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Mercuric ion reductase (MerA), a mercury detoxification enzyme, has been tuned by
evolution to have high specificity for mercuric ions (Hg2+) and to catalyze their reduction to
a more volatile, less toxic elemental form. Here, we present a biochemical and structural
characterization of MerA from the thermophilic crenarchaeon Metallosphaera sedula.
MerA from M. sedula is a thermostable enzyme, and remains active after extended
incubation at 97°C. At 37°C, the NADPH oxidation-linked Hg2+ reduction specific activity
was found to be 1.9µmol/min·mg, increasing to 3.1µmol/min·mg at 70°C. M. sedula
MerA crystals were obtained and the structure was solved to 1.6Å, representing the first
solved crystal structure of a thermophilic MerA. Comparison of both the crystal structure
and amino acid sequence of MerA from M. sedula to mesophillic counterparts provides
new insights into the structural determinants that underpin the thermal stability of the
enzyme.

Keywords: mercuric reductase, mercury detoxification, thermophile, thermostability, structure, biosensor, MerA

Introduction

The ionic form of mercury, which is one of the most toxic metals known to biology (Gertrud
et al., 1989; Nies, 2003; Vetriani et al., 2005), is naturally present at elevated concentrations in many
hydrothermal vents, hot springs, and acid mine drainage fluids (Batten and Scow, 2003; Simbahan
et al., 2005; Vetriani et al., 2005; King et al., 2006; Boyd et al., 2009; Wang et al., 2011). In these
environments, biology utilizes a finely tuned protein catalyst termed themercuric reductase (MerA)
(encoded by the merA gene) in order to reduce toxic ionic mercury (Hg2+) to the far less toxic,
volatile, and elemental form (Hg0). The reaction catalyzed by MerA follows the reaction scheme
of NADPH+Hg2+ →NADP+ +Hg0 (Barkay et al., 2003). MerAs, which are part of the disulfide
oxidoreductase (DSOR) family (Fox and Walsh, 1982), are ancient enzymes, having arisen in high
temperature environments after the great oxidation event ~2.4 billion years ago (Barkay et al., 2010).
Since that time, evolution has finely tuned MerA through recruitment of regulatory and transport
proteins (Boyd and Barkay, 2012) to serve a diversity of organisms, including both Archaea and
Bacteria, which encounter Hg2+ ions in less extreme mesophilic settings, while retaining extremely
high stability and substrate specificity. These characteristics of mercuric reductases lend them to
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possible sensor applications, wherein the redox properties of
the enzyme could be coupled to an amplifiable electrical signal
(Adami et al., 1995; Han et al., 2001; Zhang et al., 2011). A
stable mercuric reductase may also be used to potentially mitigate
mercury contamination (Nascimento andChartone-Souza, 2003).

Metallosphaera sedula (Mse), isolated previously from Piscia-
relli Solfatara in Naples, Italy (Gertrud et al., 1989), has a min-
imum and maximum temperature for growth range of 50–80°C
(Auernik et al., 2008a). Pisciarelli Solfatara itself contains a variety
of thermal features that range in temperature from ~30°C to
nearly 100°C, and a pH range of 1.5 to around 6.0 with elevated
concentrations of heavy metals, including Hg2+ at concentrations
up to 0.005 g/kg (Huber et al., 2000). The genome sequence ofMse
was completed in 2008, (Auernik et al., 2008b), making it possible
to identify mechanisms of Hg2+ tolerance at the genomic level.
The mer operon in Mse includes both MerA and MerH, where
MerH may aid metal trafficking to the MerR transcription factor
(Schelert et al., 2013).

