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Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare and fatal neurodegenerative disorder with an incidence of
1.5 to 2 cases per million population/year. The disease is caused by a proteinaceous infectious agent, named
prion (or PrPSc), which arises from the conformational conversion of the cellular prion protein (PrPC). Once
formed, PrPSc interacts with the normally folded PrPC coercing it to undergo similar structural rearrangement.
The disease is highly heterogeneous from a clinical and neuropathological point of view. The origin of this vari-
ability lies in the aberrant structures acquired by PrPSc. At least six different sCJD phenotypes have been
described and each of them is thought to be caused by a peculiar PrPSc strain. Definitive sCJD diagnosis
requires brain analysis with the aim of identifying intracerebral accumulation of PrPSc which currently repre-
sents the only reliable biomarker of the disease. Clinical diagnosis of sCJD is very challenging and is based on
the combination of several clinical, instrumental and laboratory tests representing surrogate disease biomarkers.
Thanks to the advent of the ultrasensitive Real-Time Quaking-Induced Conversion (RT-QuIC) assay, PrPSc was
found in several peripheral tissues of sCJD patients, sometimes even before the clinical onset of the disease.
This discovery represents an important step forward for the clinical diagnosis of sCJD. In this manuscript, we
present an overview of the current applications and future perspectives of RT-QuIC in the field of sCJD diag-
nosis.
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Molecular and neuropathological classification of
sCJD subtypes

Among human prion diseases, sporadic Creutzfeldt-Jakob dis-
ease (sCJD) is the most common form affecting 1-2
individuals/million per year with similar distribution in males and
females.1 The age at onset is most frequently between 55 and 75
years.2 sCJD presents with variable disease subtypes characterized
by peculiar clinical and neuropathological features. In the past,
other than the classical and more common subtypes, some clinical
variants such as the Heidenhain, the myoclonic, the thalamic, the
cerebellar or ataxic, and the panencephalopathic forms were
reported.3–6 In general, sCJD cases present as multifocal and rapid-
ly progressive encephalopathies with dementia, cerebellar ataxia,
myoclonus while the progression of the disease results in an aki-
netic and mute state and the death occurs generally within 6
months after the disease onset.1 The common mechanism underly-
ing these pathologies is the spontaneous conformational conver-
sion of the cellular prion protein (PrPC) into an abnormally folded
conformer named prion or PrPSc. This latter propagates in an auto-
catalytic manner in the brain by converting the PrPC into the patho-
logical isoform.

PrPC is a glycosylphosphatidylinositol (GPI) anchored protein
highly expressed in the central nervous system (CNS) and encoded
by the PRNP gene located on chromosome 20 in humans.7,8 After
its synthesis in the rough endoplasmic reticulum, PrPC undergoes
post-translational modifications comprising the C-terminal addi-
tion of the GPI anchor, the formation of a disulfide bridge between
two C-terminal cysteine residues (Cys179-Cys214) and the N-
linked glycosylation at asparagine residues (Asn181-Asn197).9

These oligosaccharides are further modified in the Golgi apparatus
to produce complex-type chains enriched in sialic acid important
for the synaptic localization of PrPC.10,11 The different degrees of
PrPC glycosylation give rise to three isoforms of the protein: the di-
glycosylated (70%), the mono-glycosylated (25%) and the un-gly-
cosylated (5%) species.10,12 All these isoforms are rich in α-helices
structures, soluble in detergent and are sensitive to proteolytic
digestion with proteinase K (PK). Conversely, PrPSc is less soluble
in detergent, has higher amount of β-sheet structures and is partial-
ly resistant to PK digestion. The limited proteolysis leads to the
generation of N-terminal truncated fragments of di-, mono- and
un-glycosylated PrPSc that migrate at lower molecular weights
compared to those of PrPC.13 Moreover, the un-glycosylated band
of PrPSc can acquire two distinct molecular weights: 21 or 19 kDa
which are referred to as type 1 or type 2 PrPSc, respectively.14

Neuropathologically, the main hallmarks of sCJD are spongiform
changes, astoglial activation, neuronal loss and accumulation of
PrPSc (Figure 1 and Figure 2).15

At present, PrPSc is the only disease-specific biomarker for
sCJD and the definite diagnosis can be formulated post-mortem by
biochemical and neuropathological analyses aimed at identifying
the PrPSc accumulation in the CNS (Figure 2).16,17

