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ABSTRACT
Objectives  We aimed at identifying the important 
variables for labour induction intervention and assessing 
the predictive performance of machine learning 
algorithms.
Setting  We analysed the birth registry data from a referral 
hospital in northern Tanzania. Since July 2000, every birth 
at this facility has been recorded in a specific database.
Participants  21 578 deliveries between 2000 and 2015 
were included. Deliveries that lacked information regarding 
the labour induction status were excluded.
Primary outcome  Deliveries involving labour induction 
intervention.
Results  Parity, maternal age, body mass index, 
gestational age and birth weight were all found to be 
important predictors of labour induction. Boosting method 
demonstrated the best discriminative performance (area 
under curve, AUC=0.75: 95% CI (0.73 to 0.76)) while 
logistic regression presented the least (AUC=0.71: 95% 
CI (0.70 to 0.73)). Random forest and boosting algorithms 
showed the highest net-benefits as per the decision curve 
analysis.
Conclusion  All of the machine learning algorithms 
performed well in predicting the likelihood of labour 
induction intervention. Further optimisation of these 
classifiers through hyperparameter tuning may result in 
an improved performance. Extensive research into the 
performance of other classifier algorithms is warranted.

BACKGROUND
Induction of labour (IOL) is one of the 
most famous obstetric procedures involving 
artificially stimulating uterine contractions 
before they begin spontaneously.1–3 Mechan-
ical means or commercially available phar-
maceuticals may be used to carry out the 
procedure .4–6 The key indicators for IOL 
intervention may be grouped as maternal or 
fetal or both .7 Rate of IOL use has increased 
gradually over the last few decades, owing 

to a greater emphasis on improving preg-
nancy outcomes.8 The prevalence of IOL 
varies greatly between countries and regions 
across the world, but higher rates have been 
recorded in developed countries.9 10 Induced 
deliveries accounts for 20% of all deliveries in 
the UK and the USA, while in African regions 
it accounts for only 4.4% .11–14

Major indications for IOL in Sub-Saharan 
Africa include postdates, intrauterine growth 
restrictions, fetal macrosomia, oligohydram-
nios, gestational diabetes, chorioamnionitis, 
prelabour rapture of membranes (PROM) 
and hypertensive disorders of pregnancy 
.15–17 However, WHO recommends IOL as a 
therapeutic option only when the benefits of 
pregnancy termination surpass the risks of its 
continuation.18 Following the growing interest 
in developing and integrating the AI-based 
clinical decision support systems in SSA, we 
validated and assessed the predictive perfor-
mance of machine learning (ML) models 
for predicting IOL intervention in obstetrics 
department. ML approach in healthcare data 

Strengths and limitations of this study

	► In this modelling, we enrolled a number of deliveries 
from an extended period (15 years), a sample that 
have accommodated a diversified group of study 
participants with contrasting characteristics.

	► This is the first study that applied the most popular 
machine learning algorithms to predict the use of 
induction of labour intervention in Tanzania.

	► The study involved only the deliveries attended at 
the Kilimanjaro Christian Medical Centre hospital, 
hence the research output may not be applicable to 
other hospital setting in Tanzania.
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is important due to its robustness and incredible ability to 
learn and classify input data.19–25 This prior intelligence 
may aid in effective resource allocation and mobilisation 
which eventually plays a significant role in improving 
pregnancy outcomes. The validation of ML algorithms 
will as well benefit many other domains including risk 
management, tailored health communications, decision 
support system and personalised medicine.