A variety of MerAs have been characterized previously, most
notably a protein encoded on a transposon isolated from Pseu-
domonas aeruginosa, which is termed Tn501 (Fox and Walsh,
1982), as well as MerA from Bacillus cereus (BcMerA) (Schiering
et al., 1991) and a MerA from a deep brine environment, termed
ATII-LCL (Sayed et al., 2013). Collectively, these biochemical
studies have revealed MerAs that exhibit Km values for Hg2+
that range from 9–70µM and specific activities that range from
1.05–50µmol/min·mg. Structural characterization was first car-
ried out on BcMerA (Schiering et al., 1991) and later on Tn501
(Ledwidge et al., 2005). Most recently, the Tn501 structure has
been solved in complex with Hg2+(Lian et al., 2014). Structural
characterization confirmed that MerA is a member of the DSOR
protein family, which adopts a βαββαβ fold, and which is known
to catalyze pyridine-dependent substrate reduction with a charac-
teristic active site CXXXXCmotif (Argyrou and Blanchard, 2004).
Some MerAs also harbor an additional N-terminal GMTCXXC
motif (Boyd and Barkay, 2012) that assists in metal recruitment
(Ledwidge et al., 2005). A third pair of conserved cysteines are
located in a flexible region on the C-terminal domain, and are
responsible for delivering mercuric ions to the active site of the
opposing monomer (Lian et al., 2014).

Despite these advances, the structural characterization of a
MerA from a thermophile has yet to be conducted, even though
this is critical for understanding the properties of enzymes
involved in mercury detoxification of high-temperature environ-
ments where mercury concentrations are very high. Structural
characterization is important for both understanding the ther-
mophilic origins of the protein (Barkay et al., 2010; Boyd and
Barkay, 2012) as well as for possible incorporation into stable
biotechnologies. Here, we report biochemical and structural char-
acterization of a thermostable MerA from the aerobic thermoaci-
dophilic CrenarchaeonMse (MseMerA).

Materials and Methods

Bioinformatics
MerA homologs were compiled from the Department of Energy-
Integrated Microbial Genomes database using BLASTp and the

Tn501 MerA as a query. Representative homologs were screened
for conserved residues that define MerA (as described above),
and those protein sequences with these residues were aligned
using CLUSTALX (version 2.0.8) specifying the Gonnet 250 pro-
tein substitution matrix and default gap extension and opening
penalties (Larkin et al., 2007), with dihydrolipoamide dehydro-
genase fromMagnetospirillum magneticumAMB-1 (YP_423326),
Thermus thermophilusHB27 (YP_005669), and Pseudomonas flu-
orescens Pf0-1 (YP_351398) serving as outgroups. N-terminal
“NmerA” sequence was trimmed from the alignment block as
previously described (Barkay et al., 2010) and the phylogeny of
MerA was evaluated with PhyML (ver. 3.0.1) (Guindon et al.,
2010) using the LG amino acid substitution matrix with a discrete
four category gamma substitution model and a defined propor-
tion of invariant sites. A consensus phylogenetic tree was pro-
jected from 100 bootstrap replications using FigTree (ver. 1.2.2)
(http://tree.bio.ed.ac.uk/software/figtree/).

Structural superimpositions were generated by the program
UCSF Chimera (Pettersen et al., 2004). The protein sequence of
MseMerA was blasted with NCBI BLASTp. The top eight hits
were comparedwithmesophilicmercuric reductases from Staphy-
lococcus aureus, B. cereus, P. aeruginosa, and a sequence from
a hydrothermal deep-sea brine environment, ATII-LCL (Sayed
et al., 2013). It should be noted that while the ATII-LCL sequence
was isolated from a hydrothermal vent system with a temperature
of 68°C, the optimum temperature for activity was shown to be
30–50°C (Sayed et al., 2013), indicating that it is not adapted to the
thermal regime fromwhere it was isolated or that the environment
from where it was isolated is variable with respect to temperature.
VADARwas used to evaluate the surface area and charged residue
percentage of MerA homologs (Willard et al., 2003), while the
ProtParam tool available from ExPASy was used to calculate the
aliphatic index of MerA homologs (Gasteiger et al., 2005).

