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MPSE identifies newborns for whole
genome sequencing within 48 h of NICU
admission

Check for updates
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Yves Lussier1, Martin Tristani-Firouzi5, Martin G. Reese4, Sabrina Malone Jenkins6,
Stephen F. Kingsmore2, Matthew N. Bainbridge2 & Mark Yandell3

Identifying critically ill newbornswhowill benefit fromwhole genome sequencing (WGS) is difficult and
time-consuming due to complex eligibility criteria and evolving clinical features. The Mendelian
Phenotype Search Engine (MPSE) automates the prioritization of neonatal intensive care unit (NICU)
patients for WGS. Using clinical data from 2885 NICU patients, we evaluated the utility of different
machine learning (ML) classifiers, clinical natural language processing (CNLP) tools, and types of
Electronic Health Record (EHR) data to identify sick newbornswith genetic diseases.Our results show
that MPSE can identify children most likely to benefit from WGS within the first 48 h after NICU
admission, a critical window for maximally impactful care. Moreover, MPSE provided stable, robust
means to identify these children using many combinations of classifiers, CNLP tools, and input data
types—meaning MPSE can be used by diverse health systems despite differences in EHR contents
and IT support.

Each year ~7 million infants worldwide are born with genetic disorders.
Many are diagnosed and treated in theneonatal intensive care unit (NICU)1.
Rapid progression of disease in acutely ill infants necessitates equally rapid
diagnosis to implement personalized interventions. In recent years, whole
genome sequencing (WGS) has emerged as a primary diagnostic tool2–4. An
estimated one-fifth of NICU admissions involve Mendelian diseases, with
WGS diagnostic yield commonly in the range of 25–50%5–8. However,
identifying infants forWGS is difficult and time-consuming due to complex
eligibility criteria, lack of neonatologist familiarity withWGS ordering, and
evolving clinical features.

Manual review and prioritized selection of patient phenotypes is a
time-consuming and expensive process, hindering WGS application in the
NICU9,10. Since interpretation is phenotype-driven, incomplete or erro-
neous phenotype selection can result in false negative results. Failure to
adhere to payer eligibility criteria can lead to refusal of reimbursement.
Complicating this are the complexity of eligibility criteria and differences
between payers. Recent efforts explore clinical natural language processing
(CNLP) to automatically generate Human Phenotype Ontology (HPO)-
based phenotype descriptions from clinical notes and have demonstrated
diagnostic rates comparable to manual methods9,11. Automation promises

scalability and efficiency in patient triage for sequencing. In previously
published work, we have shown that combining CNLP with a machine
learning-based prioritization tool, theMendelian Phenotype Search Engine
(MPSE), provides effective means to prioritize patients for WGS using
electronic health records (EHRs)12,13.

Perhaps the greatest benefit from tools like MPSE will be seen by
resource-limited healthcare systems which may lack the expertise, funding,
or data necessary to develop in-house computational frameworks for
genomics-based clinical care. Generalizability and adaptability are therefore
essential. With these facts in mind, we have explored MPSE’s performance
across multiple patient populations, data sources, and input data types. Our
results reveal that MPSE is fast, flexible, generalizable, and highly portable.

Time toWGS order is also of critical importance in the NICU clinical
setting. Earlier identification of patients likely to benefit fromWGS, ideally
as soon as possible after NICU admission, can significantly enhance care by
enabling earlier disease diagnosis and timelier, more personalized
interventions2,14,15. Once sequencing candidates have been nominated, the
turnaround time from blood sample collection to diagnosis is typically
multiple days or weeks14,16 but can occur in under 24 h9,17 using the most
rapid protocols. As clinical sequencing turnaround times continue to
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decrease, the time from admission to nomination increasingly becomes the
primary bottleneck in delivering timely genomic diagnoses. Recent studies
on clinical WGS in the NICU have reported highly variable times-to-
nomination, ranging from as early as 1 h after admission to over 100
days2,13,16.Herewe show thatMPSEcan identify those childrenmost likely to
benefit fromWGS within the first 24 h of admission to the NICU, a critical
window for maximally impactful care. Moreover, we find that the MPSE
scores of patients who are ultimately diagnosedwithMendelian diseases are
higher than those of sequenced but non-diagnostic cases, a statistically
significant trend that appears at 48 h post-admission and continues across
the entire duration of theNICUstay. Thesefindings argue forMPSE’s use as
a proactive monitoring tool throughout the NICU stay.

Results
Comparing clinical NLP tool outputs
All phenotype data used in our initial publications12,13 was generated from
patient clinic notes using the CNLP software CLiX. CLiX is a proprietary
clinical NLP technology developed by the commercial healthcare analytics
company Clinithink18. Given the ultimate goal of developing MPSE for
adoption by diverse hospital and clinic systems, we sought to determine
MPSE’s performance using phenotype data produced by other tools as well.
We conducted a series of analyses on 5 different CNLP tools to compare
their relative utility for use with MPSE: ClinPhen19, CLiX, cTAKES20,
MedLEE21, andMetaMapLite22. A brief description of these tools is given in
Supplementary Table 1. Before assessing MPSE’s performance using phe-
notype data produced by these different CNLP tools, we first compared the
phenotype descriptions (HPO term sets) generated by these tools using the
same sets of clinic notes—in this case, the notes from 1838 University of
Utah NICU admits.

Term counts. Summary statistics for unique HPO term counts gen-
erated by each CNLP tool as well as the “manual” term sets identified by
expert physicians are given in Supplementary Table 2. The HPO term
sets used throughout this work were pre-processed by removing parent
terms to keep only themost specific phenotype terms. In every case, the
CNLP tools all produced larger HPO term sets per patient than did
expert review. Among HPO term sets for the University of Utah
NeoSeq patients, MedLEE yielded the fewest terms (average 31.4 terms
per patient) while CLiX yielded the most terms (average 111.2 terms
per patient), nearly twice as many as the next most prolific tool
cTAKES (70.5 terms per patient). Unsequenced University of Utah
NICU patients had significantly fewer terms in their phenotype
descriptions than NeoSeq patients, consistent with our observations
from other patient cohorts12.

