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Alpha‑to‑beta‑ and gamma‑band 
activity reflect predictive coding 
in affective visual processing
Andreas Strube*, Michael Rose, Sepideh Fazeli & Christian Büchel

Processing of negative affective pictures typically leads to desynchronization of alpha-to-beta 
frequencies (ERD) and synchronization of gamma frequencies (ERS). Given that in predictive coding 
higher frequencies have been associated with prediction errors, while lower frequencies have been 
linked to expectations, we tested the hypothesis that alpha-to-beta ERD and gamma ERS induced by 
aversive pictures are associated with expectations and prediction errors, respectively. We recorded 
EEG while volunteers were involved in a probabilistically cued affective picture task using three 
different negative valences to produce expectations and prediction errors. Our data show that alpha-
to-beta band activity after stimulus presentation was related to the expected valence of the stimulus 
as predicted by a cue. The absolute mismatch of the expected and actual valence, which denotes 
an absolute prediction error was related to increases in alpha, beta and gamma band activity. This 
demonstrates that top-down predictions and bottom-up prediction errors are represented in typical 
spectral patterns associated with affective picture processing. This study provides direct experimental 
evidence that negative affective picture processing can be described by neuronal predictive coding 
computations.

People see hundreds of unfamiliar faces in daily life, while seeing famous faces is very rare and surprising and—in 
terms of predictive coding—unexpected, leading to a large prediction error. Utilizing time–frequency analysis 
of brain data, it has been shown for example that famous faces elicit larger gamma responses as compared to 
unfamiliar faces1,2.

Predictive coding of perception assumes that neuronal circuits implement perception and learning by con-
stantly matching incoming sensory data with the top-down predictions of an internal or generative model3–5. 
Consequently, a system can refine models with better predictions by minimizing prediction errors regarding the 
sensory environment, leading to a more efficient encoding of information6.

The Free Energy principle including aspects of predictive coding specifically posits the minimization of “free 
energy” (and thus, indirectly prediction errors) as a mechanism to ensure that agents spend most of their time 
in a small number of valuable (i.e. positive) and expected states6. With regards to affective stimuli, this agrees 
with findings showing that visual stimuli with a negative valence (i.e. a negative and thus unexpected state) 
produce larger gamma responses than neutral and positive visual stimuli7–16. Results interpreting the effects 
of negative valence in the gamma band could be associated with the surprise (i.e. general low probability of 
a negative encounter) that negative stimuli entail. However, in most studies this cannot be disentangled from 
the valence as the prediction error associated with a negative stimulus per se cannot be disentangled from the 
prediction error in the individual experimental setting. To achieve this, additional prediction errors have to be 
introduced experimentally.

Within the framework of predictive coding, lower frequency oscillatory alpha-to-beta band activity has 
been linked to top-down predictive signals and higher frequency gamma band activity to bottom-up prediction 
errors4,17,18. Comparably, cortical dynamics induced by emotional picture processing comprise event-related 
desynchronization (ERD) in the alpha-to-beta band19–28 and event-related synchronization (ERS) in the gamma 
band9,12,14,22,26,29–33.

Alpha ERD (a decrease in power in the ~ 8–12 Hz range) following affective images is smaller when the image 
is anticipated, and the tendency is more prominent for images bearing negative emotional valence34. This might 
be interpreted as differences in the encoding of expectation signals in a predictive coding framework, where 
expectation signals manifest as increases in low frequency (alpha-to-beta) activity. In this context, predictive 
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coding suggests that feed-forward prediction errors reflect the difference between top-down expectation signals 
(e.g. pre-activated neuronal units based on the anticipation of threat) and actual stimulus input17.

In the context of affective picture processing, it is interesting to note that participants with dysphoria elicit a 
smaller alpha ERD in response to pleasant pictures, but not to unpleasant pictures24. In the context of predictive 
coding, affective disorders (such as major depression) have been linked with bottom-up deficits in predictive 
processing and increased precision of negative prior beliefs35. The depressed phenotype may emerge from a 
collection of depressive beliefs associated with the causal structure of the world36. As a consequence, treating 
depression could be conceptualized as equipping the brain with the resources to modify its internal model of the 
world37. Hence, treatment of depression would be associated with brain’s relevant statistical structures becoming 
“less pessimistic”36. Thus, the predictive coding model of emotional states associated with affective disorders 
might be of particular interest for mechanistic insights in depression, as it represents such an internal model 
with potentially pathological variations in its statistical structure35–39.

In summary, we hypothesize that alpha-to-beta ERD and gamma ERS typically found in responses to negative 
affective stimuli are actually signals related to predictive coding. This posits that alpha-to-beta ERD responses 
should be modulated by expectations, whereas gamma ERS responses should be modulated by prediction errors 
or surprise.