Expression and Purification
MseMerA DSM 5348 sequence was codon-optimized and syn-
thesized by GenScript USA Inc. with an N-terminal 6× His-
tag (Data Sheet 1 in Supplementary Material). The gene was
cloned intoMCS1 of pETDuet-1 and transformed intoEscherichia
coli BL21DE3 cells (Novagen, EMD Millipore, USA). Sequence-
based confirmation of MseMerA transformation was performed
by Davis Sequencing, Inc. (1450 Drew Ave, Suite 100, Davis,
CA, USA).

Fifty milliliters of Luria-Bertani (LB) broth, supplemented with
0.5mM riboflavin and 0.1 g/L ampicillin, were inoculated with
recombinant E. coli cells containing MseMerA and shaken at
250 rpm at room temperature overnight. One liter of LB medium,
as described above, was inoculated with 2mL from the overnight
culture, and shaken at 250 rpm until an OD600 of 0.5–0.7 was
reached. About 2mM IPTGwas added and expressionwas carried
out for 4 h, after which the cultures were centrifuged at 6000× g
for 10min (4°C), with the resultant cell pellet immediately being
flash frozen in liquid nitrogen and stored at −80°C. Each liter of
cell culture yielded 3.0–3.5 g of cell paste.

Cell paste was subjected to three freeze/thaw cycles to facili-
tate lysis, after which cells were re-suspended in 5mL Buffer A
(100mMNaCl, 50mMMOPSwith a pHof 6.7, 25mM imidazole)
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per gram of cells. Lysozyme and deoxyribonuclease (DNase) were
added to final concentrations of 0.1mg/mL along with phenyl-
methylsulfonyl fluoride (PMSF)-saturated isopropanol to a final
concentration of 0.1% v/v, and this mixture was incubated for
30min at room temperature. Triton X-100 was then added to a
final concentration of 1% v/v, and this was mixed for 30min. The
crude lysate was then clarified by centrifugation at 100,000× g
for 1 h (4°C). The resulting clarified lysate was observed to have
a yellow color.

Purification of MseMerA was carried out using a 75mL gra-
dient from 100% Buffer A to 100% Buffer B (100mL NaCl,
50mM MOPS with a pH 6.7, 250mM imidazole) on a 2mL Ni-
NTA column (Qiagen) at 3mL/min. Seven milliliter fractions
were collected and further analyzed with an SDS-PAGE gel. Frac-
tions containing pure protein were combined and concentrated
to 10mg/mL, buffer exchanged to Buffer C (10mM MOPS pH
of 6.7), and the protein was then concentrated to 30mg/mL and
flash-frozen in liquid nitrogen. Purity of the protein was con-
firmed by SDS- and Native PAGE (Figure S1 in Supplementary
Material). A yield of 1.5mg of pure protein per liter of growth
culture was achieved.

Activity Assay
Activity assays were carried out in 100mM NaCl, 50mM MOPS
with a pH of 6.7, 0.2mg/mL MseMerA, and 1mM HgCl2, and
these were initiated by the addition of 0.2mM NADPH, similar
to previously established procedures (Fox and Walsh, 1982). For
kinetic studies, the concentration of Hg2+ ranged from 28.6µM
to 2.77mM. NADPH oxidation was monitored at 338 nm using
a Cary 6000 UV/Vis spectrometer equipped with a 1× 1 Peltier.
Assays were conducted from 37 to 70°C, above which tempera-
ture the rate of non-enzymatic NADPH oxidation was too high
to accurately measure enzymatic activity. In order to determine
the thermostability of MseMerA, an aliquot of the enzyme was
assayed at 37°C and the remaining protein was boiled at 97°C
for 100min, after which the enzymatic activity was once again
measured at 37°C.

Crystallization and Structure Determination
MseMerA crystals were obtained using the hanging drop method.
Crystallization drops contained 0.085M TRIS (pH 8.5), 15% v/v
glycerol, 14% w/v PEG400, 0.19M LiSO4, and 20mg/mL protein.
Crystals were obtained after 2weeks, mounted on cryo loops, and
shipped to the Stanford Synchrotron Radiation Lightsource for X-
ray data collection. Diffraction data were collected at 100K using
the 12-2 beamline. Diffraction images were indexed, integrated,
and scaled using HKL2000 (Otwinowski and Minor, 1997).

