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ABSTRACT: Chemical recycling via thermal processes such as pyrolysis is a potentially
viable way to convert mixed streams of waste plastics into usable fuels and chemicals.
Unfortunately, experimentally measuring product yields for real waste streams can be time-
and cost-prohibitive, and the yields are very sensitive to feed composition, especially for
certain types of plastics like poly(ethylene terephthalate) (PET) and polyvinyl chloride
(PVC). Models capable of predicting yields and conversion from feed composition and
reaction conditions have potential as tools to prioritize resources to the most promising
plastic streams and to evaluate potential preseparation strategies to improve yields. In this
study, a data set consisting of 325 data points for pyrolysis of plastic feeds was collected
from the open literature. The data set was divided into training and test sub data sets; the
training data were used to optimize the seven different machine learning regression
methods, and the testing data were used to evaluate the accuracy of the resulting models. Of the seven types of models, eXtreme
Gradient Boosting (XGBoost) predicted the oil yield of the test set with the highest accuracy, corresponding to a mean absolute
error (MAE) value of 9.1%. The optimized XGBoost model was then used to predict the oil yields from real waste compositions
found in Municipal Recycling Facilities (MRFs) and the Rhine River. The dependence of oil yields on composition was evaluated,
and strategies for removing PET and PVC were assessed as examples of how to use the model. Thermodynamic analysis of a
pyrolysis system capable of achieving oil yields predicted using the machine-learned model showed that pyrolysis of Rhine River
plastics should be net exergy producing under most reasonable conditions.
KEYWORDS: pyrolysis, waste plastics, machine learning, regression analysis, chemical recycling

1. INTRODUCTION
Every year approximately 370 million tons of plastic are
generated globally.1 In the USA, approximately 9% of plastic is
recycled, 16% is combusted with energy recovery, and the
remaining 75% is landfilled.2 In other locations, environmental
disposal is common practice and combined with losses during
transport and loss from landfills, results in an estimated release
of 10−20 million tons of plastic per year into the world’s
oceans.3 Once in the environment, waste plastics have negative
impacts on plant and animal life4 with eventual negative
impacts on human health.5

Increased recycling is an obvious solution to the problem of
environmental release. Although recent recycling initiatives
have increased the amounts of plastic that are recycled, global
recycling capabilities are limited by the need for single plastic
streams for effective recycling and further sensitivity to the
presence of contaminants like dyes, additives, and residual
products.6 Switching to biodegradable plastics has the potential
to reduce the negative impacts of plastics released to the
environment, but biodegradable plastics that duplicate the
properties of synthetic ones are not available.7 Without
increasing the world’s recycling capabilities or replacing
synthetic plastics with biodegradable ones, landfilled wastes

will continue to end up in the environment outside of landfills
and in oceans and rivers globally.8

Reducing the amount of plastics that ends up in landfills and
the environment is therefore a priority, and one area of specific
concern is plastic that is transferred into rivers as it not only
pollutes the rivers but is also transported to the world’s oceans
where it accumulates and becomes an environmental threat.9,10

Recently, a handful of highly industrialized river systems,
including the Yangtze, Ganges, and Xi, have been identified as
especially problematic.11 Because of the limitations of recycling
and slow progress in replacing synthetic plastics with
biodegradable versions, new and innovative technologies are
needed to valorize waste plastics and reduce their flow into the
environment.12,13

Different plastic valorization techniques have been devel-
oped over the years, falling mainly into two categories
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mechanical and chemical recycling. A key advantage of
chemical recycling techniques is they are more compatible
with mixed waste plastics than mechanical recycling. The end
products of chemical recycling are fuels, chemicals, or
monomers, depending on the feed and the specific process
technology.14 Although many dozens of plastics are in use,
many of these are used in low-volume, niche applications. Six
plastic types account for >85% of all plastic used today,15

meaning that reducing plastic waste should prioritize these
plastics, which include poly(ethylene terephthalate) (PET),
high-density polyethylene (HDPE), polyvinyl chloride (PVC),
low-density polyethylene (LDPE), polypropylene (PP), and
polystyrene (PS). Collectively, these plastics can be termed as
the “big six” since they are denoted numerically in the U.S.
recycling system in this order from one to six.16