METHODS
Study setting, data source and study design
This study was carried out at Kilimanjaro Christian Medical 
Centre (KCMC), one of Tanzania’s four tertiary hospitals. 
The facility is located in Moshi urban district, northern 
Tanzania, serving Kilimanjaro residents as well as nearby 
regions. Since 2000, the hospital has been recording preg-
nancy, delivery and newborn information in a database 
system. In the current study, we analysed deliveries regis-
tered from the year 2000 to 2015. Skilled nurses conduct 
daily interview sessions after each delivery. Interviews are 
done using structured questionnaire. Records from the 
hospital birth registry database cover sociodemographic 
information as well as predelivery and postdelivery moth-
er’s health status. More details on KCMC medical birth 
registry procedures were described elsewhere.26 In our 
analyses, we excluded observations with missing infor-
mation on IOL status, deliveries with missing values on 
covariates as well as those presented non-vertex align-
ment (figure 1). We remained with 21 578 deliveries that 
constituted to our final sample size.

Description of the study variables
The main outcome of interest was ‘IOL’ whereby induced 
delivery was coded ‘1’ while spontaneous delivery was 
coded ‘0’ during the analysis. The facility implements 
IOL in various ways as per the WHO recommendation 

for IOL. These include administration of oxytocin infu-
sion, prostaglandins, prostaglandin analogues and the 
use of mechanical methods such as digital stretching 
of the cervix and membrane sweeping, hygroscopic 
cervical dilators, extra‐amniotic balloon catheters and 
artificial rupture of the membranes. Predictors for IOL 
included maternal characteristics such as maternal age, 
parity status (nulliparous vs multiparous), gestational age 
(preterm (<37 weeks of pregnancy), term (37–41 weeks) 
and post-term (>41 weeks), multiple gestation status (yes, 
no), maternal body mass index (BMI) (underweight 
(<18.5 kg/m2), normal weight (18.5–25 kg/m2), over-
weight (25–30 kg/m2) and obese (≥30 kg/m2)), birth 
weight (low (<2.5 kg), normal (2.5–3.5 kg), high (>3.5 
kg)), referral status (whether referred for delivery or 
not)), number of antenatal care visits (<4 and 4 visits), 
PROM (categorised as binary, yes, no), alcohol consump-
tion during pregnancy (categorised as binary, yes/no) 
plus many others as indicated in table 1.

Statistical and ML analyses
Data analysis was performed using R package V.4.0.3. 
Pearson χ2 test was used to determine association 
between a set of fetomaternal variables and IOL status. 
The primary outcome that was assessed in the current 
study was either the delivery was induced using any 
method (mechanically or pharmaceutical) or it was 
achieved spontaneously.

Important features, model validation and decision curve 
analysis
While it has been shown that variable importance is an 
essential aspect in maintaining the accuracy of predictive 
models, we used an inbuilt function in random forest 
(RF) algorithm in R known as ‘VarImp’ for identifying 
and displaying top five covariates that are highly predic-
tive of IOL intervention in the database .27 28

In predictive modelling, we compared the perfor-
mance of logistic regression (Lreg), RF, naïve Bayes (NB), 
artificial neural networks (ANN), boosting and bagging 
algorithms in predicting the use of IOL. RF consists of a 
large number of individual decision trees that operate as 
an ensemble. Each individual tree in the RF spits out a 
class prediction and the class with the most votes become 
the model’s prediction .29 30 In this model, we estimated 
Out-of-Bag error (tested against training data subsets that 
are not included in subtree construction) and validation 
error (tested against the test data) to come up with the 
best possible predictive model .31 We used the ‘Random-
Forest’ package to build this model in R. NB is a robust 
classifier algorithm belonging to a family of simple prob-
abilistic classifiers based on Bayes’ theorem with strong 
independence and equal-importance assumptions among 
the features under observation.32 33 The calculation of 
Bayes theorem can be simplified by making some assump-
tions, such as each input variable is independent of all 
other input variables.34 35 We used ‘naiveBayes’ function 
in R-package to fit NB models. The ANN is an inspired 