The structure of MseMerA was solved to 1.6 Å using CCP4
molecular replacement (Cowtan et al., 2011) of Tn501MerA
(PDB ID: 1ZK7), which shares 37% amino acid identity with
MseMerA. Model building was performed in Coot (Emsley et al.,
2010) and coordinates were refined to reasonable stereochemistry
at a resolution 1.6 Å (Figure S3 in Supplementary Material)
using REFMAC5 (Murshudov et al., 1997). The structure was
validated using MolProbity (Chen et al., 2010) and all molecular
images were calculated in PyMol (Delano, 2002). Structural
superimpositions were generated both with 1ZK7 (Ledwidge
et al., 2005) and 4K7Z (Lian et al., 2014), in which the active site

cysteines were substituted by alanines and could be solved in
complex with the Hg2+ ion.

Results

Thermal Adaptation of MseMerA
Phylogenetic reconstruction of representative core (NmerA
trimmed)MerA sequences revealed a number of deeply branching
lineages from thermophilic taxa, consistent with previous anal-
yses that indicate MerA likely originated in a high temperature
environment (Schelert et al., 2004; Barkay et al., 2010; Boyd
and Barkay, 2012). MseMerA clustered among MerA from ther-
mophilic crenarchaeota (Figure 1). Sequence alignments reveal
both the active site CXXXXC motif and C-terminal cysteines
that are conserved among all MerA sequences. However, several
key differences were observed that may be involved in confer-
ring thermotolerance (Figure 2). Specifically, the thermophilic
enzymes are missing regions corresponding to amino acids 66–71
and 130–134Tn501 (Tn501MerAnumbering), suggesting a reduc-
tion in loop regions in comparison to the mesophilic enzymes
(Figure 2). Two sets of residues, V317 and Y441, are within
putative coordination distance of the active-site mercury. These
residues are substituted for an E and F, respectively, in MseMerA
and other thermophiles with the exception of Hydrogenobacter
thermophilus TK-6 (YNP_003432979) andHydrogenobaculum sp.
Y04AAS1 (YNP_002121876).

A comparison of the MseMerA crystal structure to the previ-
ously determined Tn501MerA structure (PDB: 1ZK7) (Ledwidge
et al., 2005) reveals that the two structures are highly similar,
with an overall C-alpha deviation of 1.5 Å rmsd as calculated by
Dali Lite (McWilliam et al., 2013). Two particular loop regions are
shorter in MseMerA (Figure 3A). This was further supported by
VADAR (Willard et al., 2003), which calculated a 4% decrease in
coil regions inMseMerA. The calculated surface area ofMseMerA,
19,966.5 Å2, is slightly reduced in comparison to Tn501MerA,
with a surface area of 21,217.4 Å2.

MEGA (Tamura et al., 2013) was used to compile an amino acid
composition chart for the sequences examined. The thermophiles
were observed to have a larger number of positively charged
amino acids. VADAR calculated the total charged residues in
MseMerA to be 25% of residues compared to 21% of residues
in Tn501MerA, and 24% in BcMerA. An increase in ionic inter-
actions may therefore represent a factor contributing to MerAs
thermal stability (Szilágyi and Závodszky, 2000). The aliphatic
index of Mse, Tn501, and Bc MerAs were calculated by ExPASy’s
ProtParam tool (Gasteiger et al., 2005), and found to be 101.63,
98.65, and 97.86, respectively, again in agreement withMseMerA
having higher thermostability (Ikai, 1980).