Recent focus has shifted to circular economy for plastics
with emphasis on “upcycling,” a term used to describe
processes that yield products that are more valuable than the
virgin plastics themselves.17 Chemical recycling can qualify as
upcycling, in certain cases, especially when performed in the
presence of a catalyst.18 On the other hand, recycling to
products with value equal to the virgin plastic or even down
cycling to produce products of less value than the original
plastic can play an important role. Products such as chemicals,
fuels, and monomers are undoubtedly more valuable than
waste plastics,19 and this type of chemical recycling can help
reduce plastics entering landfills or the environment. Unlike
upcycled products, the market size for chemicals, fuels, and
monomers is commensurate with the size of the waste plastic
feed.
Of the different forms of chemical recycling, thermal

depolymerization techniques, such as pyrolysis and hydro-
thermal liquefaction (HTL), have been especially promising
for their ability to handle mixed wastes, their compatibility
with contaminates, and their ability to achieve high oil product
yields without using a catalyst.20 Pyrolysis heats plastics to high
temperatures in the absence of oxygen to break the carbon−
carbon bonds within polymers to return them to their
monomer states.21 HTL operates similarly to pyrolysis but in
the presence of sub- or supercritical water.22 Both pyrolysis
and HTL have the ability to convert plastics into oils with
conversion rates of greater than 90%, depending on the process
conditions and the plastic feed.23,24 Results like these have
spurred significant research into thermal depolymerization of
plastics.14

Although previous studies show the great promise of thermal
depolymerization, a technological problem of pyrolysis reactor
design is that different polymers have very different thermal
reactivities. Accordingly, the composition of a given plastic
waste stream significantly affects both the oil yield and the
overall conversion.25 Given the number of potential feed
streams, an inability to predict oil yields hampers prioritization
of resources to the situations that are most promising for
investment. Furthermore, for every new feed of polymers, the
operating parameter matrix must be reoptimized, which is time
consuming and potentially cost-prohibitive, especially when
the oil yields are unknown. An efficient way to determine the
oil yield obtainable from a given plastic waste stream would
permit allocation of finite resources to streams most likely to
be thermodynamically and economically favorable.
Models that describe plastic depolymerization have been

available for over 20 years.26−28 These models are full kinetic
networks that track polymer chain length using the method of

moments and formation of key products using systems of
ordinary differential equations.26−28 While providing accuracy
and reliability, full kinetic models are computationally
expensive, require years to develop for new plastics or plastic
mixtures, and are not available for anything more than binary
plastic mixtures.26−28 Fortunately, the level of resolution
offered by full kinetic models is not always required for
process design, opening an opportunity for lower-resolution
yet accurate methods of predicting key reaction outcomes,
such as pyrolysis oil yields.
Machine learning techniques have the potential to predict

reaction results, such as yield and conversion, with significantly
less development time and computational expense than full
kinetic models. Unlike full kinetic models, which require
detailed measurements of polymer chain length and key
product and intermediate formation rates as a function of
conversion, machine learning models use abundant historical
data to train models capable of predicting outcomes of new
situations.29 Machine-learned models are black box, meaning
that they do not provide information about the chemistry that
is occurring during reaction, yet they have been shown to
accurately predict the results from thermal depolymerization
for complex waste mixtures, such as food waste.30−32 A handful
of machine-learned models have been developed specifically
for plastics, especially in the classification of polymer
types.33−35 The handful of studies that have used machine
learning to predict depolymerization reactions have focused on
single plastics and not mixtures36 or understanding properties
of single phases.37 The few studies that have looked at mixed
plastic streams have focused on specific and narrow ranges of
operating conditions like temperature38 or specific reactor
types39 and have utilized very little data to train and validate
the models (≪100 data points).
The pertinent literature contains many hundreds of data

points on plastic pyrolysis, and thus utilizing all of the
published literature data can improve the accuracy of machine-
learned models as well as expand the range of conditions and
reactor types that can be studied. Naturally, utilizing the full
range of published data requires an approach that can handle
differences in feed, reaction conditions, reactor type, and the
presence of catalyst. Fortunately, modern regression techni-
ques have established ways to handle both numerical data as
well as categorical data, such as reactor type or presence of
catalyst.40 Emerging methods for filling gaps in the values of
dependent values�which are not uniformly reported�offer a
way to maximize available data and harmonize between
different reporting standards. The K-nearest neighbor
(KNN) method has proven especially versatile for data
harmonization in other fields but has yet to be applied in a
plastic pyrolysis case.41 Using models and methods such as
these allows for efficient analysis of real waste streams and
identification of promising experiments and conditions for
future work.
The objective of this study is the development of machine-