Consequently, we conducted a cue-stimulus paradigm to unravel predictive coding dynamics in affective 
picture processing. We specifically introduced prediction errors experimentally by presenting stimuli in two 
different modalities, pain and vision (i.e. affective pictures). In the affective picture part presented here, we pre-
sented emotionally negative stimuli and manipulated the degree of negative valence. Participants were asked to 
rate the valence of the content on a four-point rating scale. We expected the anticipated degree of the aversive 
content to be related to alpha-to-beta ERD. If surprise is a main driving factor of gamma ERS (as derived from 
a predictive coding perspective), we expected an increase of gamma power when there was a mismatch between 
the anticipated degree of aversion and the actual aversive quality of the picture. If the negative valence or aversive 
quality is contributing to the gamma ERS effect, we expected an increase of gamma power with higher aver-
sion regardless of the anticipated degree of aversion. Finally, based on hypotheses regarding a negative valence 
associated with prediction errors40, we expected that a greater mismatch between predicted and actual valence 
elicits larger valence ratings.

Methods
Participants.  We investigated 35 healthy male participants (mean 26, range 18–37 years), who were paid as 
compensation for their participation. Applicants were excluded if one of the following exclusion criteria applied: 
neurological, psychiatric, dermatological diseases, pain conditions, current medication, or substance abuse. All 
volunteers gave their informed consent. The study was approved by the Ethics board of the Hamburg Medical 
Association. Data from six participants had to be excluded from the final EEG data analysis due to technical 
issues during the EEG recording (i.e. the data of the excluded participants were contaminated with excessive 
muscle and/or technical artifacts) leaving a final sample of 29 participants.

Stimuli and task.  Stimulus properties were chosen to be identical to a previous fMRI study of predictive 
coding where both expectation and absolute prediction error effects were observed in pain41.

Aversive pictures were chosen from the International Affective Picture System (IAPS)42 database at three dif-
ferent levels of valence. The images presented during the EEG experiment had three levels of valence of which 
the low valence category had valence values of 2.02 ± 0.05 (mean ± standard error), the medium valence category 
had valence values of 4.06 ± 0.02 (mean ± standard error) and the high valence category had valence values of 
5.23 ± 0.01 (mean ± standard error). The pain part of this data will not be described here, but has been reported 
in Strube et al., 202143.

Prior to each picture or heat stimulus, a visual cue was presented. The color of the cue (triangle, visual angle 
of each side: 0.96°) indicated (probabilistically) the modality of the stimulus (orange for picture and blue for 
heat). A white digit depicted inside of each triangle indicated (probabilistically) the intensity of the subsequent 
stimulus (1, 2 and 3 for low, medium and high valence). During the whole trial, a centered fixation cross (visual 
angle: 0.24°) was presented on the screen.

Each trial began with the presentation of the cue for 500 ms as an indicator for the modality and intensity of 
the subsequently presented stimulus. The modality (i.e. pain or picture) was correctly cued in 70% of all trials 
by the color of the triangle. In 60% of all trials, the stimulus intensity was correctly indicated by the digit within 
the triangle (see Fig. 1b for an overview of all cue contingencies).

Before the presentation of the stimulus, there was a blank period with a variable duration between 1000 
and 1400 ms. The visual (or thermal) stimulus was presented for a duration of two seconds. The visual stimulus 
(horizontal visual angle of 3.8°; vertical visual angle of 2.4°) was centered on the screen and allowed the partici-
pant to perceive it without eye movements. After the termination of the stimulus, subjects were asked to rate 
the aversiveness of the stimulus on a four point rating scale, where 1 was labeled as “neutral” and 4 was labeled 
as “very strong”. Ratings were performed using a response box operated with the right hand (see Fig. 1a for a 
visualization of the trial structure).

In addition, four catch trials were included in each block. Subjects were asked to report the preceding cue 
in terms of their information content of the modality and intensity within 8 s and no stimulation was given in 
these trials.

Trials were presented in four blocks. Each block consisted of 126 trials and four catch trials and lasted about 
15 min. The trial order within each block was pseudorandomized. The order of blocks was randomized across 
subjects. The whole EEG experiment including preparation and instructions lasted for about three hours.
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Figure 1.   Overview of the study design. (a) Graphical representation of the trial structure. Each trial started 
with the presentation of a cue, indicating the stimulus intensity and modality of the following stimulus. After 
a jittered phase where only the fixation cross was shown, the stimulus (IAPS picture or pain) was presented. 
A rating phase (1–4) of the stimulus aversiveness followed. (b) Contingency table for all conditions for each 
cue-stimulus combination. Note that percentages are for all trials, therefore each row adds up to 1/6 (6 different 
cues). Orange fields indicate conditions included in the analysis, i.e. IAPS pictures where IAPS pictures were 
indicated by the color of the preceding cue. (c) Hypothetical response patterns based on Stimulus Intensity 
(INT; left), Expectation (EXP; middle) and Absolute Prediction Error (PE; right). The y-axis represents a 
hypothetical response variable (e.g. EEG power or rating). Each dot represents a different condition for each 
stimulus-cue combination. Blue colors represent low valence conditions, green colors represent medium valence 
conditions and red colors represent high valence conditions. Color intensities depict expectation level.
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Prior to the actual EEG experiment, subjects participated in a behavioral training session. During this ses-
sion, they were informed about the procedure and gave their written informed consent. The behavioral train-
ing session was implemented to avoid learning effects associated with the contingencies between the cues and 
the stimuli during the EEG session. Between two and three blocks were presented during the training session 
(without electrophysiological recordings). The experimenter assessed the performance after each block based 
on the percentage of successful catch trials and the ability to distinguish the three levels of aversiveness of each 
modality. The training session was terminated after the second block if participants were able to successfully 
label cues in 75% of the catch trials within the second block.