Semantic similarity. We also calculated pairwise semantic similarity
coefficients across all the NeoSeq phenotype sets. Semantic similarity is
different from strict identity-based similarity measures, such as
unweighted Jaccard similarity, in that two terms can be non-identical
but still contribute positively to the similarity coefficient if they are
neighbors, i.e., they lie near one another in the HPO directed acyclic
graph. To estimate the probability that the semantic similarities of the
term sets produced by the tools are statistically different from a null or
random distribution, for each pairwise comparison, we sampled the
HPO to yield two random term sets with sizes identical to the original
sets. Semantic similarity coefficients were then calculated for these
randomized sets and plotted alongside the real data in Supplementary
Fig. 1. The pronounced separation between semantic similarity dis-
tributions of real and simulated data suggests the HPO term sets
produced by the tools reflects a common underlying phenotypic reality
that is being identified to a greater or lesser degree by all the tools.
Consistent with this, the difference inmean similarity between real and
simulated datasets is highly statistically significant for every tool by
Student’s paired T-test, even after multiple test corrections (data
not shown).

NLPsensitivity andaccuracy. Next, we performed an orthogonal test of
CNLP tool sensitivity and accuracy by calculating the overlap between
the CNLP-generated phenotype sets and two distinct “ground truth”
reference sets: expert-generated phenotypes and OMIM disease-
associated phenotypes. The expert reference sets constituted the HPO
term listsmanually curated by physicians for the 65 sequencedUniversity
of Utah NICU patients23. The OMIM disease reference sets were
restricted to the HPO phenotype terms associated with the OMIM dis-
ease diagnosis for the subset of 26WGS-diagnosed Utah NICU patients.
For these analyses, a CNLP term is considered a “true positive” if it or any
of its parent terms are found in the ground truth set. This approach is
justified by the ontological relationship between parent and child terms in
HPO, where a child term inherently implies the presence of its parent
term(s). Since HPO is structured in a manner where more specific terms
(i.e., child terms) represent refined phenotypic descriptions, they sub-
sume the more general terms (i.e., parent terms). For example, having
Thrombocytosis (HP:0001894) necessarily indicates the presence of the
parent phenotype Abnormal platelet count (HP:0011873).

Supplementary Fig. 2 shows sensitivity and accuracy distributions for
CNLP terms sets compared with physician manual terms and OMIM
disease-associated terms. The relative sensitivity among the CNLP tools
roughly correlates with the tools’ average term counts (see Supplementary
Table 2), which isn’t surprising; the more terms a tool generates, the more
likely it will capture terms in the reference set. CLiX had the highest average
sensitivity among the tools (manual terms sensitivity: 63%; OMIM terms
sensitivity: 21%), while MetaMapLite had the lowest (manual terms sensi-
tivity: 15%; OMIM terms sensitivity: 9%). The accuracy measure differs
from sensitivity by controlling for the variable sizes of the CNLP term sets.
Thus, aCNLP toolwithhigh sensitivitymayhave a low relative accuracy if it
hasmanymore terms than another toolwith lower sensitivity.ClinPhenhad
the highest average accuracy among the tools (manual terms sensitivity:
13%; OMIM terms sensitivity: 11%), while MetaMapLite had the lowest
(manual terms sensitivity: 2%; OMIM terms sensitivity: 4%). Despite the
modest sensitivity and accuracy of these CNLP tools compared to the
“ground truth” sets, MPSE and other phenotype-driven clinical diagnostics
tools such as GEM11, appear to be very robust against “noisy” phenotype
data inputs (see next results for justification).

MPSE flexibly handles input data from a variety of sources
To further evaluate the practical utility of the MPSE algorithm, we con-
ducted a comparative analysis of different CNLP tools and data types as
inputs to MPSE. This analysis addresses several critical considerations for
thedeploymentofMPSE indiverse clinical environments. First,we explored
the interoperability ofMPSEby assessingwhether amodel trainedwith data
from one CNLP tool could reliably predict outcomes using data generated
by a different tool. Second, we investigated the feasibility of using non-
phenotypedatawithMPSE.Given the ultimate goal of developingMPSE for
adoption by diverse hospital and clinic systems, the overarching purpose of
these analyses is to better understand MPSE’s flexibility, robustness, and
broader applicability in real-world clinical settings.

MPSE performance using different CNLP tools. To determine whe-
ther MPSE, trained with data from one CNLP tool, can reliably predict
outcomes using data generated by a different CNLP tool, we began with
the original MPSE model trained using CLiX-generated phenotype data
from the RCHSD cohort. This model was used to make predictions on
external phenotype data from the Utah cohort generated with ClinPhen,
CLiX, cTAKES, MedLEE, and MetaMapLite. MPSE’s precision and
diagnostic yield among top-scoring probands is plotted in panel A of
Fig. 1. Apart from MetaMapLite, all the CNLP tools’ outputs work well
when used as inputs for MPSE, a fact made clear by the high recovery
rates of sequenced and diagnosed patients compared to choosing patients
randomly forWGS. IfMPSEwas used to automatically select a volume of
NICU patients for sequencing identical in size to the Utah NeoSeq study
(n = 65) from among the 1838 total patients screened, CLiX and
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ClinPhen would maintain the NeoSeq study’s physician-mediated
diagnostic yield (40%) throughout the top 50% of MPSE scores. This
finding accords well with our previous publication, which showed high
projected diagnostic yields from MPSE prioritization12.

In addition to assessing yield among top-scoring probands, we also
calculated cohort-wide performance metrics (see Supplementary Table 3).
After the “native” CLiX data, ClinPhen yields the next-best overall predic-
tions, with an average 20.7-point difference in MPSE score between cases
and controls (p = 2.2e−14), the highest area under the ROC curve
(AUROC= 0.91), and the highest area under the PRC curve (AUPRC=
0.45). MetaMapLite exhibited the lowest performance, likely caused by the
relative dissimilarity between CLiX and MetaMapLite as seen in the low
semantic similarity coefficients of CLiX-MetaMapLite term sets (Supple-
mentary Fig. 1).

