .654, Sal vs FENM (20 mg/
kg) P = .0007; 2-way ANOVA: drug F(3,108) = 8.452, P < .0001, tone 
F(3,108) = 78.04, P < .0001; drug × tone F(9,108) = 3.822, P = .0003; Dunnett’s 
multiple comparisons: Sal vs FENM (5  mg/kg) P = .1318, Sal vs 
FENM (10 mg/kg) P = .5836 Sal vs FENM (20 mg/kg) P < .0001].

Finally, we sought to test whether FENM could affect fear 
behavior when administered during extinction learning. Rats 
were administered a 3-shock cued FC training session. The next 
day, rats were placed into a novel context and reexposed to the 
conditioned cues. On the third day, rats were given a single in-
jection of saline or FENM (5, 10, or 20 mg/kg) 30 minutes prior 
to a second testing session (Figure 5f). There was no significant 
overall difference freezing during cued FC or during tone test 
1 (supplementary Table 1). However, in tone test 2, FENM (10 
and 20  mg/kg) significantly reduced freezing throughout the 
test compared with control saline-administered rats [Figure 
5g–h; RMANOVA: drug F(3,29) = 50.01, P < .0001, time F(24,696) = 14.98, 
P < .0001, drug × time F(72,696) = 2.126, P < .0001; Dunnett’s mul-
tiple comparisons: Sal vs FENM (5 mg/kg) P = .5038, Sal vs FENM 
(10  mg/kg) P < .0001, Sal vs FENM (20  mg/kg) P < .0001; 2-way 
ANOVA: drug F(3,116) = 76.14, P < .0001, tone F(3,116) = 39.6, P < .0001; 
drug × tone F(9,116) = 4.368, P < .0001; Dunnett’s multiple compari-
sons: Sal vs FENM (5  mg/kg) P = .8588, Sal vs FENM (10  mg/kg) 
P < .0001, Sal vs FENM (20  mg/kg) P < .0001]. Overall, these data 
suggest that FENM can facilitate extinction learning and reduce 
fear behavior when administered either before or after stress 
or extinction learning but may be more effective in attenuating 
learned fear when administered directly prior to reexposure.

Discussion

In this study, we aimed to test the behavioral effects of FENM 
administration on sensorimotor gating, avoidance behavior, 
behavioral despair, and fear behavior in rats. Our experiments 
show that FENM can effectively reduce behavioral despair as 
well as facilitate extinction learning without altering locomo-
tion or sensorimotor behavior. These results show that FENM 
exerts antidepressant-like and fear-attenuating properties. 
FENM was also effective in attenuating learned fear when ad-
ministered acutely prior to FC, indicating that it may also be 
leveraged as a resilience-enhancing prophylactic. Together, our 
findings indicate that FENM, a novel NMDAR antagonist, may be 

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab007#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab007#supplementary-data
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a suitable candidate for further preclinical testing in a variety of 
stress-related behavioral assays.

Numerous studies have documented the efficacy of NMDAR 
antagonists in both treating and preventing stress-related 
psychiatric disorders. These compounds include, but are not 
limited to, (R,S)-ketamine, MK-801, and rapastinel (Kadriu et al., 
2019). Notably, many of these compounds elicit rapid anti-
depressant responses in both rodent and human models but 
are not reported to exhibit anxiolytic properties (Moskal et al., 
2014; Newport et  al., 2015; Kadriu et  al., 2019). A  number of 

these novel compounds are also being tested in clinical trials as 
either adjunctive or standalone treatments for various depres-
sive disorders, but, to date, many have failed to show significant 
efficacy in reducing depressive symptoms relative to placebo 
groups (Kadriu et  al., 2019; ClinicalTrials.gov, NCT02192099, 
NCT02267629, NCT02932943, NCT02943564, NCT02943577, 
NCT02951988, NCT03002077, NCT03352453, NCT03560518, 
NCT03575776, NCT03614156, NCT03668600, NCT03799900, 
NCT03814733, NCT03855865). Additionally, (R,S)-ketamine and 
group II metabotropic glutamate receptor antagonists have been 
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Figure 4. Fluoroethylnormemantine (FENM) attenuates learned fear when administered directly before cued FC. (a) Rats were administered a single injection of saline 

or FENM (5, 10, or 20 mg/kg) 30 minutes prior to 3-shock cued FC. The next 2 days, rats were placed into a novel context and reexposed to the conditioned stimulus. 

During both tests 1 and 2, freezing was assayed in rats as a measure of learned fear behavior. (b–c) In the training session, freezing was comparable across all groups. 

(d–e) During test 1, FENM (5, 10, and 20 mg/kg) reduced freezing to the conditioned tones at various time points compared with the saline control group. FENM (20 mg/

kg) increased freezing compared with saline during the last epoch of the test. (f–g) During test 2, at every time point, FENM (10 and 20 mg/kg) attenuated learned fear 

compared with the saline control group. FENM (5 mg/kg) increased freezing during tones 1–8, but reduced fear behavior during tones 9–16 (n = 8 male rats/group). Error 

bars represent ± SEM. *P < .05, **P < .01, ***P < .0001. Abbreviations: FC, fear conditioning; Sal, saline. 
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shown to exhibit prophylactic properties against stress-induced 
behavioral despair (Highland et  al., 2019). Our results, which 
demonstrate that FENM is antidepressant and may reduce fear, 

further indicate that targeting NMDARs may be an important 
strategy to both treating and preventing stress-related psychi-
atric illness.
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Figure 5. Fluoroethylnormemantine (FENM) facilitates extinction learning. (a) Experimental protocol. (b–c) Freezing prior to the tones and during tones 1–8 was com-

parable between all the drug groups. FENM at 5 and 20, but not 10 mg/kg, significantly reduced freezing during tones 9–16 compared with saline-administered rats. 