EEG data acquisition.  EEG data were acquired using a 64-channel Ag/AgCl active electrode system (Acti-
Cap64; BrainProducts) placed according to the extended 10–20 system44. Sixty electrodes were used of the most 
central scalp positions. The EEG was sampled at 500 Hz, referenced at FCz and grounded at Iz. For artifact 
removal, a horizontal, bipolar electrooculogram (EOG) was recorded using two of the remaining electrodes and 
placing them on the skin approximately 1 cm left from the left eye and right from the right eye at the height of 
the pupils. One vertical electrooculogram was recorded using one of the remaining electrodes centrally approxi-
mately 1 cm beneath the left eye lid and another electrode was fixated on the neck at the upper part of the left 
trapezius muscle to record an electromyogram (EMG).

EEG preprocessing.  The parameters and procedures for the EEG preprocessing were adopted from the 
analysis of the pain sub-data set for reasons of comparability and consistency (see Strube et al. 2021, https://​
elife​scien​ces.​org/​artic​les/​62809 to view detailed comments from reviewers on these pre-processing steps)43. The 
data analysis was performed using the Fieldtrip toolbox for EEG/MEG-analysis45. EEG data were epoched and 
time-locked to the onset of the IAPS picture. Each epoch was centered (subtraction of the temporal mean) and 
detrended and included a time range of 3410 ms before and 2505 ms after trigger onset.

The data were band-pass filtered at 1–100 Hz, Butterworth, 4th order. EEG epochs were then visually inspected 
and trials contaminated by artifacts due to gross movements or technical artifacts were removed. Subsequently, 
trials contaminated by eye-blinks and movements were corrected using independent component analysis (ICA) 
with a single ICA per subject for all trials concatenated46,47. In all datasets, individual eye movements, showing a 
large EOG channel contribution and a frontal scalp distribution, were clearly seen in the removed independent 
components. Additionally, time–frequency decomposed ICA data were inspected at a single trial level for micro 
saccades and muscle artifacts, after z-transformation (only for artifact detection purposes) based on the mean 
and the standard deviation across all components separately for each frequency from 31 to 100 Hz. Time–Fre-
quency representations were calculated using a sliding window multi-taper analysis with a window of 200 ms 
length, which was shifted over the data with a step size of 20 ms with a spectral smoothing of 15 Hz. Gamma 
artifact components were easily visible and were compared with the trial-by-trial time series representations 
of all ICA components. Specifically, single and separate muscle spikes and micro saccades were identified as 
columns or “clouds” in time–frequency plots. Using this procedure, up to 31 components were removed before 
remaining non-artefactual components were back-projected and resulted in corrected data. Subsequently, the 
data was re-referenced to a common average of all EEG channels and the previous reference channel FCz was 
re-used as a data channel.

Before time–frequency transformations for data analysis were performed on the cleaned data set, the time axis 
of single trials were shifted to create separate cue-locked and stimulus-locked datasets. Cue-locked data defines 
the onset of the cue as t = 0. Stimulus-locked data defines t = 0 as the onset of the picture stimulus. Frequencies 
up to 30 Hz (1 to 30 Hz in 1 Hz steps) were analyzed using a sliding Hanning-window Fourier transformation 
with a window length of 300 ms and a step-size of 50 ms. It should be noted that delta and theta frequencies 
are not ideally mapped with these tapers because of a short window length. For the analysis of frequencies 
higher than 30 Hz (31 to 100 Hz in 1 Hz steps) spectral analyses of the EEG data were performed using a slid-
ing window multi-taper analysis. A window of 200 ms length was shifted over the data with a step size of 50 ms 
with a spectral smoothing of 15 Hz. Spectral estimates were averaged for each subject over trials. Afterwards, 
a z-baseline correction was performed based on a 500 ms baseline before cue onset to avoid differences in the 
baseline based on modulations of the signal by the anticipation period. For cue-locked data, a time frame rang-
ing from − 650 ms to − 150 ms was chosen as a baseline. A distance from the cue onset to the baseline period of 
150 ms was set because of the half-taper window length of 150 ms, i.e. data points between − 150 ms and 0 ms 
are contaminated by the onset of the cue. For stimulus-locked trials, a variable cue duration (1500–1900 ms) was 
additionally taken into account, resulting in an according baseline from − 2550 ms to − 2050 ms from stimulus 
onset. For the baseline correction of time–frequency data, the mean and standard deviation were estimated for 
the baseline period (for each subject-channel-frequency combination, separately). The mean spectral estimate of 
the baseline was then subtracted from each data point, and the resulting baseline-centered values were divided 
by the baseline standard deviation48.