Figure 1  CONSORT diagram for sample size determination. 
CONSORT, Consolidated Standards of Reporting Trials; IOL, 
induction of labour.
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computational model of biological neural networks 
meant to imitate the human brain .36 37 The algorithm 
can learn from intertwined inputs, hidden and output 
layers to achieve the desired outputs while guided by 
set of rules in Backpropagation process. The input units 
are informed based on the internal weighting system, 
and the neural network tries to learn more and ulti-
mately produce the desired results. Furthermore, ANN 
can accomplish multitasking without affecting system 
performance .38 39 We used ‘nnet’ package to fit the ANN 
model in R. Boosting is an ensemble meta-algorithm inte-
grating weak learners to form a firm classification rule by 
executing several iterations that enhance the accuracy 
of the prediction.40 41 These algorithms seek to improve 
prediction power by forming a number of weak models 
that are converted into strong ones. Bagging or boot-
strap aggregation method also uses ensemble learning 
to evolve ML models .42 This algorithm is based on the 
hypothesis that combining multiple models together can 
often produce a much more powerful model.43 Lreg is 
one of the simplest and most common ML algorithms 
that has been used often in low dimension data for 
binary classification problems. This algorithm uses the 
sigmoid function to perform prediction task .44 45 We used 
the generalised linear model function found in ‘glm’ 
package in ‘R-software’ to execute Lreg algorithm. After 
training the selected models, we computed each model’s 
prediction performance using a testing dataset (which is 
the 30% proportion of the primary data set reserved and 

Table 1  Sociodemographic characteristics of study 
participant (N=21 578)

Characteristics

Induced 
delivery

Spontaneous 
delivery

χ2 p valuen (%) n (%)

Maternal age

 � <25 3728 (42.3) 4304 (33.72)

 � 25–35 4162 (47.22) 6122 (47.96)

 � >35 924 (10.48) 2338 (18.32) <0.001

Maternal religion

 � Muslim 3464 (39.3) 4830 (37.84)

 � Christian 5350 (60.7) 7934 (62.16) 0.03

Gestational age

 � Preterm 1018 (11.55) 1802 (14.12)

 � Term 7029 (79.75) 9906 (77.61)

 � Post-term 767 (8.70) 1056 (8.27) <0.001

Maternal residence

 � Rural 2904 (32.95) 4795 (37.57)

 � Urban 5910 (67.05) 7969 (62.43) <0.001

Maternal BMI

 � Underweight 57 (0.65) 72 (0.56)

 � Normal weight 2807 (31.85) 3813 (29.87)

 � Overweight 3667 (41.60) 5022 (39.35)

 � Obese 2283 (25.90) 3857 (30.22) <0.001

Birth weight

 � Low 975 (11.06) 1481 (11.60)

 � Normal 6245 (70.85) 8786 (68.83)

 � High 1594 (18.08) 2497 (19.56) 0.006

Parity status

 � Nulliparous 6036 (68.48) 3964 (31.06)

 � Multiparous 2778 (31.52) 8800 (68.94) <0.001

Multiple gestation

 � No 8466 (96.05) 12 171 (95.35)

 � Yes 348 (3.95) 593 (4.65) 0.014

PROM

 � No 8623 (97.83) 12 567 (98.46)

 � Yes 191 (2.17) 197 (1.54) 0.001

Child sex

 � Male 4275 (48.5) 6243 (48.91)

 � Female 4539 (51.50) 6521 (51.09) 0.555

Circumcision

 � No 7810 (88.61) 10 785 (84.50)

 � Yes 1004 (11.39) 1979 (15.50) <0.001

Referred for delivery

 � No 7418 (84.16) 10 517 (82.4)

 � Yes 1396 (15.84) 2247 (17.60) 0.001

Alcohol use during pregnancy

Continued

Characteristics

Induced 
delivery

Spontaneous 
delivery

χ2 p valuen (%) n (%)

 � No 6999 (79.41) 9578 (75.04)

 � Yes 1815 (20.59) 3186 (24.96) <0.001

Maternal occupation

 � Employed 6570 (55.64) 4210 (43.09)