MPSE performance using alternative data types. To determine
whether non-phenotype data types could be used with MPSE, we tested
MPSEmodels built using diagnosis codes, lab tests, and medications and
compared their predictive ability to phenotype-based models. A short
description of these data types is given in Supplementary Table 4, and
summary statistics of observation counts for each alternative data type
are shown in Supplementary Table 5. MPSE models trained with alter-
native data types recovered fewer sequenced cases and diagnostic cases
(Fig. 1B) among top-scoring probands than a corresponding phenotype-
based model but still performed much better than a random model.
Among the alternative data types, the ICD-10 based model yielded the
best overall predictions, approaching the performance of the CLiX-based
model (Supplementary Table 3). Our analysis suggests that non-
phenotype structured data from patient EHRs is less effective than

CNLP-derived phenotype data at identifying NICU sequencing candi-
dates, but is a useful and valid substitute for CNLP phenotype descrip-
tions if these are not available. However, it should be noted that this
analysis was limited to only using the presence/absence of a lab test,
medication order, etc. (see Methods) and not the test result or order
specifications. An analysis using more precise laboratory andmedication
data may reveal higher MPSE performance when using these alternative
data types.

Diagnostic performance using different CNLP tools. Lastly, we
assayed the ultimate utility of the CNLP-derived phenotype term sets
generated by each tool for clinical molecular diagnostic activities. For
these analyses, we used an Artificial Intelligence (AI)-based gene prior-
itization tool called GEM11. Licensed from Fabric Genomics, by both
RCHSD and the University of Utah, GEM is a commercial tool that
combines HPO-based phenotype descriptions with WES and WGS
sequences for rapid, AI-based diagnostic decision support. GEM was
used by both RCHSD and the University of Utah for the original diag-
nosis of every sequenced proband in the datasets analyzed here.

ComparisonofGEM’s previously publisheddiagnostic performance to
the prospectiveUtah data reported here provides a unique opportunity both
to reexamine GEM’s performance using new, orthogonal data, and to assay
the impact of usingdifferentCNLP tools onGEM’s diagnostic performance.
These data are shown in Fig. 2. For reference, the original GEM benchmark
results using manually curated HPO term sets for 119 RCHSD probands11

have been added for ease of comparison. Figure 2 shows the percentage of
diagnosed UtahNeoSeq23 probands where the clinical molecular diagnostic
genotype was reported by GEM among its top 1st, 2nd, 5th, and 10th gene
candidates.

Fig. 1 | MPSE can ingest different CNLP tool
outputs and use alternative data types. Panels
A, B display MPSE precision rates of patients
manually selected forWGS (PanelA) and diagnostic
yield for the subset of cases diagnosed by WGS
(Panel B) using different CNLP tools. A CLiX-
trained MPSE model from the RCHSD cohort was
applied to phenotype data from 1838 University of
Utah NICU patients generated by five different
CNLP tools. Panels C, D display precision and
diagnostic yield using MPSEmodels trained on four
alternative data types (diagnosis codes, lab tests,
medications, and all orders), compared to the cor-
responding HPO-based (CLiX) model trained on
the same Utah cohort. A solid black reference line in
each panel represents the precision or diagnostic
yield expected from amodel that chooses candidates
at random, while the black dashed line in the diag-
nostic yield graphs (Panels B, D) indicates the
NeoSeq study’s 40% total diagnostic yield. Figure
generated with R ggplot2 software.
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Two major conclusions emerge from these data. First, diagnostic
performance using CNLP-derived HPO data, regardless of the tool used to
generate them, is nearly identical to the performance obtained usingmanual
term sets, and second, the results shownhere are highly concordantwith the
original published benchmarking results11. Moreover, the University of
Utah data provides an entirely prospective orthogonal dataset, demon-
strating transportability. These results demonstrate a powerful synergy
between the MPSE approach and GEM. Namely, that the same HPO term
sets used by MPSE for WGS prioritization can be directly consumed by
GEM for downstream diagnoses. Moreover, Fig. 2 makes it clear that GEM
can use HPO term sets, manually curated or CNLP derived, regardless of
tool, without compromising downstream diagnostic accuracy.

MPSE can identify patients who would benefit fromWGS within
the first 48 h of NICU admission
Our initialwork and that presentedherehas demonstratedMPSE’s ability to
accurately identify sequencing candidates by aggregating information from
the entirety of the patient’s NICU stay. These findings underscore the tool’s
effectiveness in a retrospective context, using all notes up to thedate atwhich
the attending physicians place the order for WGS. However, the ultimate
test of value lies in validating the real-time utility of MPSE. Early identifi-
cation of patients who would benefit from WGS, as soon as possible after
NICU admission, could significantly enhance care, enabling earlier disease
diagnosis and more timely interventions2,14,15.

To measure MPSE’s real-time utility, we calculated daily MPSE scores
for each patient in our Utah cohort using only HPO terms extracted with
CLiX from clinical notes present in the EHR at 24-h intervals, beginning at
the moment of their admission. Thus, each patient had a series of MPSE
scores for each day spent in the NICU from admission to discharge.
Longitudinal MPSE scores for patients who received a molecular diagnosis
by WGS (diagnostic), those for whom WGS did not identify a molecular
diagnosis (non-diagnostic), and patients who were not selected for WGS
(unsequenced) are summarized in Supplementary Table 6 and plotted in
Fig. 3 to help visualize the change in MPSE score over time among these
groups. By the endof thefirst day (0–24 h) in theNICU, bothdiagnostic and
non-diagnostic sequenced cases had statistically significantly higher MPSE
scores than did those who were not selected for sequencing (unsequenced
mean: −48.4; diagnostic mean: −32.1, p = 1.4e−5; non-diagnostic mean:

−28.2, p = 9.3e−6). Additionally, diagnostic cases had significantly higher
average MPSE scores than non-diagnostic sequenced cases beginning 48 h
post-admission (non-diagnostic mean: −24.7; diagnostic mean: −9.0;
p = 0.018) and continuing thereafter.