Predictive coding model.  Similar to a previous fMRI study41 and our analysis of the pain subset of this 
dataset43, our full model included three experimental within-subject factors (see Fig. 1c). The stimulus intensity 
factor (INT; see Fig. 1c; left column) models the measured response with a simple linear function of the stimulus 
intensity (− 1, 0 and 1 for low, medium and high intensities, respectively). The expectation (EXP) factor was 
defined (see Fig. 1c; center column) linearly from the intensity predicted by the cue. Again, conditions with a 
low intensity cue were coded with a − 1, conditions with a medium intensity cue with a 0 and conditions with a 
high intensity cue with a 1. The absolute prediction error factor (PE) resulted from the absolute difference of the 
expectation and actual stimulus intensity (see Fig. 1c; right column).

https://elifesciences.org/articles/62809
https://elifesciences.org/articles/62809
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Behavioral ratings.  Behavioral aversiveness ratings were averaged for all 3 × 3 cue-stimulus combinations 
over each participant, resulting in a 29 × 9 matrix (subject × condition). We tested for main effects across stimu-
lus intensity, expectation, as well as prediction error using one-way repeated measures ANOVAs as implemented 
in MATLAB (see fitrm and ranova, Matlab version 2020a, The MathWorks). Post-hoc tests were performed on 
the repeated measures ANOVA models using Bonferroni corrections for multiple comparisons as implemented 
in MATLAB (see multcompare, Matlab version 2020a, The MathWorks).

EEG data analysis.  The parameters and procedures for the EEG data analysis were adopted from the analy-
sis of the pain sub-data set for reasons of comparability43. All statistical tests in electrode space were corrected 
for multiple comparisons using non-parametrical permutation tests of clusters49.

We explored positive and negative time–frequency patterns associated with our variations of stimulus inten-
sity, expectation and absolute prediction errors using one-way repeated measures ANOVAs as implemented in 
the Fieldtrip toolbox. A statistical value corresponding to p = 0.05 (F(1,28) = 4.196) obtained from the repeated 
measures ANOVA for each factor was used for clustering. Samples (exceeding the threshold of F(1,28) = 4.196) 
were clustered in connected sets on the basis of temporal (i.e. adjacent time points), spatial (i.e. neighboring 
electrodes) and spectral (i.e.± 1 Hz) adjacency. Further, clustering was restricted in a way that only samples were 
included in a cluster which had at least one significant neighbor in electrode space, i.e. at least one neighboring 
channel also had to exceed the threshold for a sample to be included in the cluster. Neighbors were defined by a 
template provided by the Fieldtrip toolbox corresponding to the used EEG montage.

Cluster tests were applied separately for low frequencies (1–30 Hz in 1 Hz steps) and high frequencies 
(31–100 Hz in 1 Hz steps) in a time frame from 0 (onset of visual stimulus) to 2000 ms (end of visual stimulus 
presentation) for stimulus-locked data and from 0 (onset of cue) to 1500 ms (visual stimulus onset) for cue-locked 
data. Stimulus-locked data was tested for stimulus intensity, expectation and absolute prediction errors factors. 
Cue-locked data was tested for the expectation factor.

Subsequently, a cluster value was defined as the sum of all statistical values of included samples. Monte Carlo 
sampling was used to generate 1000 random permutations of the design matrix and statistical tests were repeated 
in time–frequency-channel space with the random design matrix. The probability of a cluster from the original 
design matrix (p-value) was calculated by the proportion of random design matrices producing a cluster with 
a cluster value exceeding the original cluster where a p-value < 0.05 indicated a significant difference. This test 
was applied two-sided for negative and positive clusters. Positive and negative clusters were determined by 
the fixed factor estimate (average slope of all subjects) resulting from a simple linear regression analysis of the 
respective main effect, i.e. an average decrease with factor levels was coded negatively whereas an increase was 
coded positively.

Clusters of activity reaching statistical significance (p < 0.05) were further evaluated using post hoc tests, 
which were applied on the mean value of all time–frequency-channel combinations included in the cluster 
using Bonferroni corrections for multiple comparisons as implemented in MATLAB (see multcompare, Matlab 
version 2020a, The MathWorks).

Results
Behavioral data.  Participants experienced affective picture (or heat) stimuli which were probabilistically 
cued in terms of modality and intensity, evoking an expectation of modality and intensity. The subsequently 
applied stimuli were then rated on a visual analog scale (VAS) from 1–4. Our primary behavioral question was 
whether ratings are influenced by the experimental manipulation of stimulus intensity, expectation and absolute 
prediction errors.

To evaluate the main effects of stimulus intensity, expectation and absolute prediction error with regards 
to the valence of the IAPS pictures, we employed a repeated measures ANOVA of the behavioral data, which 
revealed significant effects for the main effect of stimulus intensity, i.e. the three levels of valence (F(1,28) = 762.10, 
p < 0.001). Post hoc analyses using the Bonferroni corrections for multiple comparisons for significance indicated 
that all three factor levels differed significantly, revealing higher ratings for high valence pictures (M = 2.98, 
SD = 0.40) vs medium valence pictures (M = 1.70, SD = 0.30) and medium valence pictures vs low valence pictures 
(M = 1.09, SD = 0.07; all p < 0.001).