It is well known that PrPSc can acquire different abnormal con-
formations, named strains. The peculiar conformation of each
strain can be faithfully transmitted to the host PrPC and are
believed to be responsible for the heterogeneity of prion diseases,
in terms of tissue tropism, incubation period, clinical signs, neu-
ropathological changes and interspecies transmission properties.18-

21 In 1999, Parchi and colleagues22 classified sCJD in six major
subtypes by correlating the clinical manifestations with the poly-
morphisms at codon 129 of the PRNP gene, i.e. methionine (M) or
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Figure 1. Creutzfeldt-Jakob disease, hallmark neuropathologic lesions. Spongiform changes may appear as small vacuoles (A) diffusely
present in grey matter (H&E, cerebral cortex, 20x) or large, confluent vacuolar lesions (B) typical of the MM2-C (cortical) subtype
(H&E, cerebral cortex, 20x). Kuru plaques (C) small aggregates of PrP with the tinctorial and optical properties of amyloid are typically
found in the cerebellum in MV2 subtype (H&E, 60x). Astrogliosis (D) may be severe in all subtypes of Creutzfeldt-Jakob disease (glial
fibrillary acidic protein immunohistochemistry, 10x).  Neuronal loss (E) is usually very severe in the cerebral cortex, basal ganglia and
cerebellum (H&E, cerebellum) but may be mild in some cases (F) (microtubule associated protein 2 immunohistochemistry; 10x).

[European Journal of Histochemistry 2021; 65(s1):3298]

2021_s 1 Review.qxp_Hrev_master  01/10/21  12:22  Pagina 12



                             Review

valine (V), and the electrophoretic mobility of the un-glycosylated
PrPSc isoform in the brain after digestion with PK (type 1 or type 2
PrPSc). These findings demonstrated that the presence of M or V at
codon 129 of PrPC, as well as other still unknown factors, could
modulate the structural rearrangement of PrPC during misfolding,
thus promoting the PrPSc strains variability.23-26 In addition, com-
pelling evidence suggests that, in some sCJD cases, the CNS con-
tains a mixture of PrPSc strains (e.g., MM1+2, VV1+2 and
MV1+2), which make the classification of the disease even more
challenging (as discussed in the next paragraphs).14,27-29

The main pathological characteristics of each sCJD subtype
are summarized in Table 1.

MM1 and MV1 subtype
MM1 is the most common form of sCJD (67% of all cases)

while MV1 cases are rare (3%). Western blot analysis shows, for
both subtypes, type 1 PrPSc and a glycoform pattern characterized
by the predominance of the mono-glycosylated band. Despite the
difference at codon 129 of PRNP, MM1 and MV1 cases share
many pathological features. MM1/MV1 CJD patients present with
the myoclonic (or classic CJD) and the Heidenhain’s variant.22 The
mean age at onset of the disease is 66 years with an average clini-
cal duration of 4 months. Clinical manifestations include cognitive
impairment with memory loss and confusion/disorientation,
depression, anxiety, psychosis and gait or limb ataxia.30

Neuropathologically, the brain of these patients shows spongiosis
with fine vacuoles. The basal ganglia, thalamus and cerebellum are
less affected than the cerebral neocortex. The hippocampal cortex
and brain stem are largely spared. The pattern of PrPSc deposition
is synaptic and mainly affects the cerebral cortex while the cerebel-
lum,  the basal ganglia and thalamus are less involved (Figure 2
A,B).31 Moreover, the amount of PrPSc signal directly correlates
with the severity of spongiosis. 

VV2 subtype 
The VV2 subtype corresponds to the cerebellar or ataxic vari-

ant and occurs in 15% of sCJD cases. The Western blot profile
shows type 2 PrPSc with a preponderance of the mono-glycosylated
isoform. The mean age at onset is 64 years (with a range of 40-83
years) and the clinical duration is about 7 months.32 Ataxia is the
commonest early clinical feature accompanied by cognitive
impairment and oculomotor signs while myoclonus is less fre-
quent. In the late stages of the disease patients exhibit dementia,
myoclonus and pyramidal signs. Neuropathologically, the spongio-
sis preferentially affects the deep layers of the frontal and occipital
cortex, the entorhinal cortex and the hippocampus.31 Cerebral neo-
cortex  may be relatively spared particularly in cases with rapid
courses. The cerebellar cortex is atrophic, with abundant PrPSc

deposits characterized by a focal and plaque-like pattern that are
negative for Congo Red and Thioflavin-S (amyloid stains). In
addition, strong PrPSc deposition often occurs around neuronal
perikarya in the cerebral cortex (Figure 2 C,D). The distribution of
PrPSc immunostaining is affected by the disease duration. In cases
with shorter disease duration, PrPSc involve diffusely the gray-mat-
ter region except for the neocortex which is affected only in
patients with longer disease duration.33