In addition to differences inMPSE scores between unsequenced, non-
diagnostic, and diagnostic patients, there are also significant differences in
the daily change in MPSE score (day-N delta) between these groups. Both
diagnostic and non-diagnostic sequenced cases saw greater average day-N
delta than unsequenced controls throughout the first 30 days post-
admission (Supplementary Table 6). Importantly, the greatest difference in
MPSE score increase was observed for the day-one delta, i.e. the change in
MPSE score during the first 24 h post-admission, with average diagnostic
MPSE score rising by 18.4 points, average non-diagnosticMPSE score rising
by 7.7 points, and average unsequenced MPSE score rising by only 2.7
points. These day-one delta differences were statistically significant for each
subgroup comparison (diagnostic vs unsequenced p-value = 0.0015; non-
diagnostic vs unsequenced p-value = 0.004; diagnostic vs non-diagnostic p-
value = 0.027).

To gain further insight into the temporal dynamics of MPSE’s pre-
dictive capabilities across theNICU stay, we estimated the proportional risk
of being identified as a WGS candidate by MPSE using Cox proportional
hazards regression analysis24. The estimated probability and 95% CI of
candidate selection by MPSE for diagnostic, non-diagnostic, and unse-
quencedpatients is plotted inPanelCof Fig. 3.Using a rule-of-thumbMPSE
score threshold (calculated individually for each day) of 2 standard devia-
tions above the mean score of unsequenced control patients, diagnostic
patients were flagged byMPSE at a significantly higher frequency and speed
than both unsequenced patients (HR = 18.8, p = 1.9e−32) and non-
diagnostic sequenced patients (HR = 2.0, p = 0.03). At 48 h post-admis-
sion, MPSE had already flagged 74% (17 of 23) of diagnostic patients, 47%
(17 of 36) of non-diagnostic sequenced patients, and only 6% (100 of 1773)
of unsequenced patients. Furthermore, by 9 days post-admission all diag-
nostic patients had been flagged by MPSE or were censored as a result of
death orNICUdischarge, highlighting the speed at whichMPSEwas able to
determine correct clinical action for this group of patients. Supplementary
Table 7 contains the daily score threshold, the number of candidates
assessed byMPSE, and the cumulative number of patients who reached the
score threshold as part of this longitudinal analysis.

Discussion
We previously demonstrated that an MPSE-based automated pipeline for
prioritizing acutely ill infants for whole genome sequencing can meet or
exceed diagnostic yields obtained by time-consuming manual review of
clinical notes and histories12. Our work here using the clinical histories of
2941 NICU admits drawn from two different institutions serves to expand
on those originalfindings.A supplemental benchmark ofMPSE’s predictive
performance using various statistical classifiers revealed Naive Bayes and
SupportVectorMachinesare robust techniques forphenotype-drivepatient
prioritization (see performance benchmark in Supplementary Table 8). As
such,wehave provided pre-trainedmodels for both techniques in the public
MPSE GitHub repository (https://github.com/Yandell-Lab/MPSE). Asses-
sing MPSE’s flexibility with handling phenotype data from different CNLP
tools showed that MPSE’s performance is largely agnostic with respect to
upstreamCNLP tool.Moreover,we found that structuredEHRdata, suchas
ICD diagnosis codes, can provide an effective alternative for prioritizing
patients for WGS in health settings where access to clinical notes and NLP
pipelines is problematic. These two features of MPSE combine to greatly
lower the IT burden for deployment.

Our longitudinal analyses demonstrate that MPSE can identify those
childrenmost likely to benefit fromWGSwithin the first 48 h of admission
to the NICU, a critical window for maximally impactful care, and in some
cases long before human case review led to the same conclusion. Moreover,
the consistent performance of MPSE over the first 30 days post-admission
argues for its utility as a monitoring tool throughout the entirety of a
patient’s NICU stay. These findings make clear MPSE’s potential value as a

Fig. 2 | GEMAI performance is agnostic with respect to CNLP tool. Bars show the
proportion of diagnosed NeoSeq probands where the true causal genes were iden-
tified byGEM among the top 1st, 2nd, 5th, and 10th gene candidates. EachGEM run
differed by the input HPO term lists, which were made by extracting phenotypes
from patient clinical notes using CNLP (ClinPhen, CLiX, cTAKES, MedLEE,
MetaMapLite) or manual physician review. The RCHSD benchmark (n = 119
patients) results from the original GEM paper are included for reference (redrawn
with authors’ permission). Figure generated with R ggplot2 software.
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real-time clinical support tool and howMPSE could be used to improve cost
savings2,3,14,15 and the timeliness and effectiveness of care.

Finally, we have also shown that the same HPO term sets used by
MPSE for prioritization for WGS, regardless of the CNLP tool generating
them, can be directly consumed by the AI tool GEM for downstream
molecular diagnoses, further speeding and facilitating personalized care.
These results collectively demonstrate thatMPSE provides fast, flexible, and
highly scalable means for prioritizing critically ill newborns for whole
genome sequencing.

The American College of Medical Genetics and Genomics (ACMG)
2021 Practice Guideline recommends clinical genome sequencing as a first
or second-tier test for infants with one or more congenital anomalies25. We
compared the efficiency of using this ACMG guideline to using MPSE for
automated patient selection. Presence of one or more HPO terms corre-
sponding to common and clinically impactful congenital anomalies was
used to approximate the ACMG selection criteria (Supplementary Table 9).
The MPSE diagnostic yield at 48 h post-admission was 13% (17 diagnostic
patients out of 134 selected). The ACMG guideline-based diagnostic yield
was 4% (13 diagnostic patients out of 321 selected). These results suggest
MPSE can provide a 3.3-fold enrichment in diagnostic yield compared to
ACMG criteria alone while achieving essentially the same number (17 vs.
13) of diagnosed children.