learned models for prediction of oil yields obtained by
pyrolysis of common plastics and their mixtures over a wide
range of conditions. Unlike previously reported studies, the
current effort attempts to harmonize pyrolysis data arising
from many different polymers�all of the “big six”�and for
pyrolysis in different reactor types with and without the use of
catalysts. The performance of seven different machine learning
methods was comprehensively evaluated for accuracy. In
particular, each of these models was trained, optimized, and
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validated using a data set curated from the open literature
encompassing a wide range of possible reaction conditions.
The accuracy of model predictions was assessed with a test set
that was set aside from the data set prior to training. The most
accurate of these seven models was then used to predict the oil
yields obtainable from pyrolysis of real plastic waste streams
representative of U.S. Municipal Recycling Facilities (MRFs)
and present in the Rhine River, a river with a high and well-
characterized plastic load.42,43 As a further example, the utility
of the model was evaluated for making thermodynamic
feasibility predictions of plastic pyrolysis. Finally, the
machine-learned models and the proposed approach to
develop them could become useful evaluative tools for
advancing plastic pyrolysis as part of a comprehensive strategy
to reduce plastic waste.
The paper is organized as follows: Section 2 encompasses

the conceptual, methodological, and computational aspects of
the proposed modeling and simulation framework. The study’s
main results are presented in Section 3 followed by a pertinent
discussion. Finally, a few concluding remarks are provided in
Section 4.

2. METHODS

2.1. Overview
The aim of this work is to develop a rigorous method for creating,
validating, and applying machine-learned models to predict the yields
that can be obtained from pyrolysis of waste plastics and their
mixtures. Figure 1 shows the overall approach used for model

development, refinement, selection, and application. The most
important step is generation of the data set itself. Specifically, the
data set was generated by retrieval of data published in the open
literature with attempts to be inclusive up until the start of 2022.
Once the data were collected and prepreparation steps were
completed, seven different machine learning algorithms were tested
and then validated using K-fold cross validation. These models were
then used for predicting oil yields and understanding how polymer
type in the feed affects the oil yields. Future sections will describe
each of these steps in more detail.
2.2. Data Collection and Preparation
The data set was collected from the open literature and consists of
325 individual data points corresponding to 39 papers as seen in the

Supplementary Information Table SI.1. Studies describing pyrolysis of
any of the “big six” plastics (PS, HDPE and LDPE, PP, PVC, and
PET) were included in the retrieval effort with pyrolysis defined as
experiments performed in different reactor types with and without a
catalyst. The data were collected from reliable sources as described in
pertinent peer-reviewed journal publications. In particular, the data set
was derived from studies of both pure plastics and plastic mixtures
and the distribution of data points corresponding to different types of
pure plastics and mixed plastic streams is shown in Figure 2a. Of the
plastics considered here, HDPE and LDPE along with PP are the
most abundant in the current data set.
Studies on mixed plastic streams account for about one-third of the

entire data set. Figure 2b shows the distribution of the mixed plastic
data in terms of the number of plastics in the mixture. Binary and
ternary mixtures are the most commonly studied mixtures, but several
studies of mixtures, including all of the “big six” plastics, appear in the
data set as well. For studies involving waste mixtures, the mass
fraction in percent of each plastic type in the feed became its own
independent variable input to the model. For pure streams, the mass
fraction of the plastic being pyrolyzed was set to 100, while all other
mass fractions were set to 0.0.
Along with the concentration of each of the plastics present in the

feed, six other reaction parameters were also recorded in the data set
and used as independent variables (called features): pyrolysis reaction
temperature, heating rate, particle size, amount of feed utilized,
catalyst, and reactor type. Pyrolysis reaction temperature, heating rate,
particle size, and amount of feed utilized are all numerical and can be
handled using typical regression methods. After careful deliberation,
reaction time was not included as an independent variable as it is not
well defined for different reactor types. More detail is provided in
Section 3.
Unlike the quantitative variables, catalyst and reactor type are

categorical variables, which require special treatment. In order for the
model to be able to handle these categorical variables, they were one-
hot encoded.40 For example, catalyst was used as an independent
variable with its value set to either 0 or 1 to represent the absence and
presence of a catalyst, respectively. The model includes no
information on the type of catalyst. Similarly, the reactor type was
divided into five categories (batch, fixed bed, fluidized bed, horizontal
tube, and semibatch) and each of these was described by its own
independent one-hot encoded variable.
One potential drawback of using data from many different papers is