MV2 subtype
MV2 sCJD subtype is phenotypically and biochemically simi-

lar to VV2 cases (type 2 PrPSc and predominance of the mono-gly-
cosylated form) and accounts for 10% of all sCJD. The mean age
at onset is 65 years with a range of 36-83 years while the disease
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Figure 2. Creutzfeldt-Jakob disease, patterns of pathological PrP
deposition (PrP immunohistochemistry using 3F4 monoclonal
antibody). In MM/MV1 subtype PrP deposition is mainly of
synaptic type and appears as homogeneous, finely granular
immunoreactivity in the neuropil of the cerebral cortex (A) (10x),
while in the cerebellum is finely granular in the molecular layer
while forming coarser deposits in the granular layer (B) (10x). In
VV2 subtype PrP deposition often decorates the boundaries of
pyramidal neurons of the cerebral cortex (C) (10x), while in the
cerebellum plaque-like deposition takes is common in the granu-
lar layer (D) (10x). In most of the patients with the MM2 subtype
PrP deposition takes variable aspects in the cerebral cortex (E)
(20x), while the typical feature is the presence of Kuru plaques,
small aggregates of PrP with the tinctorial and optical properties
of amyloid, in the cerebellum (F) (10x). MM2-C (cortical) sub-
type is characterized  by PrP immunoreactivity more intense  at
the rims of the large vacuoles of spongiosis in the cerebral cortex
(G) (20x), while the cerebellum is usually relatively spared (H)
(10x).
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duration is significantly longer than VV2 with a mean of 17
months (range of 5-72 months). Early manifestations of the disease
include oculomotor abnormalities, memory loss, behavioral distur-
bances and signs of the peripheral nervous system or medullary
involvement. In MV2 cases ataxia is the most common presenting
sign and cognitive deterioration, myoclonus and pyramidal signs,
aphasia and apraxia arise during disease progression. The main
hallmark that distinguishes MV2 cases from VV2 is the presence
of cerebellar Kuru-type amyloid plaques in the Purkinje cell layer
(positive for Congo Red and Thioflavin-S) (Figure 2 E,F).

MM2-thalamic subtype
MM2-thalamic (MM2T) sCJD is a rare subtype (2% of all the

cases) known also as sporadic fatal insomnia (sFI).34,35

Biochemical characterization shows type 2 PrPSc with a predomi-
nant mono-glycosylated isoform. The mean age at onset is around
52 years (range 26-71 years) with a mean duration of 16 months
(range 8-36 months). Besides insomnia, other common symptoms
include dementia, and motor signs as ataxia, dysarthria, tremor,
myoclonus and spasticity.34,36 Thalamus is the most affected brain
region especially in the medial dorsal and anterior ventral nuclei
where marked atrophy (observed also in the inferior olivary nucle-
us) and severe astrogliosis is accompanied by prominent neuronal
loss. Spongiform changes and faint PrPSc deposition may be pres-
ent in the cerebral cortex. 

MM2-cortical subtype
This rare cortical variant of MM2 subtype (type 2 PrPSc with a

prevalence of the mono-glycosylated band) represents 2% of all
sCJD cases and is characterized by progressive dementia and dis-
turbances of higher cognitive functions, high-frequency aphasia
and apraxia and late myoclonus or epileptic seizures.37 The average
age at onset is 64 years with a 49-77 year range and the disease
duration is approximately 16 months. Brain lesions are similar to

that of MM1 or MV1 subtypes but, despite the relatively long dis-
ease duration, the cerebellum is almost spared. Large vacuoles are
present in the cerebral cortex, basal ganglia and thalamus which
might be confluent. Immunodetection of PrPSc reveals a coarse pat-
tern of staining which occasionally localizes at the rim of the vac-
uoles (perivacuolar PrPSc deposition) (Figure 2 G,H).31