Despite overwhelming clinical evidence that NICU and PICUgenome
sequencing saves lives and reduces costs3,14,15,25, several barriers still hinder its
broad adoption. One significant obstacle is reimbursement for testing by
payers26–28. Broader, more inclusive eligibility criteria simplify the candidate
selection process, but increase cost-burden and decrease diagnostic yield.
This can result in payer hesitancy to reimburseWGS, especially for negative
results.Whilemore stringent selection criteria candecrease cost-burdenand
increase diagnostic rates, they also increase the time-burden of candidate
assessment. Collectively, our results demonstrate MPSE’s potential to
standardize, speed, and render more scalable the WGS selection process. A
recently published clinical implementation study of MPSE provides addi-
tional support for this conclusion13. Moving forward, we will further eval-
uate the utility of MPSE as part of the recently funded GeneKids project
whose goal is to bring genome-based healthcare to the USA Intermountain
West, and explore secondary applications ofMPSE in assessing eligibility for
reimbursement29.

Methods
Datasets
Our clinical cohort comprised293 probandswho underwent rWGSat Rady
Children’s Hospital in San Diego (RCHSD), 85 of whom received a mole-
cular diagnosis for a Mendelian disorder. These 293 individuals were

Fig. 3 | MPSE enables automated WGS candidate
identification within the first 24 h in the NICU.
Panel A shows MPSE score distributions across the
first 96 h in the NICU for diagnostic (red) and
sequenced but non-diagnostic (blue) patients as well
as unsequenced NICU patients (green). Diagnostic
and non-diagnostic sequenced patients had sig-
nificantly higher MPSE scores than unsequenced
patients beginning 0–24 h after admission. Diag-
nostic patients had significantly higherMPSE scores
than non-diagnostic patients beginning at 48 h post-
admission. Boxplot comparison significance levels:
*** (p < 1e−5); * (p < 0.05). Panel B shows MPSE
score trajectories for these groups across the first 30
days in the NICU. Solid lines show the mean MPSE
score per group and the shaded regions cover one
standard deviation from each mean. Panel C shows
the probability of at-risk patients being classified as a
WGS candidate by MPSE (i.e., MPSE score
>2 standard deviations above the unsequenced
mean score) as a function of time. Cox proportional
hazards regression analysis confirmed the sig-
nificantly increased rate of MPSE candidate selec-
tion for diagnostic and non-diagnostic patients
selected for WGS compared to unsequenced
patients, with hazards ratios of 18.8 (95% CI
11.6–30.6; p = 1.9e−32) and 9.8 (95% CI 6.2–15.3;
p = 2.8e−23) respectively. Diagnostic patients were
also selected by MPSE at a higher rate than
sequenced but non-diagnostic patients (HR = 2.0;
95% CI 1.1–3.9; p = 0.03). Figure generated with R
ggplot2 software.
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selected from symptomatic children enrolled in prior studies exploring the
diagnostic rate, time to diagnosis, clinical utility, outcomes, and healthcare
utilization of rWGS between July 26, 2016, and September 25, 2018, at
RCHSD (ClinicalTrials.gov identifiers: NCT03211039, NCT02917460, and
NCT03385876). All participants presented with symptomatic illnesses of
unknown etiology and suspected genetic disorders. The diagnosed cases
provide a real-world population displaying various Mendelian conditions
arising from diverse modes of disease inheritance and disease-causing
genotypes. An additional 756 patients admitted to the NICU at RCHSD in
2018 were also included. These patients were added to enrich the dataset
with a broader spectrum of phenotypes not necessarily associated with
Mendelian diseases. In total, the RCHSDdataset used in this study contains
a total of 1049 individuals. Additional details are provided in
refs. 2,7,9,14,15.

We also employed a second, independent dataset consisting of 1838
newborn patients admitted to the University of Utah level III NICU from
January 2020 to December 2022, the approximate study period of the Utah
NeoSeq Project. The Utah NeoSeq Project was a multidisciplinary, long-
itudinal rapid genome sequencing program conducted at the University of
Utah to improve genetic diagnosis in critically ill infants in the NICU23.
Within the Utah cohort of 1838 patients, 65 were selected for rWGS based
on manual chart review as part of the NeoSeq study. 26 of these children
received a molecular diagnosis.

The need for Institutional Review Board approval at Rady Children’s
Hospital for this studywas waived as all patient data used in this project was
previously collected as part of studies approved by the Institutional Review
Boards of Rady Children’s Hospital. The University of Utah Institutional
Review Board approved the use of human subjects for this research under a
waiver for the requirement to obtain informed consent. None of the results
reported in this manuscript can be used to identify individual patients. This
research was conducted in full compliance with all relevant ethical regula-
tions, including the Declaration of Helsinki.

Statistical classifiers
Various Machine Learning (ML) classifiers were used to train multiple
independent MPSE models. The original MPSE algorithm employed a
Naive Bayes classifier and is described in detail in our proof-of-concept
work12. Additional MPSE models were trained using the following ML
classifiers: K-Nearest Neighbors (KNN)30, Decision Trees (DT)31, Random
Forests (RF)32, Logistic Regression (LR)33, Gradient Boost Machine
(GBM)34, Support Vector Machine (SVM)35, and Multi-Layer Perceptron
(MLP)36. Each classifier was implemented using scikit-learn, a general-
purpose machine learning library written in the Python programming
language37. Each method was run with scikit-learn version 1.4.2 default
parameters. Models were trained using the RCHSD cohort (n = 1049) and
internally validated using stratified K-fold cross validation (K = 8). Each of
the trained classifiers was subsequently validated externally with five ran-
domly split subsets of the Utah cohort (n = 419 per set). These results are
described in Supplementary Table 8 and its associated text.