(d) In tone test 2, FENM (20 mg/kg) significantly reduced overall freezing compared with the control saline group. (e) All doses of FENM significantly reduced freezing 

during tones 9–16. FENM (20 mg/kg) also reduced freezing during tones 17–24. (f) Experimental protocol. (g–h) During test 2, FENM (5 mg/kg) did not alter fear behavior 

compared with saline controls. FENM (10 mg/kg) reduced freezing during the pre-tone epoch and during tones 1–16. FENM (20 mg/kg) significantly reduced freezing 

throughout the entire testing session. (n = 7–9 male rats/group). Error bars represent ± SEM. *P < .05, **P < .01, ***P < .0001. Abbreviations: FC, fear conditioning; sal, saline.
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Previous research has demonstrated a number of mechan-
isms by which NDMAR modulation can relieve depressive-like 
symptoms (Zanos et al., 2018; Kadriu et al., 2019). It is important, 
however, to note that these mechanisms are not mutually exclu-
sive and may work in a complementary fashion to achieve overall 
effects on behavior. Notably, NDMAR antagonism can rapidly 
upregulate the translation of various proteins and neurotrophic 
factors in the brain, such as brain-derived neurotrophic factor, 
which supports synaptic plasticity in regions of the brain, including 
the prefrontal cortex (Björkholm and Monteggia, 2016; Zanos and 
Gould, 2018; Zanos et al., 2018). This mechanism has been shown 
to be necessary for the rapid-acting antidepressant effects of (R,S)-
ketamine and could potentially contribute to the rapid-acting ef-
fects of other NMDAR antagonists, including FENM (Björkholm and 
Monteggia, 2016). (R,S)-ketamine-mediated NMDAR antagonism 
has also been shown to reconfigure brain-wide neural networks 
to restore homeostatic metabolic processes as well as synchronize 
gamma oscillatory activity by reducing excessive NMDAR-
dependent neurotransmission (Wang and Arnsten, 2015; Arnsten 
et al., 2016; Lv et al., 2016; Kadriu et al., 2019; Nugent et al., 2019). 
Future studies are therefore necessary to determine whether these 
and other candidate processes contribute to the neurobiological 
actions of FENM.

Intriguingly, we also found that FENM, in addition to its anti-
depressant properties, facilitated extinction learning. In our ex-
periments, when administered at a variety of timepoints prior to 
both cued FC and extinction training, FENM exerted long-lasting 
reductions in fear behavior in a dose-specific manner. We specu-
late that FENM may alter the recall of fear memory traces, ul-
timately leading to a rapid and long-lasting attenuation of 
behavioral fear responses. Moreover, FENM was recently shown 
to improve spatial learning and object recognition as well as 
reduce spatiotemporal disorientation in a rodent model of AD, 
suggesting that the results we observed during cued FC were 
specific to fear expression (Couly et al., 2020). Future studies will 
be necessary to test whether FENM can alter fear memory traces 
to attenuate learned fear. Overall, our experiments indicate that, 
following further preclinical testing, FENM may be effective as 
a treatment for fear-related disorders such as posttraumatic 
stress disorder or specific phobias.

Importantly, FENM did not alter sensorimotor gating during 
PPI or locomotion in the OF acutely after injection. These re-
sults are in direct contrast with FENM’s parent compound 
memantine, which significantly reduced startle response and 
locomotion 30 minutes after injection. Our data suggest that 
FENM does not have significant, nonspecific side effects that 
could confound the data we collected in the FST and cued FC as-
says. These results show that FENM may be a suitable candidate 
for further preclinical development. Future studies are, however, 
necessary to determine potential nonspecific behavioral effects 
of the compound.

Despite these promising data, it is still unknown if FENM 
can exhibit antidepressant and fear-attenuating properties in 
females. We and others have previously shown that both anti-
depressant and prophylactic drugs may be efficacious at different 
doses in male and female preclinical models (Franceschelli et al., 
2015; Chen et al., 2020b). Additionally, we have also shown that 
prophylactic compounds that attenuate learned fear in male 
mice, such as (R,S)-ketamine, (2S,6S)-hydroxynorketamine, an 
(R,S)-ketamine metabolite, and RS-67,333, a type IV serotonin re-
ceptor agonist, fail to alter fear learning or expression in female 
mice (Chen et al., 2020a, 2020b). Thus, we aim to investigate the 
prophylactic and fear-reducing efficacy of FENM in females in 
future studies.

Overall, this series of experiments characterizes a novel 
NMDAR antagonist, FENM, that exhibits antidepressant proper-
ties and facilitates extinction learning in preclinical rat models. 
The data support the NMDAR as a critical target to better treat 
and prevent a variety of stress-induced behaviors. Ultimately, 
further study of this and similar compounds may lead to more 
efficacious interventions to reduce the burden of stress-related 
psychiatric disease.

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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