 � Unemployed 5237 (44.36) 5561 (56.91) <0.001

Maternal education

 � None 1378 (18.97) 3547 (24.78)

 � Primary 3231 (44.48) 5879 (41.07)

 � Secondary 1756 (24.17) 2877 (20.10)

 � Higher 899 (12.38) 2011 (14.05) <0.001

No of ANC visits

 � ≥4 4874 (62.72) 9765 (70.72)

 � <4 2897 (37.28) 4042 (29.28) <0.001

Marital status

 � Married 7479 (84.85) 11 459 (89.78)

 � Not married 1335 (15.15) 1305 (10.22) <0.001

ANC, Antenatal care; BMI, body mass index; PROM, 
prelabour rapture of membrane.

Table 1  Continued
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unseen by the model) for the validation task. The primary 
purpose of using the testing data set (also known as 
holdout method) is to test the generalisation ability of the 
trained models as well as to avoid model overfitting. To 
evaluate the models’ validity and performance, we used 
‘area under the receiver operating characteristic curve’ 
(AUROC). The AUROC is a performance measurement 
used in ML for classification problems that uses the true 
positive and false positive rate that represents the degree 
or measure of separability and describes how much the 
model can distinguish between classes.46 47 In these ML 
models, we uniformly applied hold-out method, 10-fold 
cross-validation and Synthetic Minority Oversampling 
Technique techniques to minimise potential overfitting 
as well as handling class imbalances. Cross-validation in 
ML involves randomly dividing the set observations into 
groups (folds) of equal sizes. We estimated the sensitivity, 
specificity, AUROC, positive predictive values and nega-
tive predictive values based on 30% samples left out of 
the classifier training procedure, during a 10-fold cross 
validation process. Since the AUROC method assumes 
uniform distribution of threshold probabilities, a scenario 
which may not be always true, we ran the decision curve 
analysis (DCA). The approach estimates the distribution 
of threshold probabilities without the need of additional 
data. Using the estimated distribution of threshold prob-
abilities, the weighted area under the net benefit curve 
serves as the summary measure to compare risk prediction 
models in a range of interest.48 In brief, DCA calculates a 
clinical ‘net benefit’ for one or more prediction models 
or diagnostic tests in comparison to default strategies of 
treating all or no patients. In this framework, a clinical 
judgement of the relative value of benefits (treating a true 
positive case) and harms (treating a false positive case) 
associated with prediction models is made. As such, the 
preferences of patients or policymakers are accounted for 
by using threshold probability metric .48 The net benefit is 
calculated for each possible threshold probability, which 
puts benefits and harms on the same scale.

Patient and public involvement
No patient involved.

RESULTS
Characteristics of study participants
The current study analysed 8814 induced and 12 764 
spontaneous deliveries. The mean maternal age of 
study participants was 28 (SD=6) years. About half of 
deliveries were from mothers aged between 25 and 
35 years. Our study population had a good balance 
between nulliparous (46%) and multiparous (54%) 
mothers. The majority of deliveries (78%) were at term 
while post-term deliveries constituted of about 8% and 
preterm accounted for 14% of all deliveries. Sociode-
mographic and clinical characteristics of study partici-
pants are clearly displayed in table 1.

Variable importance measures for IOL intervention
Body mass index, maternal age, gestational age, parity 
and birth weight to be the essential features to consider 
when predicting IOL intervention figure 2.

Predictive models for IOL intervention
The overall performance of the selected ML models can 
be visualised in figure 3 and table 2. All models showed 
a somewhat similar performance in terms of AUROC. 
However, Delong’s test for similarity of AUROC indicated 
that the Lreg model was outperformed by all other models 
except for Bagging algorithm. Simply put, the perfor-
mance of bagged trees was not significantly different 
from that of Lreg at 5% significance level. In addition, we 
performed subgroup analyses for predictive performance 
by parity and maternal age presented in tables 3 and 4. 
The Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis statement 
for the transparent reporting of multivariable prediction 
models has been included (online supplemental file 1) as 

Figure 2  Variable importance measures for prediction of 
labour induction intervention.