VV1 subtype
VV1 is the rarest subtype of sCJD representing 1% of the total

cases. The Western blot analysis shows  type 1 PrPSc with a preva-
lence of the mono-glycosylated isoform. Patients are relatively
younger (mean age at onset 44 years) compared to other sCJD sub-
types with a mean duration of 21 months (range 17-42 months).
Early symptoms include psychiatric or cognitive abnormalities that
evolve in extrapyramidal signs and ataxia while myoclonus was
observed only in few patients. Massive spongiform lesions affect
the cortico-striatal regions while other subcortical regions and
cerebellum are almost spared. Although the severe spongiform
changes observed in VV1 patients, PrPSc immunochemistry shows
faint punctate staining confined in the cerebral cortex.31

Mixed subtypes    
Type 1 and type 2 PrPSc have been found to co-exist in about

35% of sCJD cases and may be present in the same or distinct
anatomical regions of the same patient.29 This finding is more fre-
quent in MM (43%) than  MV (23%) and VV (15%) cases.14 The
predominance of PrPSc type 1 or 2 influences the clinical and neu-
ropathological phenotype of the diseases. The MM1+2 cases
mimic the clinical phenotype of MM1 while the PrPSc deposition is
a combination of the typical neuropathological features of MM1
and MM2 (synaptic and perivacuolar patterns, respectively).
Conversely, VV1+2 subjects are similar to VV2 sCJD cases in
terms of clinical and neuropathological features.14
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Table 1. Pathological features of sCJD molecular subtypes. 

sCJD              % of            Median age         Duration                       Main neuropathological alterations
molecular    cases              at onset            (months)                       
subtypes                            (years)

MM1                        67                             66                              ~ 4                                     Diffuse spongiosis with small vacuoles affecting the neocortex, 
                                                                                                                                               striatum and cerebellar cortex. Synaptic pattern of PrPSc deposition
MV1                          3                              66                              ~ 4                                     
VV1                           1                              44                             ~ 21                                    Severe spongiosis with fine vacuoles in the cerebral cortex and striatum.
                                                                                                                                               Punctate pattern of PrPSc deposition
MM2 - thalamic     2                              52                              ~16                                     Atrophy of the thalamus and inferior olivary nuclei with spongiform alterations
                                                                                                                                               confined to the cerebral cortex. Weak and synaptic pattern of PrPSc deposition.
MM2 - cortical       2                              64                             ~ 16                                    Severe spongiosis with large confluent vacuoles predominantly in cerebral cortex
                                                                                                                                               and striatum. Perivacuolar and coarse pattern of PrPSc deposition.
MV2                         10                             65                             ~ 17                                    Diffuse and confluent spongiosis similar to VV2 subtype. Amyloid Kuru plaques in
                                                                                                                                               the molecular and granular layer of the cerebellum.
VV2                          15                            64                              ~ 7                                     Spongiform changes found in the cerebellum, striatum, thalamus and brainstem.
                                                                                                                                               Plaque-like and perineuronal pattern of PrPSc deposition.

MM1, Methionine/Methionine – PrPSc type 1; MV1, Methionine/Valine - PrPSc type 1; VV1, Valine/Valine - PrPSc type 1; MM2-T, Methionine/Methionine – Thalamic PrPSc type 2; MV2-C, Methionine/Valine –
Cortical - PrPSc type 2; MV2, Methionine/Valine PrPSc type 2; VV2, Valine/Valine PrPSc type 2. 
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Clinical challenges
The clinical diagnosis of sCJD is particularly challenging espe-

cially in the early stages of the disease.38 It relies on defined criteria
that classify the disease as possible or probable.39 Several clinical,
instrumental and laboratory tests are commonly used to formulate
an in vivo diagnosis of sCJD: electroencephalogram (EEG),40 mag-
netic resonance imaging (MRI)41 and cerebrospinal fluid (CSF)
biomarkers analysis. Several CSF biomarkers have been investi-
gated including the 14-3-3 protein, total tau (t-tau) and phosphory-
lated tau (p-tau) proteins, neurofilament light chain (NfL), neuron-
specific enolase and a-synuclein. The most reliable and commonly
used are 14-3-3 and t-tau.42,43