Biochemical Characterization
The specific activity of MseMerA was examined from 37 to 70°C
(Figure 4). One unit of activity was defined as 1µmol NADPH
oxidized per minute. At 37°C, the specific activity was found
to be 1.9U/mg, increasing up to 3.1U/mg at 70°C. Mercury
dependence ofMseMerA was determined, with Km values of 400
and 150µM at 37 and 70°C, respectively. Specific activity was
not determined above 70°C due to the difficulty of discriminat-
ing between enzymatic and non-enzymatic NADPH oxidation
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FIGURE 1 | Maximum-likelihood phylogenetic reconstruction of MerAs, with homologs from thermophilic taxa highlighted in red. MseMerA is
boldfaced. Bootstrap support is indicated by black (>90), gray (80–89), and open (70–79) circles. Nodes with no symbol exhibited bootstrap values of <70.

at high temperatures. The thermal stability of MseMerA was
tested by incubating the enzyme at 97°C for up to 100min, fol-
lowed by assessment of enzymatic activity at 37°C. Even after
100min of incubation at 97°C, no decrease in overall activity was
observed when compared to the untreated enzyme (Figure S2 in
SupplementaryMaterial). TheKcat at 70°Cwas found to be 23 s−1,
with a Kcat/Km of 0.15µM−1 s−1.

Structural Characterization of MseMerA
MseMerA crystals were obtained using vapor diffusion in a pre-
cipitating solution of 14% polyethylene glycol 4000 and 0.19M
lithium sulfate. These crystals belonged to space group P22121
and contained two monomers per asymmetric unit, assem-
bled into one homodimer (Figure 3B). The crystal structure
of MseMerA was solved to 1.6 Å, with R and Rfree values of
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FIGURE 2 |MseMerA aligned with other MerAs reveals two loop regions, L1 and L2, which may be involved in conferring thermostability, and two
positions at 326 and 452 (highlighted with stars), where the active site region is different between thermophiles and mesophiles.

FIGURE 3 | (A) Structural superimposition of MseMerA monomer (cyan) with Tn501MerA (green) reveals a decrease in loop regions (labeled L1 and L2) in MseMerA.
(B) Cartoon representation of a dimer of MseMerA with bound FAD.

FIGURE 4 | NADPH oxidation activity of MseMerA incubated at
temperatures ranging from 37 to 70°C.

16.9 and 19.6%, respectively. Bound FAD was observed, sug-
gesting that these molecules act to stabilize the structure. No
mercury was observed in the active site. As expected based on
the sequence alignment, a clear reduction in loop regions was
observed in comparison to Tn501MerA (Figure 3A). No electron
density for the carboxy terminus of MseMerA was identified
from 440 to 448, including the conserved pair of cysteines at
residues 446 and 447. This is in agreement with the carboxy
terminus being able to undergo conformational changes during
the catalytic cycle (Lian et al., 2014). The solved structure has

been deposited in the Protein Data Bank with the accession
code 4YWO.

Discussion

Bioinformatic and phylogenetic data overwhelmingly support
MseMerA being a thermostable protein, as illustrated by features
consistent with other enzymes from thermophiles, including a
reduction in loop regions, a greater percent of charged amino
acids, and an overall reduced surface area in comparison to its
mesophilic counterpart. Collectively, these strategies are likely to
interact synergistically to convey the high degree of thermostabil-
ity observed. Retention of 100% activity after incubation at 97°C
for 100min further confirms the highly thermostable nature of
MseMerA.

Though practical constraints made measuring specific activity
above 70°C impossible, catalytic activity was found to increase
over the range of 37–70°C, with a Vmax of 3.1U/mg at 70°C. This
places MseMerA in the range of average activity when compared
to otherMerAs (Table 1). TheKm forHg2+ofMseMerAwas found
to decrease from 400µM at 37°C to 150µM at 70°C, indicating a
higher affinity for Hg2+ ions at elevated temperatures. The Km of
MseMerA is around an order of magnitude higher than that found
for otherMerAs (Table 1), andmay be an adaptive strategy to cope
with elevated Hg2+ concentrations commonly encountered in the
acidic, high temperature environments where Mse resides (King
et al., 2006; Boyd et al., 2009; Wang et al., 2011).