Figure 3  ROC curve for comparing the performance of ML 
algorithms. ML, machine learning; ROC, receiver operating 
characteristic.

https://dx.doi.org/10.1136/bmjopen-2021-051925
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well as the R-syntax for modelling and validation (online 
supplemental file 2).

Results from the DCA (figure 4) have shown that RF 
and boosting methods demonstrated the best net benefit 
over the range of threshold probabilities compared with 
other models.

DISCUSSION
Parity, maternal age, BMI, gestational age and birth weight 
were identified as important predictive features for IOL 
intervention. Previous studies have shown the existing 
link between these features and likelihood of pregnancy 

interventions including IOL. It is shown that pregnan-
cies beyond 41 weeks of gestation are prone to IOL due to 
increased risk of uterine rupture after 40 weeks of gestation 
.49–51 The birth rate for women aged 35 years and older 
has increased more than 30% since 1990, and they have 
been shown to be at an elevated risk of adverse pregnancy 
outcome .52 Literature shows that obese women require 
more prolonged IOL involving more extensive and frequent 
applications of both cervical ripening methods and synthetic 
oxytocin.53 The concept of a risk threshold for the relation-
ship between parity and pregnancy outcomes has been of 
concern for decades. In some studies, associations have been 

Table 2  Overall prediction performance of the machine learning models

Model
Logistic 
regression

Artificial neural 
network Random forest Naïve Bayes Bagging Boosting

ACC 0.69 (0.68–0.70) 0.74 (0.73–0.75) 0.73 (0.72–0.74) 0.72 (0.71–0.73) 0.71 (0.70–0.72) 0.74 (0.73–0.75)

AUROC 0.71 (0.70–0.73) 0.73 (0.72–0.75) 0.74 (0.72–0.75) 0.73 (0.72–0.75) 0.72 (0.71–0.73) 0.75 (0.73–0.76)

P value* Reference <0.001 <0.001 <0.001 0.3326 <0.001

Sensitivity 0.70 (0.68–0.71) 0.86 (0.85–0.87) 0.84 (0.83–0.85) 0.82 (0.80–0.83) 0.80 (0.79–0.82) 0.85 (0.83–0.86)

Specificity 0.68 (0.66–0.70) 0.58 (0.56–0.60) 0.57 (0.56–0.59) 0.57 (0.56–0.59) 0.57 (0.55–0.59) 0.59 (0.57–0.61)

PPV 0.76 (0.74–0.77) 0.75 (0.73–0.76) 0.74 (0.73–0.75) 0.74 (0.72–0.75) 0.73 (0.72–0.74) 0.75 (0.74–0.76)

NPV 0.61 (0.59–0.62) 0.74 (0.72–0.75) 0.71 (0.69–0.73) 0.68 (0.66–0.70) 0.67 (0.65–0.69) 0.73 (0.71–0.75)

N=21 578.
ACC, Accuracy; AUROC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive 
value.

Table 3  Prediction performance of the ML algorithm by maternal age

Model
Logistic 
regression

Artificial neural 
network Random forest Naïve Bayes Bagging Boosting

Maternal 
age <25 
(n=8032)

ACC 0.74 (0.72–0.75) 0.74 (0.72–0.76) 0.74 (0.72–0.76) 0.74 (0.72–0.76) 0.71 (0.69–0.73) 0.76 (0.74–0.77)

AUROC 0.75 (0.73–0.77) 0.74 (0.71–0.75) 0.76 (0.72–0.76) 0.76 (0.74–0.78) 0.74 (0.72–0.76) 0.77 (0.75–0.78)

Sensitivity 0.78 (0.76–0.80) 0.85 (0.83–0.87) 0.82 (0.80–0.84) 0.79 (0.77–0.81) 0.76 (0.74–0.78) 0.85 (0.83–0.87)