inconsistencies in data reporting from lab to lab. The upshoot of data
reporting inconsistencies is data gaps. To avoid this problem for
dependent variables, pyrolysis oil yield was selected as the sole
dependent variable as all studies of plastic pyrolysis report gravimetric
oil yield. Oil yield was taken as the mass of liquid products recovered
at room temperature and pressure. The phase behavior of the oil
mixture depends on composition, and as a rough guide, it extends
from products that are less volatile than pentane to compounds that
melt at temperatures less than octadecane. Nonideal phase behavior
and solvation effects mean that this range can only be used as a
guideline. Since oil composition varies from study to study and is not
uniformly reported in the literature and since oil recovery protocol
also vary from study to study, reported oil yield data display natural
variability that influences model predictability. Data gaps in the
independent variables are unavoidable as not all studies report the six
operating parameters selected for this study. Two common ways to
handle data gaps are often used, omitting the data points that have
missing data or using a data imputation algorithm such as KNN to fill
in the data gaps.44 Although omitting data with incomplete
independent variable reporting is the more conservative of these
approaches, preliminary tests found that eliminating even a handful of
data points significantly and negatively impacted model performance
as seen in the Supplementary Information. Therefore, this work used
the KNN method to fill in the above data gaps. The KNN algorithm
works by looking at K of the nearest data points to that which is
unknown and making an educated prediction based on the votes of
each of these points. K can be chosen in a multitude of ways, but the
conventional approach is to use the square root of the number of data

Figure 1. Outline of model development and deployment, including
validation process for building and validating a robust model capable
of predicting plastic pyrolysis oil yields.
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points:45 for this data set, K was 17 for the training set size of 292 data
points. KNN was needed to fill gaps for heating rate, particle size, and
feed size. It should be pointed out that improved consistency of data
reporting in future studies could potentially reduce the need for
methods to handle data gaps.

2.3. Model Evaluation Metrics
Within the context of the present study, the mean absolute error
(MAE) criterion was used to evaluate model accuracy. Eq 1 shows
how MAE is calculated:

MAE
x x
N

i
N

i i1=
| |=

(1)

where N is the number of data points, xi is the predicted value of x,
and x̂i is the experimental (true) value of x. Compared to other
potentially viable alternatives, such as the root-mean square error and
mean relative error criteria, MAE is the most widely used and easiest
to interpret. The units of MAE in this work correspond to the units of
oil yield (wt %).

2.4. Machine Learning Models
Seven different machine learning algorithms were evaluated in this
study. Of the seven, three were linear methods and four were
nonlinear methods. The linear methods are linear regression (LR),
linear regression with lasso regression (LR-lasso), and linear
regression with ridge regression (LR-ridge). Both lasso and ridge
regressions are forms of LR that use penalty functions to shrink the
model to fewer parameters.29 The nonlinear models that are studied
are decision tree (DT), eXtreme Gradient Boosting (XGBoost),
random forest (RF), and artificial neural networks (ANN). DT,
XGBoost, and RF are all tree methods29 with DT using a single tree,
while XGBoost and RF methods rely on a series of trees to improve
accuracy.
Each of the models that were tested was run and optimized using

Python 3.646 and scikit-learn 1.1.0 packages.47 Model optimization
involves tuning internal parameters, termed hyper parameters. The
optimal hyper parameters for each model can be found in the
Supporting Information Table SI.2. For all methods other than the
tree models, the data had to be normalized due to the large difference
in the values for the different reaction parameters (i.e. particle size
ranges from microns to mm and feed sizes from mg to thousands of
g). When normalization was required, a Z transform was performed
on the data, including all of the model features. Eq 2 shows how the Z
transform of a variable is calculated:

Z
x x

i
i j i

i

,=
(2)

where Zi is the new value, x̅i is the mean of feature i, and σi is the
standard deviation of feature i. DT methods by nature are not
sensitive to these differences, and unscaled data were used for these
model types.29

2.5. Data Splitting
Development of rigorous, predictive machine-learned models requires
training the model on a data set followed by testing its accuracy for
prediction of a separate data set. These two data sets are called the
training and testing sets. For the current study, 10% of the data were
removed prior to model optimization, placed into a “vault,” and not
touched again until all of the models were optimized to be able to test
the models on “new” data that were not “seen” during model
development. The remaining 90% of the data were used for KNN and
model training. Dividing data into training and test sets is common
practice to prevent over fitting; inadvertent use of test data for model
optimization is termed as “data snooping” and can reasonably be
expected to result in over fitting.29 The splitting of the data set into
training and test sets is done through random selection.
Model optimization on the training data utilized a method of

validation, which further separates the training data into separate
subsets. The model validation method selected is termed as K-fold
cross validation, which separates the training data into K subsets.
Here, K was set equal to 10, meaning that the training data were split
into 10 equal groups. Nine of these groups were used to train the
model (training data set) and one was used to validate (validation
data set). This was repeated sequentially until all 10 groups had acted
as the validation set. Cheng et al. provided a visual representation of
how the K-fold method works.30 K-fold cross validation helps to
prevent overfitting or fortuitus fitting as the model must be trained on
all of the data, and the final result represents an average of all 10
models.
One of the potential pitfalls of working with small data is ensuring

representative splitting into test and training data sets. For example,
relatively few studies are published that include low-yield data, which
means that random splitting into test and training sets may result in a
training set that completely lacks low-yield data. The result is a model
that cannot accurately predict data with low yields. To prevent the
problem of nonrepresentative data splitting, the data set was stratified
based on yield prior to splitting. Stratification grouped data by
reported oil yield to create a set of bins each with an equal number of
data points (10 here). During splitting, at least one data point from
each bin was included in the test set to ensure that it was
representative of the full range of data present in the training set. The
data were then rerandomized prior to training and validation.