The Kcat of MseMerA is 23 s−1, which is very similar to the
Kcat of ATII-LCL at 22.5 s−1 (Sayed et al., 2013) and also similar
to BcMerA at 12 s−1 (Rennex et al., 1994). The higher Km value
observed in MseMerA translates to the lowest overall catalytic
efficiency, with a Kcat/Km of 0.15µM−1 s−1.
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TABLE 1 | MerA comparison.

Optimum growth
temperature (°C)

Optimum
temperature
for enzyme
activity (°C)

Km (µM) Specific
activity
(U/mg)

Amino acid
substitution at
the position
V/Y 317/441

(Tn 501 numbering)

Reference

Hg NADPH

M. sedula 50–79 >70 400a/150b ND* 1.9a/3.1b E/F This work
PaTn501 25–42 55–65 12 6 12.7 V/Y Fox and Walsh (1982)
ATII-LCL ~68 30–50 8.65 4.35 50 V/Y Sayed et al. (2013)
Azotobacter Chroococcum 26 45 11.11 ND 25 ND Ghosh et al. (1999)
Klebsiella pneumoniae 37 40 75 ND 9 V/Y Zeroual et al. (2003)
B. cereus 37 ND 30 ND ND V/Y Rennex et al. (1994)
E. coli R831 37 ND 13 6 1.05 ND Schottel (1978)

*ND, not determined.
aMeasured at 30°C.
bMeasured at 70°C.

FIGURE 5 | (A) Structural superimposition of MseMerA with Tn501MerA
1ZK7 shows the Y441′/V317 amino acids conserved in mesophiles and the
F441/E317 amino acids conserved in thermophiles, suggesting an alternative
Hg2+ coordination strategy in MseMerA. (B) An alternative angle of the active
site environment of MseMerA superimposed onto Tn501MerA 4K7Z, which
depicts the Hg2+ ion bound to the c-terminal cysteines. The monomer with
the C-terminal cysteines is noted by a “prime” designation.

Though P. aeruginosa (Pa) from which the Tn501 transpo-
son was isolated is a mesophilic organism, the MerA enzyme
was found to have optimal activity at 55–65°C, and retained full
activity at 37°C even following a 10-min incubation at 100°C
(Nakahara et al., 1985; Vetriani et al., 2005). Intriguingly, phy-
logenetic analysis indicates that Tn501MerA groups closely with
the mesophiles (Figure 1). Conversely, phylogenetic analysis of
MerA from a high temperature brine pool, ATII-LCL (Sayed et al.,
2013), was found to group with MerA sequences frommesophilic
organisms (Figure 1). While the environment from which ATII-
LCL was isolated is at 68°C, the enzyme has maximum activity
over a range of 30–50°C and,whenmeasured at 37°C,was found to
be half inactivated after a 10-min incubation at 75°C (Sayed et al.,
2013). The ATII-LCLMerA is therefore not nearly as thermostable
as MseMerA, and is not adapted to its local environment, with
respect to the thermal regime, but is adapted with respect to
salinity regime.

The structure of MseMerA reveals a dimeric biological assem-
bly, as has been shown with previous structures (Schiering
et al., 1991; Ledwidge et al., 2005; Lian et al., 2014). With this
architecture, the active site cleft on one monomer interacts with

the C-terminal domain of the opposing monomer (Figure 5;
Table 1). This style of interaction is generally conserved among
enzymes of the DSOR family. For example in glutathione reduc-
tase, His467, located near the C-terminus of one monomer, is
necessary for catalytic function of the opposing monomer (Misra
et al., 1985). In MerA, this has been substituted to a catalytically
important tyrosine (Rennex et al., 1994).