Phenotype and alternative data types
Highly curated, manually created HPO-based phenotype descriptions were
provided for each of the 65 sequencedUniversity of Utah probands. CNLP-
derived phenotype descriptions were generated for all 1049 RCHSD pro-
bands and the 1838 University of Utah probands by CNLP analysis of
clinical notes recorded during NICU stay using CLiX18. Additional CNLP-
derived phenotype descriptions were generated using the following text
mining and CNLP methods: ClinPhen19, cTAKES20, MedLEE21, and
MetaMapLite22 for the University of Utah probands. CLiX and ClinPhen
generate HPO terms directly from clinic notes, while cTAKES, MedLEE,
and MetaMapLite return Unified Medical Language System (UMLS)38

ConceptUnique Identifiers (CUIs) whichwere thenmapped toHPO terms
using theUMLSMetathesaurus’networkhierarchy. For sequencedpatients,
clinical notes dated post-WGSwere excluded from analysis to remove notes
containing sequencing results. In addition to CNLP-derived phenotype

data, ICD-10 diagnosis codes, laboratory tests, medications, and other
hospital orderswere collected for all University ofUtah probands to serve as
alternative data sources for MPSE modeling. Unlike free-text clinic notes,
these alternative data types are stored in structured form within the Uni-
versity of Utah’s Enterprise Data Warehouse (EDW) and were extracted
using automated database queries. Laboratory tests and medication orders
were encoded as binary variables to represent the presence/absence of a test
or order without the context of the test result or medication dosage, fre-
quency, adherence, etc.

Calculating semantic similarity between phenotype sets
We calculated pairwise semantic similarity between physician- and CNLP-
generated HPO term sets for patients using the Python package PyHPO
v3.1.4. PyHPO calculates the similarity between two HPO sets as described
in refs. 39,40.We also generated simulated, ‘randomized’, HPO termsets for
every proband in order to provide a “null” distribution for our semantic
similarity calculations. For each “real” pairwise set comparison, simulated
HPO sets of equal size were randomly sampled from the HPO. Semantic
similaritybetween these sets of randomly sampled termswas thencalculated
using the samemethod thatwas used to compare themanual andCNLP sets
to one another. Significant differences between “real” and “randomized” set
similarities were tested for using paired Student’s T-test.

Testing the precision and diagnostic yield of MPSE
Wecalculated theprecisionanddiagnostic yield atK for the 5, 10, 25, 45, and
65 top-scoring patients by dividing the number of true positives by K. For
calculating precision, a true positive was defined as aWGS-selected patient
that was classified (flagged) by MPSE as a WGS candidate based upon the
contents of its clinical notes using a particular C-NLP tool, i.e., its MPSE
score >0. For calculating diagnostic yield, a true positive was defined as a
WGS-diagnosed patient that was flagged by MPSE (MPSE score >0).

Gene prioritization using NLP-derived phenotype descriptions
Artificial Intelligence (AI)-based prioritization and scoring of candidate
disease genes for the diagnosed probands was performed using Fabric
GEM11. GEM is a commercial tool for AI-assisted clinical interpretation of
WES and WGS. It has been licensed by the University of Utah and Rady
Children’s Hospitals from Fabric Genomics Inc. Additional licensing
information is available from Fabric Genomics Inc. GEM inputs are genetic
variant calls in VCF format and case metadata, including parental affection
status, andpatient phenotypes in the formofHPO terms. For these analyses,
GEM was run six times for each NeoSeq proband, varying only the input
HPO lists, the first with the proband’s physician-selected terms and the
remaining runs using HPO term sets created with the five different
CNLP tools.

Longitudinal analysis of MPSE scores
We conducted a longitudinal analysis of MPSE scores across each
University of Utah patient’s NICU stay. For this analysis, we employed
the original MPSE model trained on the RCHSD cohort and utilized
CLiX-derived HPO phenotype descriptions. Human Phenotype
Ontology (HPO) terms were timestamped according to the date of the
clinical note, with each day’s cumulative HPO list being used forMPSE
score calculations. Six sequenced University of Utah patients had to be
excluded from this analysis because a data upload error left clinic note
timestamps unavailable for these patients, leaving 59 remaining
sequenced patients available for longitudinal analysis. Subsequently,
we calculated average daily MPSE scores for unsequenced controls,
sequenced but not diagnostic cases, and diagnostic cases.We estimated
the daily probability MPSE would recommend patients from these
groups for sequencing using a score threshold (calculated individually
for each day) of 2 standard deviations above the mean score of unse-
quenced control patients and calculated the associated hazards ratio
with Cox proportional hazards regression analysis using the R survival
package (v3.7.0).
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Comparing diagnostic yield between MPSE and ACMG practice
guideline
We calculated the 48 h post-admission diagnostic yield achieved by MPSE
versus that achieved using American College of Medical Genetics and
Genomics (ACMG) criteria. University of Utah cohort patients (n = 1838)
were selected for WGS by MPSE at 48 h post-admission using the score
thresholding approach detailed in the longitudinal analysis section (above).
Patients from the same group and time point were again selected for WGS
according to the 2021 ACMGPractice Guideline25 for the use of exome and
genome sequencing for pediatric patients with congenital anomalies or
intellectual disability. This guideline recommends clinical genome
sequencing as a first or second-tier test for patients with congenital
anomalies prior to one year of age. Thus, the selection criteria for ACMG
was one or more HPO terms indicating a congenital anomaly. Because
phenotype terms representing congenital anomalies are scattered
throughout the HPO hierarchy and not related under a single top-level
parent term, wemanually gathered a list of 40HPO terms corresponding to
common and clinically impactful congenital anomalies. See Supplementary
Table 9. The proportion of selected individuals who were previously diag-
nosed by WGS was then calculated using these two methods.

Data availability
The datasets used in this study are available from the corresponding author
upon reasonable request.

Code availability
MPSE source code, documentation, and synthetic datasets are available on
GitHub (https://github.com/Yandell-Lab/MPSE).

Received: 5 December 2024; Accepted: 2 June 2025;

References
1. Christianson, A., Howson, C. P. & Modell, B. March of Dimes. https://

onprem.marchofdimes.org/materials/global-report-on-birth-
defects-the-hidden-toll-of--WAk00l8AFdheR3Hyz4TRcSVN
c5tvO5T0ziR4-AlnXYs.pdf (2006).

2. Farnaes, L. et al. Rapid whole-genome sequencing decreases infant
morbidity and cost of hospitalization.NPJ Genom. Med. 3, 10 (2018).

3. Dimmock, D. et al. Project baby bear: rapid precision care
incorporating rWGS in 5 California children’s hospitals demonstrates
improved clinical outcomes and reduced costs of care. Am. J. Hum.
Genet. 108, 1231–1238 (2021).