14-3-3 protein is a biomarker of neuronal cell death and there-
fore it is not specific for prion diseases. It is commonly reported to
possess an average sensitivity of 85-95% and specificity of 40-
100%32,44-48 for sCJD. However, the main issue in using the 14-3-3
as a biomarker for prion diseases lies in the fact that its elevation
is common in some neurologic and neurodegenerative diseases
including herpes simplex encephalitis, other encephalitis, intrac-
erebral metastases, metabolic encephalopathy, hypoxic brain dam-
age, dementia with Lewy bodies (DLB) and Alzheimer’s disease
(AD).33,49-51 Therefore, 14-3-3 analysis may increase the probabili-
ty of CJD when other clinical features are suggestive of prion dis-
ease but it cannot be assumed as a specific biomarker.52

Increased levels of t-tau (cut off >1300 pg/mL) may identify
sCJD patients with a sensitivity of 67–91% and a specificity of 67–
95%.44,46,47,53-56 This measurement helps to differentiate sCJD from
AD. Indeed, t-tau was 3.1 times higher in sCJD compared to AD
and 41 times higher than in healthy subjects.57 Recently, the ratio
t-tau/p-tau was found elevated in sCJD patients with a specificity
of 94–97% and a sensitivity ranging from 75–94%.46,58-60

Among other CSF biomarkers proposed for prion disease diag-
nosis, NfL has been reported to be significantly elevated in sCJD
compared to other neurodegenerative disorders like AD, DLB,
frontotemporal dementia and vascular dementia. However, despite
increased NfL levels enable discrimination of sCJD from normal
controls,61-64 they do not consent accurate discrimination between
sCJD and other rapidly progressive dementias,65 neurodegenera-
tive dementia64 and neurological diseases with dementia syn-
dromes.62 Recently, serum NfL analysis has been suggested as a
diagnostic marker for prion diseases showing similar sensitivity
and specificity to CSF markers in differentiating sCJD from
healthy subjects.66,67

a-synuclein (a-syn) is commonly used as a biomarker for a
group of diseases known as a-synucleinopathies, which includes,
among the others, Parkinson’s disease (PD)68 and dementia with
Lewy bodies (DLB),69 but its usefulness for CJD diagnosis has
been recently investigated. Two studies reported that total α-syn (t-
α-syn) was specifically elevated in CSF of sCJD patients compared
to control subjects.70,71 Similarly, the phospho-serine-129 α-synu-
clein (p-α-syn) was found elevated in the CSF of sCJD patients
compared to PD, DLB and neurological controls. A combined
analysis of both markers, showed 90.5% sensitivity and 97.6%
specificity for sCJD diagnosis.72 Other CSF and serum biomarkers
of prion diseases, including the neuron specific enolase (NSE),73,74

the S100B protein,75 SERPINA376 and thymosin β477 are currently
under investigation. Unfortunately, although useful for the clinical
diagnosis of CJD, CSF biomarkers are not disease-specific.

The definite diagnosis depends on post-mortem examination of
the brain aimed at identifying and characterizing the disease-spe-
cific biomarker of prion diseases, the PrPSc. Through a combina-
tion of biochemical (e.g., Western blot after PK digestion),
immunohistochemical and genetic analyses it is possible to identi-
fy the specific sCJD subtype. Thanks to the recent development of

the ultrasensitive seeding aggregation assays, named Real-Time
Quaking Induced Conversion (RT-QuIC) and Protein Misfolding
Cyclic Amplification (PMCA) the diagnostic accuracy of prion
diseases has been significantly increased. In particular, the PMCA
enabled efficient detection of traces of PrPSc in the CSF, urine and
blood of patients with variant CJD (vCJD), which is related to the
consumption of foodstuff obtained from cattle affected by bovine
spongiform encephalopathy. However, this technique, has never
been able to efficiently detect PrPSc associated with sCJD.78-81 In
contrast, the RT-QuIC has been optimized to efficiently detect low
amounts of sCJD prions in the CSF, olfactory mucosa and skin
samples in a more rapid and safe manner (with respect to PMCA)
while requiring a limited handling of the specimens and reducing
the risk of their contamination.82-85 For this reason, the RT-QuIC
has been adopted by several specialized centers  for the analysis of
biological samples collected from patients with suspected sCJD, as
detailed in the next section.
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Figure 3. Schematic illustration of the RT-QuIC reaction. The
RT-QuIC process is divided into three phases: (1) the lag phase,
(2) the growth phase and (3) the plateau phase. The reaction mix
is composed by recombinant PrP (recPrP) and Thioflavin T
(ThT) which are dissolved in common buffers. The addition of
PrPSc (pink triangle) to the reaction induces the convertion of
recPrP (blue hexagon) into a misfolded form (red arrow) which
starts to aggregate and form recPrP amyloid fibrils. In the
absence of PrPSc, recPrP can aggregate (dotted line) following a
well-defined kinetics. The formation of the aggregates induces
the emission of a ThT fluorescence signal (yellow star). In the
presence of PrPSc, the kinetics of recPrP aggregation is signifi-
cantly accelerated (solid line). The increased kinetics of recPrP
aggregation is known as seeding effect.
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RT-QuIC assay
RT-QuIC is an ultrasensitive technique developed by Atarashi