Structural superimposition ofMseMerA (described here) with
the recently solved Tn501MerA structure with bound mercury
(4K7Z) reveals two specific amino acid substitutions, V317 to
E, and Y441′ to F′, in the active site of MseMerA compared
to Tn501MerA (numbering is by Tn501MerA 4K7Z) (Figure 5).
Another residue thought to be involved in metal coordination,
Y100 (in Bc structure is Y264) (Schiering et al., 1991), is strictly
conserved. For Tn501MerA and BcMerA, the hydroxyl groups of
Y441′ and Y100 likely act in concert to facilitate metal transfer
from the C-terminal cysteines to the active site cysteines. In
contrast, in MseMerA, the F441′ in the position of tyrosine in
Tn501MerA lacks a hydroxyl group to coordinate the Hg2+ ion,
but a glutamic acid in place of the Tn501MerA V317 provides a
different residue with which the Hg2+ ion could potentially be
coordinated.

The conservation of either the V/Y′ in mesophiles or the E/F′
amino acid pair in thermophiles, along with the observed posi-
tions of the amino acids, is suggestive of an alternative metal
binding strategy for Hg2+ ion transfer from the C′ cysteine pair to
the active site cysteines C42 andC47. In Tn501MerA andBcMerA,
uponHg2+ ion binding to the C′ cysteines, the C′ terminal region
folds into the catalytic cleft, delivering themercuric ion (Lian et al.,
2014) to the conserved Y100 and Y441′, which facilitate transfer
to the active site cysteines. Given that MseMerA lacks the Y441
with which to coordinate the Hg2+ion during active site delivery,
the E317 is the most rational alternative.

Rennex et al. (1994) have previously substituted individual
amino acids Y441F and Y100F in BcMerA. The Km for Hg2+
increased from 30 to 39µM in the case of the Y441F variant,
and decreased to 6µM in the case of the Y100F variant. How-
ever, in both cases, the Kcat/Km was decreased around 15-fold.
It is therefore likely that the observed low catalytic efficiency

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2015 | Volume 3 | Article 976

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Artz et al. Mercuric reductase from Metallosphaera sedula

of the variant enzymes is due in part to a lack of a residue to
coordinate the Hg2+ ion, such as the glutamic acid found in
MseMerA and other thermophiles. Moreover, Sayed et al. (2013)
previously demonstrated that glutamic acid residues may play a
role in Hg2+ ion coordination and transfer. However, the active
site glutamic acid found inMseMerA is a different site from what
Sayed et al. (2013) have previously characterized. Furthermore,
sequence alignment shows that the ATII-LCL enzyme has the V/Y
amino acid pair (Table 1).

Both the Tn501MerA Y441′ and theMseMerA E300 are about
5Å from the active site cysteines, although they coordinate from
different positions, with the Y441′ coordinating the Hg2+ ion
almost perpendicular to E317. The different placement and nature
of these side chains may help explain the higher Km observed
in MseMerA relative to homologs from mesophilic organisms.
Since the high Hg2+ concentrations are common features of high
temperature environments, these differences may reflect adapta-
tions to function at elevated Hg2+ concentrations and as such
represent the structural determinants of specificity for mercuric
reductases. Highly specific stable enzymes, especially those that
catalyze oxidation-reduction reactions coupled to the specific
molecular recognition, could potentially be used as chemical sen-
sors in which the redox chemistry could be coupled to produce an
amplifiable electrical signal.

In conclusion, here we present a characterization of the ther-
mostable mercuric reductase from M. sedula. We show that the
enzyme is highly resistant to heat treatmentwhile retaining similar
catalytic rates to other characterized MerAs. The enzyme appears
to have a potentially different way of coordinating Hg2+ and

has a lower affinity for Hg2+ ions than previously characterized
enzymes. Considering that Mse is a thermophile and its MerA is
likely to harbor propertiesmore similar to those of primitiveMerA
that evolved in a high temperature environments (Barkay et al.,
2010), these results may indicate that the activity of MerA has
been refined through evolutionary time to successfully detoxify
environmental Hg2+ at lower concentrations than those that are
naturally present in thermal environments.
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