The main effect for expectation on aversiveness ratings did not yield a significant effect (F(1,28) = 1.46, 
p = 0.24). However, the absolute difference between the cued intensity and the actual stimulus intensity (i.e. 
absolute prediction error), showed a significant effect on aversiveness ratings (F(1,28) = 7.7, p = 0.01). Post hoc 
tests indicated that the condition without PEs (M = 1.95, SD = 0.24) was significantly smaller than the high PE 
conditions (M = 2.05, SD = 0.23; p < 0.001). Also, the low PE condition (M = 1.83; SD = 0.28) was significantly 
smaller than the no PE condition (p < 0.01). In summary, aversiveness ratings were increasing with the degree 
of aversive valence of the presented picture stimuli. Moreover, these results demonstrate higher ratings when 
there was a mismatch between the degree of aversion signalized by the preceding cue and the actual stimulus 
content, i.e. high prediction errors are related to higher aversiveness ratings. The results regarding picture stimuli 
are summarized in Table 1. See Fig. 2 for a descriptive rain cloud plot of behavioral ratings for each condition, 
main effects plot for each factor and single subject parameter estimates, showing significant positive intensity 
and prediction error factors.

EEG Intensity.  EEG analysis were performed in the same way as the pain sub-data set43. We tested our EEG 
time–frequency data for a main effect of the valence of the aversive IAPS pictures in the context of a correctly 
cued modality (i.e. an IAPS picture was expected and received). In order to do so, we performed a repeated 
measures ANOVA on the time–frequency representation of the EEG data on low frequencies (1–30 Hz) and 
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high frequencies (31–100 Hz) separately using a cluster correction criterion to address the multiple comparisons 
problem (see “Methods” for details). Any significant cluster—composed of neighboring data points in time, 
frequency and space—would indicate a neuronal oscillatory representation of variations in stimulus intensity in 
a given frequency band.

In the low frequency (1–30 Hz) range, we observed one significant negative cluster of activity (p < 0.001) 
indicating a negative association of IAPS valence and power in the alpha-to-beta range (See Fig. 3 for a time–fre-
quency representation, a main effects plot and single subject parameter estimates of the INT cluster). Specifically, 
this negative cluster included samples in a time range from 0 to 2000 ms after IAPS stimulus onset in a frequency 
range from 1 to 30 Hz. All channels included samples of the negative low frequency stimulus intensity cluster. 
Bonferroni corrected post hoc tests applied on the mean value of all time–frequency-channel combinations 
included in the INT cluster revealed that all comparisons, i.e. low valence (M = − 0.38, SD = 0.80) vs medium 
valence (M = − 0.85, SD = 0.80), medium valence vs high valence (M = − 1.08, SD = 0.82) and low valence vs high 
valence were significant (all p < 0.05), i.e. higher picture valence was related to lower alpha-to-beta power.

In conclusion, these results indicate that a higher picture valence is associated with decreased alpha-to-beta 
band power (see Fig. 4 for a rain cloud plot of average EEG power at the INT cluster). No effect was observed 
for higher frequencies between 31 and 100 Hz.

Expectation.  In a next step, we investigated the representation of the expectation factor (EXP) in our 
repeated-measures model, again for low frequencies (1–30 Hz) and high frequencies (31–100 Hz) separately in 
the IAPS stimulus-locked and cue-locked time–frequency representation of the EEG data.

This analysis revealed one significant negative cluster in the low frequency range (1–30 Hz) after IAPS stimu-
lus onset, indicating a negative association of cued intensity (EXP) and power in this frequency range (p < 0.05). 
The expectation cluster (p = 0.017) included samples from time points ranging from 550 to 1750 ms after IAPS 
stimulus onset and included frequencies from 3 to 30 Hz. All channels included samples of the negative low 
frequency EXP cluster (See Fig. 5 for a time–frequency representation, a main effects plot and single subject 
parameter estimates of the EXP cluster). Post hoc tests revealed that all comparisons, i.e. low valence expectation 
(M = − 0.77, SD = 0.65) vs medium valence expectation (M = − 1.11, SD = 0.68), medium valence expectation vs 
high valence expectation (M = − 1.33, SD = 0.62) and low valence expectation vs high valence expectation were 
significant (all p < 0.001, Bonferroni-corrected), showing higher valence expectation was related to lower alpha-
to-beta power.

A cluster analysis of the expectation factor in cue-locked EEG data (from 1 to 30 Hz for low frequencies and 
31–100 Hz for gamma frequencies; from 0 to 1500 ms), did not reveal any significant cluster of activity associ-
ated with changes in EXP (all p > 0.05,). See Supplementary Fig. 1 for time–frequency representations for low, 
medium and high valence expectation conditions.

In conclusion, these results indicate that a higher valence expectation is associated with decreased alpha-to-
beta band power during stimulus presentation.

Absolute prediction errors.  Finally, we investigated the representation of absolute prediction errors (PE) 
in our repeated-measures model for low frequencies (1–30 Hz) and high frequencies (31–100 Hz) separately in 
the IAPS stimulus-locked time–frequency representation of the EEG data. This analysis revealed two significant 
adjacent positive cluster after IAPS stimulus onset, indicating a positive modulation of EEG power by absolute 
prediction errors (PE) (p < 0.05).