et al. in 2011 in the field of prion diseases. This assay exploits the
intrinsic ability of PrPSc to promote the conformational rearrange-
ment of PrPC that can aggregate into amyloid fibrils.86 The assay
mimics in vitro the process of PrPC misfolding and aggregation
which occurs in vivo. Recombinant PrPC (recPrP) with the amino
acid sequence of different species can be used as a reaction sub-
strate. The addition of traces of PrPSc to the reaction substrate
induces its aggregation and the kinetics of this process can be mon-
itored in real-time by using a fluorescent dye, named Thioflavin-T
(ThT).87 In general, each sample is analyzed in quadruplicates
using a multi-well plate.88 The samples are subjected to cyclic
phases of incubation and shaking using a dedicated fluorescence
microplate reader.89 In the presence of PrPSc, the incubation phase
stimulates the formation of recPrP amyloid fibrils, while the shak-
ing phase permits the fragmentation of the aggregates into smaller
units capable to recruit and convert further recPrP into new amy-
loid fibrils.90

The in vitro aggregation process can be represented on a carte-
sian plane where fluorescence is plotted against time generating a
kinetic curve characterized by three phases: i) a lag phase, where
PrPSc interacts with recPrP and induces this latter to misfold ii) a
growth phase, where misfolded recPrP aggregate to form
oligomers and small amyloid fibrils sensitive to ThT (exponential

increase of fluorescence) and iii) a plateau phase, where almost all
recPrP is incorporated into fibrils. Under normal reaction condi-
tions, recPrP spontaneously aggregates while the addition of PrPSc

(even in traces) to the substrate significantly accelerates the kinetic
of recPrP aggregation (seeding effect) (Figure 3). A samples is con-
sidered positive when at least 2 out of 4 replicates show a seeding
effect. The RT-QuIC end-products are partially resistant to PK
digestion.91

RT-QuIC enabled PrPSc detection in CSF, olfactory mucosa
(OM), skin, eye, peripheral nerve, and digestive system of patients
with different forms of prion diseases (Table 2).

The assay developed in 2011 was considered the “first genera-
tion RT-QuIC” since the analyses were performed at 42°C using
the recombinant full-length Syrian Hamster prion protein
(recSHa(23-231)) as reaction substrate. With this experimental setting
it was possible to detect PrPSc in the CSF of a series of Japanese
subjects with sCJD and 30 Australian sCJD patients with 80% sen-
sitivity and 100% specificity.92

One year later, the analyses of 123 patients with neuropatho-
logically confirmed sCJD showed that RT-QuIC was able to iden-
tify PrPSc in CSF with a sensitivity of 91% and specificity of
98%.84

In 2014, Orrù and colleagues84 performed RT-QuIC analysis of
OM and CSF collected from living patients with possible or prob-
able clinical diagnosis of CJD. The RT-QuIC analysis of OM iden-
tified 30 out of 31 sCJD patients with a sensitivity of 97% and
specificity of 100% while the analysis of CSF showed less sensi-

[page 16][European Journal of Histochemistry 2021; 65(s1):3298]

Table 2. Specificity and sensitivity of 1st and 2nd generation of RT-QuIC.