Specificity 0.68 (0.66–0.71) 0.62 (0.59–0.64) 0.65 (0.63–0.68) 0.68 (0.65–0.70) 0.65 (0.63–0.68) 0.64 (0.62–0.67)

PPV 0.74 (0.72–0.76) 0.72 (0.69–0.74) 0.73 (0.71–0.75) 0.74 (0.72–0.76) 0.72 (0.69–0.74) 0.73 (0.71–0.76)

NPV 0.73 (0.70–0.76) 0.78 (0.75–0.80) 0.76 (0.73–0.78) 0.74 (0.71–0.77) 0.70 (0.67–0.73) 0.79 (0.76–0.82)

Maternal 
age 25–35 
(n=10 284)

ACC 0.74 (0.73–0.76) 0.74 (0.73–0.76) 0.73 (0.73–0.76) 0.75 (0.73–0.76) 0.71 (0.70–0.73) 0.75 (0.73–0.76)

AUROC 0.74 (0.72–0.76) 0.74 (0.72–0.76) 0.74 (0.72–0.76) 0.74 (0.72–0.75) 0.73 (0.71–0.74) 0.73 (0.73–0.76)

Sensitivity 0.83 (0.82–0.85) 0.84 (0.82–0.85) 0.84 (0.82–0.86) 0.84 (0.82–0.85) 0.81 (0.79–0.83) 0.84 (0.82–0.85)

Specificity 0.62 (0.59–0.64) 0.61 (0.58–0.64) 0.57 (0.54–0.60) 0.61 (0.58–0.64) 0.57 (0.54–0.60) 0.61 (0.58–0.64)

PPV 0.76 (0.74–0.78) 0.76 (0.74–0.78) 0.74 (0.72–0.76) 0.76 (0.74–0.78) 0.73 (0.72–0.75) 0.76 (0.74–0.78)

NPV 0.72 (0.69–0.74) 0.72 (0.69–0.74) 0.71 (0.68–0.74) 0.72 (0.69–0.74) 0.67 (0.64–0.70) 0.72 (0.69–0.74)

Maternal 
age >35 
(n=3262)

ACC 0.73 (0.71–0.74) 0.75 (0.74–0.76) 0.74 (0.73–0.76) 0.74 (0.72–0.75) 0.72 (0.71–0.74) 0.75 (0.74–0.77)

AUROC 0.75 (0.74–0.78) 0.76 (0.75–0.78) 0.77 (0.75–0.79) 0.77 (0.76–0.79) 0.76 (0.74–0.77) 0.77 (0.76–0.79)

Sensitivity 0.69 (0.67–0.71) 0.80 (0.78–0.82) 0.77 (0.75–0.79) 0.72 (0.70–0.74) 0.74 (0.72–0.76) 0.78 (0.76–0.80)

Specificity 0.76 (0.74–0.78) 0.70 (0.68–0.72) 0.72 (0.69–0.74) 0.76 (0.74–0.78) 0.70 (0.68–0.72) 0.73 (0.71–0.75)

PPV 0.75 (0.73–0.77) 0.73 (0.71–0.75) 0.73 (0.71–0.75) 0.75 (0.73–0.77) 0.71 (0.69–0.73) 0.74 (0.72–0.76)

NPV 0.71 (0.69–0.73) 0.78 (0.76–0.80) 0.75 (0.73–0.77) 0.73 (0.71–0.75) 0.73 (0.71–0.75) 0.77 (0.75–0.79)

ACC, Accuracy; AUROC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive 
value.