One positive prediction error cluster was found in the low frequency range (1–30 Hz) (p < 0.001) and included 
samples from time points ranging from 0 to 2000 ms after IAPS stimulus onset and included frequencies from 
1 to 30 Hz. All channels included samples of the low frequency absolute prediction error cluster (see Fig. 6 for a 
time–frequency representation, a main effects plot and single subject parameter estimates of the low frequency 
PE cluster). Here, post hoc tests revealed that conditions without prediction errors (M = − 1.55, SD = 0.82) were 
associated with significantly lower alpha-to-beta power than both, low (M = − 0.80, SD = 0.55) and high PE 
(M = − 0.68, SD = 0.54) conditions (all p < 0.001) whereas medium and high PE conditions did not differ in 
alpha-to-beta power (p = 0.1).

In the high frequency range (31–100 Hz) representing gamma activity one positive prediction error cluster 
was observed (p < 0.001) and included samples ranging from 0 to 2000 ms after IAPS stimulus onset and from 
31 to 73 Hz. All channels included samples of the high frequency absolute prediction error cluster (See Fig. 7 for 
a time–frequency representation, a main effects plot and single subject parameter estimates of the INT cluster). 
Post hoc tests revealed that all comparisons were significant (all p < 0.01, Bonferroni-corrected) and conditions 
without PEs (M = − 0.84, SD = 0.46) were associated with a significantly lower gamma power than low PE condi-
tions (M = − 0.36, SD = 0.31), and low PE conditions were associated with a lower gamma power than high PE 
conditions (M = − 0.19, SD = 0.34).

Table 1.   Main effects of stimulus intensity, expectation and absolute prediction errors on subjective 
aversiveness ratings in affective picture conditions.

Factor

Stimulus intensity (INT) Cued intensity (EXP)
Absolute prediction 
error (PE)

F(1,28) p F(1,28) p F(1,28) p

Behaviroal ratings 762.10  < .001 1.46 .24 7.7 .01
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Figure 2.   Ratings for IAPS picture stimuli. (a) Raincloud plots representing single subject ratings for all 9 
congruent conditions (expect a picture and receive a picture). VAS (Visual Analog Scale) represents the rating 
on a 1–4 rating scale. Blue colors represent low valence IAPS picture stimuli, green colors medium valence 
IAPS picture stimuli and red colors high valence IAPS picture stimuli. The data show both an effect of stimulus 
intensity (increase from blue to green to red), but also a significant positive effect of absolute prediction errors. 
(b) Main effect plots for the stimulus intensity (F(1,28) = 762.10, p < .01), expectation (F1,28) = 1.46, p = .24) and 
prediction error (F1,28) = 7.7, p < .05) factors (from left to right) showing single subject values and distributions 
on the response, partialling out (for display purposes) the effects of the other predictors (e.g. EXP and PE were 
partialled out for the main effect plot of INT) for all three factor levels (increasing from left to right). (c) Bars 
represent the estimated slope for each subject and factor (stimulus intensity, expectation and prediction error 
from left to right). The dashed line represents the fixed factor estimate (average slope of all subjects). Hot colors 
represent a positive slope (increases with factor levels) and cold colors a negative slope (decreases with factor 
levels).
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In summary, these results suggest an increase in alpha-to-beta and low gamma band power to be associated 
with expectation violations (i.e. absolute prediction errors), resulting from a mismatch of the cued intensity 
and the actual valence of the IAPS stimulus. Even though the parameters of our cluster analysis resulted in two 
separate clusters of activity, these clusters are connected in time, frequency and space which suggests this activity 
to be related to one single cluster.

Discussion
Using a probabilistic cue paradigm with affective pictures of different valence levels, our data showed a clear 
discriminability of valence based on behavioral ratings and EEG time frequency patterns. Valence ratings were 
positively modulated by high prediction errors, supporting the hypothesis that prediction errors are linked to 
higher (negative) valence40. With regards to the EEG data, we observed one cluster of activity to be negatively 
correlated with the valence of the IAPS material in the alpha-to-beta band. Most importantly, our analysis also 
revealed expectations and violations of expectations (i.e. prediction errors) to be involved in the alpha-to-beta 
ERD and gamma power modulations.

Firstly, we hypothesized that alpha-to-beta ERD responses should be modulated by expectations. Additionally, 
we expected a modulation of these frequencies during the anticipation period from cue onset to the onset of the 
IAPS stimulus. Here, we found higher alpha-to-beta ERD associated with higher valence expectations during 
stimulus presentation, whereas we found no differences during the anticipation period.

Figure 3.   Time–frequency representation (a), main effect plot (b) and single subject parameter estimates (c) 
for the significant stimulus intensity (INT) cluster (p < .001, cluster-corrected), showing a decrease of alpha-to-
beta power with an increased aversiveness of the stimulus. Time–frequency representations (a) are composed 
of the statistical F-values of the repeated measures ANOVA averaged over all channels. The significant cluster 
is outlined. Hot colors represent a positive slope (increases with factor levels) and cold colors a negative slope 
(decreases with factor levels). The main effect plot (b) for the INT cluster summarizes single subject values and 
distributions on the response, partialling out the effects of the respective other predictors (i.e. EXP and PE were 
averaged out for the main effect plot of INT) for all three factor levels (increasing from left to right). Single 
subject parameter estimates (c) are based on a linear regression of single subject values of each factor level. The 
dashed line represents the fixed factor estimate (average slope of all subjects).
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Secondly, we hypothesized that surprise should lead to an increase of gamma ERS when there was a mis-
match between the anticipated degree of aversion and the actual aversive quality of the picture. In contrast, if the 
negative valence or aversive quality is contributing to the gamma ERS effect, we expected an increase of gamma 
ERS with higher aversion regardless of the anticipated degree of aversion. Here, we provide evidence for gamma 
activity related to surprise as higher gamma power was associated with absolute prediction errors, whereas higher 
picture valence did not manifest in gamma power increases.