Samples                          Year                         Reference                         Substrate recPrP         Sensitivity %               Specificity %

CSF                                               2011                              Atarashi et al.82                                 recSHa (23-231)                          91.5                                        100.0
                                                      2012                              McGuire et al.88                                 recSHa (23-231)                          89.0                                         99.0
                                                      2014                                 Orrù et al.84                                    recSHa (23-231)                          77.0                                        100.0
                                                      2015                              Cramm et al.114                                  recSHa (23-231)                 Not reported                       Not reported
                                                      2015                                 Orrù et al.115                                   recSHa (90–231)                         95.8                                        100.0
                                                      2016                               Cramm et al.93                                  recSHa (23-231)                          85.0                                         99.0
                                                      2016                            Groveman et al.94                               recSHa (23-231)                          72.5                                        100.0
                                                      2016                            Groveman et al.94                               recSHa (90–231)                         93.8                                        100.0
                                                      2016                                  Park et al.95                                     recSHa (23-231)                          76.5                                        100.0
                                                      2016                              McGuire et al.92                                 recSHa (23-231)                         100.0                                       100.0
                                                      2017                          Franceschini et al.83                            recSHa (90–231)                         97.2                                        100.0
                                                      2017                            Bongianni et al.96                                recSHa (23-231)                          71.4                                        100.0
                                                      2017                            Bongianni et al.96                               recSHa (90–231)                         82.6                                        100.0
                                                      2017                             Lattanzio et al.56                                 recSHa (23-231)                          82.1                                         99.4
                                                      2017                                Foutz et al.107                                   recSHa (90-231)                          92.0                                         98.5
                                                      2017                                Foutz et al.107                                   recSHa (90–231)                         95.0                                        100.0
                                                      2018                               Rudge et al.110                                   recSHa (23-231)                          89.0                                        100.0
                                                      2018                            Hermann et al.109                                recSHa (23-231)                          97.0                                         99.0
                                                      2019                        Abu-Rumeileh et al.55                            recSHa (23-231)                          82.5                                        100.0
                                                      2019                        Abu-Rumeileh et al.55                           recSHa (90–231)                         97.4                                        100.0
                                                      2020                               Fiorini et al.100                                  recSHa (90–231)                         96.0                                        100.0
                                                      2020                               Rhoads et al.97                                  recSHa (90–231)                         90.3                                         98.5
                                                      2020                                  Xiao et al.98                                    recSHa (90–231)                         96.7                                        100.0
OM                                               2014                                 Orrù et al.84                                    recSHa (23-231)                          97.0                                        100.0
                                                      2017                            Bongianni et al.96                               recSHa (90–231)                         92.0                                        100.0
                                                      2020                               Fiorini et al.100                                  recSHa (90–231)                         91.4                                        100.0
Skin                                              2017                                Orrù et al.105                                    recSHa (23-231)                         100.0                                       100.0
                                                      2020                            Mammana et al.85                               recSHa (23-231)                          89.0                                        100.0
Eye                                               2018                                 Orrù et al.106                                   recSHa (90–231)                        100.0                                       100.0
PN                                                 2019                              Baiardi et al.116                                 recSHa (90–231)                      100.0%                                   100.0%
DS                                                 2019                                Satoh et al.117                                      not reported                          100.0%                             not reported

CSF, cerebrospinal fluid; OM, olfactory mucosa; PN, peripheral nerve; DS, digestive system; recSHa(23-231), recombinant full-length syrian hamster prion protein; recSHa(90-231), recombinant N-terminally
truncated syrian hamster prion protein.
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tivity (77%) but similar specificity (100%). In 2016, the first multi-
center studies demonstrated the reproducibility, reliability, and
robustness of the first generation of CSF RT-QuIC (PQ-CSF) in
clinical practice.92,93

In 2015, the group of Caughey optimized the RT-QuIC proto-
col and developed the “second generation RT-QuIC” by introduc-
ing two modifications: i) the use of N-terminally truncated
recSHa(90–231) as a reaction substrate and ii) the increasing of tem-
perature from 42°C to 55°C. The use of a different substrate and a
higher temperature improved the RT-QuIC performances by iden-
tifying positive CSF samples in shorter time (4-14 hours) com-
pared to those required by the first generation assay (2,5-5 days).
In particular, the RT-QuIC analysis identified PrPSc in 46 out of 48
CSF samples collected from sCJD individuals yielding 95.8%
diagnostic sensitivity and 100% specificity. Another retrospective
study of Groveman et al.94 confirmed the high sensitivity and
specificity (94% and 100%, respectively) of the CSF RT-QuIC test
in a large cohort of patients (n=113) with probable or definitive
sCJD diagnosis. Further investigations were then performed with
the aim of improving the sensitivity of the assay in detecting PrPSc