4. Kingsmore, S. F. & Cole, F. S. The role of genome sequencing in the
NICU. Annu. Rev. Genom. Hum. Genet. 23, 427 (2022).

5. French, C. E. et al. Whole genome sequencing reveals that genetic
conditions are frequent in intensively ill children. Intensive Care Med.
45, 627–636 (2019).

6. Petrikin, J. E. et al. The NSIGHT1-randomized controlled trial: rapid
whole-genome sequencing for accelerated etiologic diagnosis in
critically ill infants. NPJ Genom. Med. 3, 6 (2018).

7. Kingsmore,S. F. et al. A randomized, controlled trial of theanalytic and
diagnostic performance of singleton and trio, rapid genome and
exome sequencing in ill infants. Am. J. Hum. Genet. 105, 719–733
(2019).

8. Clark, M.M. et al. Meta-analysis of the diagnostic and clinical utility of
genome and exome sequencing and chromosomal microarray in
children with suspected genetic diseases. NPJ Genom. Med. 3, 16
(2018).

9. Clark,M.M. et al. Diagnosis of genetic diseases in seriously ill children
by rapidwhole-genome sequencing and automated phenotyping and
interpretation. Sci. Transl. Med. 11, eaat6177 (2019).

10. James, K. N. et al. Partially automated whole-genome sequencing
reanalysis of previously undiagnosed pediatric patients can efficiently
yield new diagnoses. Npj Genom. Med. 5, 1–8 (2020).

11. De La Vega, F. M. et al. Artificial intelligence enables comprehensive
genome interpretation and nomination of candidate diagnoses for
rare genetic diseases. Genome Med. 13, 153 (2021).

12. Peterson, B. et al. Automated prioritization of sick newborns for whole
genome sequencing using clinical natural language processing and
machine learning. Genome Med. 15, 18 (2023).

13. Juarez, E. F. et al. A machine learning decision support tool optimizes
WGS utilization in a neonatal intensive care unit. Npj Digit. Med. 8, 72
(2025).

14. Dimmock, D. P. et al. An RCT of rapid genomic sequencing among
seriously ill infants results in high clinical utility, changes inmanagement,
and low perceived harm. Am. J. Hum. Genet. 107, 942–952 (2020).

15. Sweeney, N. M. et al. Rapid whole genome sequencing impacts care
and resource utilization in infants with congenital heart disease. NPJ
Genom. Med. 6, 29 (2021).

16. The NICUSeq Study Group Effect of whole-genome sequencing on
the clinical management of acutely ill infants with suspected genetic
disease: a randomized clinical trial. JAMA Pediatr. 175, 1218–1226
(2021).

17. Owen, M. J. et al. An automated 13.5 h system for scalable diagnosis
and acute management guidance for genetic diseases. Nat.
Commun. 13, 4057 (2022).

18. Clinithink. Clinithink: AI solutions company, clinical data solutions for
life science & healthcare. https://www.clinithink.com (2025).

19. Deisseroth, C. A. et al. ClinPhen extracts and prioritizes patient
phenotypes directly frommedical records to expedite genetic disease
diagnosis. Genet. Med. 21, 1585–1593 (2019).

20. Savova, G. K. et al. Mayo clinical Text Analysis and Knowledge
ExtractionSystem (cTAKES): architecture, component evaluationand
applications. J. Am. Med. Inform. Assoc. JAMIA 17, 507–513 (2010).

21. Friedman, C., Shagina, L., Lussier, Y. & Hripcsak, G. Automated
encoding of clinical documents based on natural language
processing. J. Am. Med. Inform. Assoc. JAMIA 11, 392–402 (2004).

22. Demner-Fushman, D., Rogers, W. J. & Aronson, A. R. MetaMap Lite:
an evaluation of a new Java implementation ofMetaMap. J. Am.Med.
Inform. Assoc. JAMIA 24, 841–844 (2017).

23. Malone Jenkins, S. et al. The Utah NeoSeq Project: a collaborative
multidisciplinary program to facilitate genomic diagnostics in the
neonatal intensive care unit. Npj Genom. Med. 10, 1–11 (2025).

24. Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. Ser. B
Methodol. 34, 187–202 (1972).

25. Manickam, K. et al. Exome and genome sequencing for pediatric
patients with congenital anomalies or intellectual disability: an
evidence-based clinical guideline of the American College of Medical
Genetics and Genomics (ACMG).Genet. Med. 23, 2029–2037 (2021).

26. Reuter, C. M. et al. Yield of whole exome sequencing in undiagnosed
patients facing insurance coverage barriers to genetic testing. J.
Genet. Couns. 28, 1107–1118 (2019).

27. Phillips, K. A. et al. US private payers’ perspectives on insurance
coverage for genome sequencing versus exome sequencing: a study
by theClinicalSequencingEvidence-GeneratingResearchConsortium
(CSER). Genet. Med. J. Am. Coll. Med. Genet. 24, 238 (2021).

28. Grant, P. et al. Out-of-pocket and private pay in clinical genetic
testing: a scoping review. Clin. Genet. 100, 504–521 (2021).

29. Friesen, S. New collaboration aims to provide genetic diagnoses for
thousands of kids. https://uofuhealth.utah.edu/newsroom/news/
2024/08/new-collaboration-aims-provide-genetic-diagnoses-
thousands-of-kids (University of Utah Health Newsroom, 2024).

30. Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE
Trans. Inf. Theory 13, 21–27 (1967).

31. Azar, A. T. & El-Metwally, S.M. Decision tree classifiers for automated
medical diagnosis. Neural Comput. Appl. 23, 2387–2403 (2013).