Our findings are in agreement with reports of decreases of alpha band power with unpleasant images and 
emotional arousal19–28. Even though many studies observed a decrease in power in the alpha- and lower beta 
band, some studies observed an increase with increased valence28,30,50–52. Interestingly, we found alpha-to-beta 
increases in power to be related to expectation violations as well as alpha-to-beta decreases associated with 
expected valence during the presentation of the IAPS stimulus. Anticipation of negative pictures enhances neural 
responses to the pictures53,54 during encoding of the emotional content, which is well in line with our findings 
of increased ERD with higher valence expectations.

Conversely, anticipation of aversive images did not manifest as differences after the presentation of the cue. It 
has been shown that in the anticipation period for affective images, alpha ERD preceding an anticipated negative 
image was larger as compared to a positive image34. Also, negative anticipation of affective images have been 
associated with the activation of the right prefrontal cortex in fMRI studies55,56. Interestingly, activation of brain 
areas associated with negative anticipation is decreased when anticipation of negative emotion is uncertain57. 
Here, all cues were to a large degree uncertain (after all, only 60% of all cues predicted the intensity correctly), 
which could explain that we could not detect expectation signals based on uncertainty of the anticipation. Alpha-
to-beta band activity has been specifically implicated in the processing of top-down expectation signals17,18. Beta 
activity has also been linked to top-down prediction signals in the visual perception of causal events58. Here, we 
find alpha-to-beta activity associated with expectation signal only during stimulus presentation, suggesting that 
a representation of the prediction is reinstantiated during stimulus presentation.

EEG desynchronization is considered a reliable correlate of excited neural structures or activated cortical 
areas, while synchronization within the alpha band is hypothesized to be an electrophysiological correlate of 
deactivated cortical areas59 (see Pfurtscheller et al., 1996 for a review). An alternative view suggests increased 
alpha activity to be associated with active inhibition rather than passive inactivity60–65. More specifically, it has 
been suggested that alpha activity represents an attentional suppression mechanism when objects or features need 
to be specifically ignored or selected against60. Moreover, event related alpha synchronization is obtained over 
sites that probably exert top-down control and hence it has been assumed that alpha synchronization reflects a 
top-down process of inhibitory control63.

In this sense, inhibition is a mechanism for gating the flow of information throughout the brain which is medi-
ated by alpha activity61,62,65. In our study, two effects come to play in the alpha-to-beta band, which are relevant 
with regard to this hypothesis: Firstly, alpha band activity shows a negative relationship with expected stimulus 
intensity, suggesting less inhibition (i.e. more attention to this information) of highly aversive (potentially nega-
tive or threatening) visual stimulation. Secondly, prediction errors resulted in increased alpha band power, i.e. a 
positive relationship. In this sense, incongruent trials would be attentionally suppressed and the features would 
be specifically ignored or selected against. This is because our alpha-to-beta prediction error follows a pattern of 
higher alpha-to-beta power with higher prediction errors. In this paradigm, the probabilistic characteristics of 

Figure 4.   EEG activity at the significant INT cluster. (a) Scatter plots representing single subject EEG power 
(averaged over all samples included in the significant INT cluster) for all 9 congruent conditions (expect a 
picture and receive a picture) and according probability distributions averaged over all significant samples 
included in the negative INT cluster (0–2000 ms; 1-30 Hz).
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the cue did not change during the experiment and were learned before EEG measurements. It has been shown 
that the update of predictions is associated with beta ERD66. Here, an update of predictions based on unlikely 
events would reflect a change in predictions, even though the actual probabilities did not change. Following 
this thought, the update of predictions might be suppressed which manifests as higher alpha-to-beta power in 
prediction error conditions. This is in line with a proposed role of beta activity in actively maintaining the cur-
rent cognitive set or the status quo67.

Beta oscillations have also been suggested to be associated with temporal reactivation of neural 
representations68. Beta modulations have been shown in working memory tasks, in which past information is 
brought into the focus of attention68–70. Here, conditions with prediction errors might be related to a similar 
process, where a mismatch was evaluated by a focus on the information of the cue stored in working memory. 
Our manipulation of prediction errors was associated with an increase in alpha-to-beta power: this suggests 
top-down processes (working memory and suppression) instead of bottom-up processes to be at play at alpha-
to-beta frequencies associated with our prediction error factor.

In predictive coding, gamma activity has been specifically associated with prediction error responses17,18 and 
has been associated with bottom-up prediction errors in the visual processing of causal events58. Here, we found 
two clusters associated with prediction errors, firstly in the alpha to beta range and secondly in the gamma range. 
The gamma cluster needs to be interpreted with caution, as it might be affected by spectral smearing from the 
alpha-to-beta cluster.