https://dx.doi.org/10.1136/bmjopen-2021-051925
https://dx.doi.org/10.1136/bmjopen-2021-051925
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found between parity and adverse pregnancy outcomes, 
while others concluded that multiparity was not a risk for 
any pregnancy intervention .54–59 The current study used ML 
methods to predict the likelihood of IOL intervention at the 
tertiary hospital using the maternal birth registry database. 
With the AUROC value of 0.71 (95% CI 0.70 to 0.73), Lreg 
model was outperformed by all other models, while Boosting 
algorithm showing the best performance (AUROC=0.75 
(95% CI 0.73 to 0.76)). Boosting method is likely to achieve 
the best overall performance as it takes care of the weightage 
of the higher accuracy sample and lower accuracy sample and 
eventually gives the combined results. In addition, boosting 
evaluates the net error in each step prior to model building 
and can work better with interactions compared with other 
ML models. When we disaggregated our analyses by parity 
and maternal age, the ML models’ performance in terms of 

AUROC was still almost similar but significantly improved 
despite the reduced sample sizes. Studies indicated that the 
subgrouped data may be problematic for pattern recogni-
tion, and only a limited number of papers have systemati-
cally investigated how the ML validation process should be 
designed to help avoid potential optimistic performance 
estimates due to reduced sample size .60 However, it is not 
yet clear how sample size affects the accuracy of the learning 
algorithms .61 In addition, as we subgrouped the dataset, the 
proportion of induced delivery relatively changed, a scenario 
that may have created the so-called class-imbalance problem 
(the change in proportions between the induced and spon-
taneous deliveries). The literature indicates that the extent 
of class-imbalance has important role on the learning 
process of ML algorithms.60 We used DCA to portray the 
impact of false-negative and false-positive misclassification 
errors. From the DCA, we estimated the ‘net benefit’ metric 
which is calculated across a range of threshold probabilities. 
We observed that the net benefit for RF and Boosting models 
surpassed all other models under investigation. The net 
benefit metric provides information about the consequences 
of using the model in question unlike AUROC that solely 
reports the model’s accuracy. Taking the case where falsely 
predicting a case as ‘not induced’ (false-negative) is much 
more harmful than a false-positive result, a model that has 
a much greater specificity but slightly lower sensitivity than 
another would have a higher AUROC but would be a poorer 
choice for clinical use.62–64 Simply put, applying Lreg method 
for predicting the utilisation of IOL intervention using this 
registry database may be more clinically consequential than 
using any ML algorithm tested in the current study .65–68 
To our knowledge, the current study is the first study that 
applied the most popular ML algorithms to predict the use 
of IOL intervention in Tanzania. We enrolled a number of 
deliveries from an extended period (15 years), a sample 
that may have accommodated a diversified group of study 

Table 4  Prediction performance of the ML algorithm by parity status

Model
Logistic 
regression

Artificial neural 
network Random forest Naïve Bayes Bagging Boosting

Nulliparous 
women 
(n=10 000)

ACC 0.66 (0.64–0.69) 0.65 (0.64–0.67) 0.73 (0.72–0.75) 0.72 (0.70–0.73) 0.71 (0.70–0.73) 0.74 (0.72–0.75)

AUROC 0.64 (0.61–0.66) 0.67 (0.65–0.69) 0.74 (0.72–0.76) 0.72 (0.70–0.74) 0.73 (0.71–0.75) 0.75 (0.73–0.77)

Sensitivity 0.31 (0.28–0.33) 0.44 (0.42–0.47) 0.55 (0.52–0.58) 0.53 (0.50–0.56) 0.56 (0.53–0.59) 0.54 (0.51–0.57)

Specificity 0.89 (0.88–0.91) 0.80 (0.78–0.81) 0.85 (0.83–0.87) 0.84 (0.82–0.86) 0.82 (0.80–0.83) 0.86 (0.85–0.88)

PPV 0.66 (0.62–0.70) 0.59 (0.56–0.62) 0.71 (0.68–0.74) 0.69 (0.65–0.72) 0.67 (0.64–0.70) 0.72 (0.69–0.75)

NPV 0.66 (0.64–0.68) 0.69 (0.67–0.71) 0.74 (0.72–0.76) 0.73 (0.71–0.75) 0.74 (0.72–0.76) 0.74 (0.72–0.76)