32. Kulkarni, V. Y. & Sinha, D. P. K. Random Forest Classifiers: A Survey
and Future Research Directions. Int. J. Adv. Comput. 36, 1144–1153
(2013).

https://doi.org/10.1038/s41525-025-00506-3 Article

npj Genomic Medicine |           (2025) 10:47 7

https://github.com/Yandell-Lab/MPSE
https://onprem.marchofdimes.org/materials/global-report-on-birth-defects-the-hidden-toll-of-WAk00l8AFdheR3Hyz4TRcSVNc5tvO5T0ziR4-AlnXYs.pdf
https://onprem.marchofdimes.org/materials/global-report-on-birth-defects-the-hidden-toll-of-WAk00l8AFdheR3Hyz4TRcSVNc5tvO5T0ziR4-AlnXYs.pdf
https://onprem.marchofdimes.org/materials/global-report-on-birth-defects-the-hidden-toll-of-WAk00l8AFdheR3Hyz4TRcSVNc5tvO5T0ziR4-AlnXYs.pdf
https://onprem.marchofdimes.org/materials/global-report-on-birth-defects-the-hidden-toll-of-WAk00l8AFdheR3Hyz4TRcSVNc5tvO5T0ziR4-AlnXYs.pdf
https://onprem.marchofdimes.org/materials/global-report-on-birth-defects-the-hidden-toll-of-WAk00l8AFdheR3Hyz4TRcSVNc5tvO5T0ziR4-AlnXYs.pdf
https://www.clinithink.com
https://www.clinithink.com
https://uofuhealth.utah.edu/newsroom/news/2024/08/new-collaboration-aims-provide-genetic-diagnoses-thousands-of-kids
https://uofuhealth.utah.edu/newsroom/news/2024/08/new-collaboration-aims-provide-genetic-diagnoses-thousands-of-kids
https://uofuhealth.utah.edu/newsroom/news/2024/08/new-collaboration-aims-provide-genetic-diagnoses-thousands-of-kids
https://uofuhealth.utah.edu/newsroom/news/2024/08/new-collaboration-aims-provide-genetic-diagnoses-thousands-of-kids
www.nature.com/npjgenmed


33. Dreiseitl, S. & Ohno-Machado, L. Logistic regression and artificial
neural network classification models: a methodology review. J.
Biomed. Inform. 35, 352–359 (2002).

34. Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative
analysis of gradient boosting algorithms. Artif. Intell. Rev. 54,
1937–1967 (2021).

35. Cortes, C. & Vapnik, V. Support-vector networks.Mach. Learn. 20,
273–297 (1995).

36. Schmidt, B. & Hildebrandt, A. Deep learning in next-generation
sequencing. Drug Discov. Today 26, 173–180 (2021).

37. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach.
Learn. Res. 12, 2825–2830 (2011).

38. Humphreys, B. L. & Lindberg, D. A. The UMLS project: making the
conceptual connection between users and the information they need.
Bull. Med. Libr. Assoc. 81, 170–177 (1993).

39. Robinson, P. N. et al. The human phenotype ontology: a tool for
annotating and analyzing human hereditary disease. Am. J. Hum.
Genet. 83, 610–615 (2008).

40. Pesquita, C. et al. Metrics for GO based protein semantic similarity: a
systematic evaluation. BMC Bioinforma. 9, S4 (2008).

Acknowledgements
Thepreparationof thismanuscriptwassupportedby theUniversityofUtah’s
National Library ofMedicine training grant (T15LM007124, PI - Eilbeck), NIH
grant UL1TR002550 from NCATS to E.J. Topol (with sub-award to Rady
Children's Institute for Genomic Medicine), and the Warren Alpert Founda-
tion. The Utah NeoSeq Project was funded by the Center for Genomic
Medicine at the University of Utah Health, ARUP Laboratories, the Ben B.
and Iris M. Margolis Foundation, the R. Harold Burton Foundation, and the
Mark Miller Foundation. This work utilized resources and support from the
Center for High Performance Computing at the University of Utah. The
computational resources used were partially funded by the NIH Shared
Instrumentation grant 1S10OD021644-01A1. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the National Library of Medicine or the National Institutes of Health.

Author contributions
M.Y., B.P., and S.F.K. wrote the manuscript. B.P., M.Y., B.M., E.J.H., and
S.F.K. designed the study. M.Y., B.P., and E.J.H., developed the MPSE
algorithm. B.P., E.J.H., B.M., and J.L. performed the data analysis. B.P.
generated all figures. E.F.J, S.M.J., and M.T.F. compiled cases and clinical
evidence. E.F. andM.N.B. provided feedback on features and development.
Y.L., M.G.R., M.N.B., S.F.K, and S.M.J. sponsored the project and provided

helpful discussions and edits of the manuscript. All authors reviewed and
approved the manuscript.

Competing interests
M.Y. is a co-founder andconsultant for FabricGenomics Inc. andhas received
consulting fees and stock grants from Fabric Genomics Inc. M.G.R. is a
shareholder of Fabric Genomics Inc. E.F. is an employee of Fabric Genomics
Inc. B.M. andE.J.H. have received consulting fees andhold equity fromFabric
Genomics Inc. S.F.K. is an associate editor for npj GenomicMedicine but was
notpartof thepeer reviewordecisionmakingof thismanuscript.Theremaining
authors declare that they have no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41525-025-00506-3.

Correspondence and requests for materials should be addressed to
Mark Yandell.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41525-025-00506-3 Article

npj Genomic Medicine |           (2025) 10:47 8

https://doi.org/10.1038/s41525-025-00506-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjgenmed

	MPSE identifies newborns for whole genome sequencing within 48&#x02009;h of NICU admission
	Results
	Comparing clinical NLP tool outputs
	Term counts
	Semantic similarity
	NLP sensitivity and accuracy

	MPSE flexibly handles input data from a variety of sources
	MPSE performance using different CNLP tools
	MPSE performance using alternative data types
	Diagnostic performance using different CNLP tools

	MPSE can identify patients who would benefit from WGS within the first 48&#x02009;h of NICU admission

	Discussion
	Methods
	Datasets
	Statistical classifiers
	Phenotype and alternative data types
	Calculating semantic similarity between phenotype sets
	Testing the precision and diagnostic yield of MPSE
	Gene prioritization using NLP-derived phenotype descriptions
	Longitudinal analysis of MPSE scores
	Comparing diagnostic yield between MPSE and ACMG practice guideline

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