Figure 5.   Time–frequency representation (a), main effect plot (b) and single subject parameter estimates (c) 
for the significant expectation (EXP) cluster (p < .05, cluster-corrected), showing a decrease of alpha-to-beta 
power with an increased expected valence of the stimulus. Time–frequency representations (a) are composed 
of the statistical F-values of the repeated measures ANOVA averaged over all channels. The significant cluster 
is outlined. Hot colors represent a positive slope (increases with factor levels) and cold colors a negative slope 
(decreases with factor levels). The main effect plot (b) for the EXP cluster summarizes single subject values and 
distributions on the response, partialling out the effects of the respective other predictors (i.e. INT and PE were 
averaged out for the main effect plot of EXP) for all three factor levels (increasing from left to right). Single 
subject parameter estimates (c) are based on a linear regression of single subject values of each factor level. The 
dashed line represents the fixed factor estimate (average slope of all subjects).
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In predictive coding, an improved causal model by learning improves top-down predictions which conse-
quently lead to a reduction of bottom-up prediction error signals71. If we interpret both PE clusters (in the alpha-
to beta range and in the gamma range) as incorporating different processes which are encoded simultaneously 
at different frequencies, our gamma PE cluster might be a manifestation of bottom-up prediction error signals. 
In predictive coding, gamma activity depends on the match between expectations and bottom-up input17 and 
is in this sense an assessment of sensory predictions72. In this study, we could directly assess the difference 
between expectations and bottom-up sensory input, resulting in differences in the gamma range. In summary, 
this would imply that top-down working memory demands and the suppression of prediction updates were 
encoded in the alpha-to-beta range whereas bottom-up prediction error signals were simultaneously encoded 
in the gamma range.

In the formulation of predictive coding, an important function of emotional valence turns out to regulate the 
learning rate of the causes of sensory inputs. Specifically it has been proposed that a violation of expectation leads 
to a (qualitatively) negative valence and an increase of the learning rate, while fulfilled expectations are associated 
with positive valence and a decrease of the learning rate40. Absolute prediction errors are also integral part of 
formal learning models. In the Pearce Hall model73, the absolute error promotes changes in associative strength 
(i.e. learning rate) such that large absolute prediction errors (surprises) prompt the model to rapidly adapt by 
increasing its learning rate. If emotions can be derived from a predictive coding function, visual processing of 
affective pictures can be seen as a simplified model of predictive coding processes in emotion.

Figure 6.   Time–frequency representation (a), main effect plot (b) and single subject parameter estimates (c) 
for the significant low frequency absolute prediction error (PE) cluster (p < .001, cluster-corrected), showing 
an increase of alpha-to-beta power with prediction errors. Time–frequency representations (a) are composed 
of the statistical F-values of the repeated measures ANOVA averaged over all channels. The significant cluster 
is outlined. Hot colors represent a positive slope (increases with factor levels) and cold colors a negative slope 
(decreases with factor levels). The main effect plot (b) for the PE cluster summarizes single subject values and 
distributions on the response, partialling out the effects of the respective other predictors (i.e. INT and EXP 
were averaged out for the main effect plot of PE) for all three factor levels (increasing from left to right). Single 
subject parameter estimates (c) are based on a linear regression of single subject values of each factor level. The 
dashed line represents the fixed factor estimate (average slope of all subjects).
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Limitations
This study has been designed in close analogy to a previous fMRI study to unravel the temporal dynamics of 
expectation and prediction errors and we decided to use the same experimental paradigm41. We therefore decided 
to also keep the sample characteristics similar and restricted the sample to male participants, which means that 
we cannot generalize our results to the population. Future studies should investigate samples including female 
participants. This would also allow to investigate sex effects with respect to expectation and prediction error 
effects in affective picture processing. The restriction to negative valence stimuli in this study limit the general-
izability of our findings. Future studies could explicitly investigate positively valenced stimuli in the context of 
predictive coding.

Summary
Our data show that key variables required for affective picture processing in the context of a generative model 
(i.e. predictive coding) are correlated with event-related alpha-to-beta and gamma activity. Alpha-to-beta activity 
was (negatively) modulated by valence expectations and stimulus valence, whereas prediction errors (positively) 
modulated responses from alpha-to-gamma frequencies. Alpha-to-beta increases associated with the mismatch of 
stimulus valence and expected valence imply working memory demands as well as the suppression of prediction 
updates, whereas gamma increases suggest a role of bottom-up processing of prediction errors.

Figure 7.   Time–frequency representation (a), main effect plot (b) and single subject parameter estimates (c) 
for the significant high frequency absolute prediction error (PE) cluster (p < .001, cluster-corrected), showing 
an increase of gamma power with prediction errors. Time–frequency representations (a) are composed of 
the statistical F-values of the repeated measures ANOVA averaged over all channels. The significant cluster is 
outlined. Hot colors represent a positive slope (increases with factor levels) and cold colors a negative slope 
(decreases with factor levels). The main effect plot (b) for the PE cluster summarizes single subject values and 
distributions on the response, partialling out the effects of the respective other predictors (i.e. INT and EXP 
were averaged out for the main effect plot of PE) for all three factor levels (increasing from left to right). Single 
subject parameter estimates (c) are based on a linear regression of single subject values of each factor level. The 
dashed line represents the fixed factor estimate (average slope of all subjects).
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