Multiparous 
women 
(n=11 578)

ACC 0.84 (0.83–0.85) 0.84 (0.82–0.85) 0.83 (0.82–0.85) 0.80 (0.79–0.81) 0.82 (0.81–0.83) 0.84 (0.83–0.85)

AUROC 0.85 (0.84–0.86) 0.84 (0.82–0.86) 0.84 (0.83–0.86) 0.84 (0.82–0.85) 0.84 (0.82–0.85) 0.85 (0.84–0.86)

Sensitivity 0.99 (0.98–1.00) 0.98 (0.97–0.99) 0.96 (0.95–0.97) 0.89 (0.87–0.90) 0.93 (0.92–0.94) 0.99 (0.98–1.00)

Specificity 0.67 (0.64–0.69) 0.67 (0.64–0.69) 0.69 (0.67–0.71) 0.71 (0.68–0.73) 0.70 (0.67–0.72) 0.67 (0.65–0.69)

PPV 0.76 (0.75–0.78) 0.77 (0.75–0.78) 0.77 (0.76–0.79) 0.77 (0.75–0.78) 0.77 (0.75–0.79) 0.77 (0.75–0.78)

NPV 0.98 (0.97–1.00) 1.00 (0.99–1.00) 0.95 (0.93–0.96) 0.85 (0.83–0.87) 0.91 (0.89–0.92) 0.99 (0.99–1.00)

ACC, Accuracy; AUROC, area under the receiver operating characteristic curve; ML, machine learning; NPV, negative predictive value; 
PPV, positive predictive value.

Figure 4  The decision curve analysis showing the net-
benefit of machine learning models for predicting likelihood 
of labour induction over the range of threshold probabilities. 
ANN, artificial neural networks; Lreg, logistic regression; NB, 
naïve Bayes; RF, random forest.
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participants with contrasting characteristics. We also derived 
the preliminary predictors of IOL intervention from diverse 
maternal features that are routinely recorded in hospital 
setting. Forasmuch as the validity of predictive models and 
their application in the general population highly depends 
on their goodness of fit, our modelling procedures based 
on bootstrap re-sampling and repeated random split 
(training and validation sets) techniques to ensure model 
generalisability.

However, our study had some limitations that should 
be taken into consideration during interpretations of 
the results. Observations with missing values in both 
the outcome and predictors were excluded from the 
analyses. We argue that this might not necessarily be an 
optimal approach for dealing with missing data because 
important information could be lost when incomplete 
rows of data are discarded. However, learning algorithms 
are significantly affected missing values more than other 
statistical models, including Lreg, as they rely heavily on 
data to learn the underlying input/output relationships 
of the attributes being modelled. Studies have explored 
the extent of damage to the performance of learning 
algorithms due to missing data in a field-scale applica-
tion. In this regard, we call on a prospectively designed 
study that will consider improvement in data entry prior 
to assessment of predictive models. In addition, our study 
did not perform feature engineering or variable selection 
prior to model building, a scenario which may have an 
impact to classifier performance as well as the possibility 
of model overfitting. Furthermore, we think that it would 
be interesting if future studies will identify and consider 
medically important subgroups as far as IOL intervention 
is concerned and conduct the comparative performance 
of the ML algorithms. Lastly, the study involved only the 
deliveries attended at the KCMC, hence a potential for 
selection bias, indicating that the output may not be 
applicable to other hospital setting.

CONCLUSION
Parity, maternal age, gestational age and body mass index 
have been shown to be stable and relatively important vari-
ables in the preliminary prediction of IOL intervention. 
Boosting algorithms shows the promising performance in 
predicting IOL intervention. However, extensive studies 
may be required to assess the performance of additional ML 
methods, particularly the ones applies ensemble learning 
methods such as Adaptive boosting, extreme boosting and 
gradient boosting.
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