in CSF and OM.55,56,83,92,95-98 In 2020, an international trial con-
firmed the robustness and reliability of the second generation RT-
QuIC for the diagnosis of sCJD.99 Furthermore, a recent article by
Fiorini et al.100 demonstrated that through the combined RT-QuIC
analysis of the CSF and OM collected from the same sCJD patient
it is possible to reach a diagnostic accuracy of 100%. For these rea-
sons, the RT-QuIC has been introduced among the diagnostic cri-
teria of some surveillance centers.101 Recent evidence showed that
recPrP with the bank vole amino acid sequence can detect almost
all PrP strains (from human or animal origin), but it has not been
introduced in the diagnostic field yet.102-104

From 2017, the RT-QuIC assay has been extended to the analy-
sis of other peripheral tissues. In particular, Orrù et al. explored the
potential prion seeding activity and infectivity of skin collected
from 21 sCJD patients and eye (retina, sclera and cornea) collected
post-mortem from 11 sCJD cases.105,106 Similarly, Mammama et al.
analyzed skin biopsies of sCJD patients and identified PrPSc with
89% sensitivity and 100% specificity.85

Correlations of RT-QuIC results with neuropatho-
logical findings

To date, only few studies have investigated whether there is a
correlation between the RT-QuIC results and the phenotypes of
sCJD.107,108 In the case of CSF samples, the sensitivity of RT-QuIC
was found to be high in the most common MM1/MV1 and VV2
sCJD cases, while it was lower in MV2 cases (75–
93%).55,56,83,97,107,109 In other rare subtypes, including VV1 and
MM2, the sensitivity was found to range between 0-100% and 44-
78%, respectively.56,97,109-111 In these latter cases, the limited amount
of CSF, hampered the possibility to properly evaluate the diagnos-
tic accuracy of the assay. In 2016, Foutz et al. observed a correla-
tion between RT-QuIC kinetics and sCJD subtypes.  In particular,
they observed that MM1 cases had significantly shorter lag phase
and higher fluorescence values compared to MM2 cases, and these
findings enabled discrimination of both phenotypes with an accu-
racy of 95%. At the same time, the extended lag phase and lower
intensity of fluorescence allowed to differentiate VV1 to VV2 indi-
viduals with an accuracy of 80%. MV1, MV2, and mixed type
cases did not show significant differences in terms of lag phases or
fluorescence intensities.107 Recently, Piconi et al. subjected to PK
digestion the RT-QuIC products obtained from the analysis of
brain homogenates (BH) and CSF of patients with the six pheno-
types of sCJD. In this case, regardless of the sCJD subtype, all

samples displayed PK-resistant signal characterized by similar
electrophoretic mobility and banding profile, even when chal-
lenged with several anti-PrP antibodies.108 Thus, in contrast to the
work of Foutz, they could not identify peculiar features useful to
distinguish the six sCJD subtypes. For this reason, the possibility
to identify sCJD subtypes by RT-QuIC remains to be clearly eluci-
dated. Very recent findings show that formalin fixed brains are
capable to exert an efficient seeding activity by RT-QuIC, using
both animal112 and human specimens (personal communication).

Conclusions
Currently, the RT-QuIC test represents the most reliable and

powerful tool for the early detection of PrPSc in peripheral tissues
of patients with a suspected clinical diagnosis of sCJD.90 The rea-
son for the rapid growth of RT-QuIC use in the clinical practice,
although still confined to specialized laboratories, lays in the fact
that it is not invasive for the patients, has a relatively low cost and
a high predictive value.  Among the advantages, the method is not
time-consuming and enables the analysis of a huge number of sam-
ples in a relatively short period of time.113 Overall, these character-
istics support the choice by WHO to include the CSF RT-QuIC test
in the diagnostic criteria for sCJD.39,99,101 As previously mentioned,
only few specialized laboratories have adopted the RT-QuIC tech-
nology. However, the assay is relatively easy to learn and can be
rapidly used by trained personnel, thus consenting its widening in
other centers specialized in the diagnosis of neurodegenerative dis-
eases associated with protein misfolding. Future multi-center trials
will consent to verify the robustness of the RT-QuIC for the analy-
sis of new peripheral tissues (e.g,. OM, skin) and to further explore
the potential of this assay to stratify patients in their early disease
stage.
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