3. RESULTS/DISCUSSION
The goal of this study was to use published data to develop a
data-driven, machine-learned model to predict oil yields
obtained from plastic pyrolysis. A data-driven model has the
advantage that its predictions do not require detailed
understanding of chemical mechanisms. Instead, reaction
conditions can be used as the independent variables or
features and inputs to a regression-type model that does not
require knowledge about the underlying chemistry.

Figure 2. Visual representation of the 325 data point pyrolysis data set, showing (a) distribution between pure plastic studies and mixed plastic
studies where N is the number of data points and (b) number of plastics in the mixed plastic studies where Np is the number of plastics present in
the mixture. Np = 6 corresponds to two data points.
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In addition to pyrolysis, the kindred method of HTL has
been reported for conversion of waste plastics to useful oils.48

A universal tool that can predict HTL or pyrolysis yields
obtainable from waste plastics could be very useful.
Unfortunately, most studies on HTL have focused on plastics
other than those in common commercial use, meaning that the
HTL and pyrolysis data sets have minimal overlap and
rendering simultaneous modeling of HTL and pyrolysis
impractical at present.
After initial tests, reaction time was not included as an

independent variable due to the fact that reaction time is a
fundamentally different concept depending on the reactor type.
For example, reaction time is well defined as the residence time
in a closed, batch reactor on the one extreme and in a plug-
flow continuous reactor on the other. For the most common
pyrolysis reactors, including spouted bed reactors, swept-batch
or semicontinuous reactors, and fluidized bed reactors,
residence time of the plastic within the reactor is either poorly
defined or impossible to compare with other types of reactors.
Excluding certain reactor types limits the amount of data
available for the model. Since the model is already pushing the
lower boundary of how much data is required for robust
predictions, all reactor types were included as independent
variables and reaction time was excluded. In fact, preliminary
tests (seen in the Supplementary Information) that conflated
the different types or reaction times did not provide accurate
predictions of pyrolysis oil yield.
Many different types of machine-learned models have been

published in the literature for a range of different engineering
applications.30−39 Accordingly, a wide variety of model types
were evaluated as the ideal model for a given data set cannot be
predicted a priori. The seven models studied included three
linear models (LR, ridge regression, and lasso regression),
three nonlinear tree models (DT, RF, and Xtreme Gradient
Boosting), and one nonlinear model (ANN). These seven
models were chosen as they are representative of successful
model types previously studied in the literature for similar
problems.30−32 LR represents the simplest starting point and is
a good basis of comparison. Lasso and ridge regressions are
well-known modifications of the standard LR model that add
an error function intended to improve accuracy.29 DT is the
simplest Boolean model, and RF and XGBoost in particular
were chosen because their use of multiple trees as well as
subsets of the data improves their accuracy, especially when
working with small data sets.49

Each of the seven models consists of multiple parameters
(termed as “hyper parameters” in the machine learning
literature50), which the user must select based on the
application at hand. Hyper parameter values are optimized
during cross validation to minimize model error. The optimal
model hyper parameters for each individual model can be
found in the Supplementary Information Table SI.2.
After model optimization, prediction accuracy was assessed

for both the validation and test sets. MAE was used as the error
metric in this work. The most accurate model should minimize
MAE, exhibit minimal change between the validation and test
set MAEs, and have low standard deviation arising from
validation. Each of these plays an important role. MAE of the
test set is the truest measure of the predictive accuracy of the
model. Agreement between the test set and validation MAEs,
as well as minimal validation standard deviation, guards against
over fitting and fortuitous division between validation and test
sets. Using validation set MAE as the sole basis for model

selection therefore risks model overfitting, which detracts from
accuracy of predictions for new data not included in the
original data set.
Figure 3 shows both the validation set and test set MAE for

all seven models, as well as the standard deviation of the

validation set error. The MAE of the benchmark LR model is
approximately 14 for both validation and test set analysis. The
corresponding standard deviation of the validation set MAE is
nearly 3. While the agreement between validation set and test
set MAE is reassuring, the absolute value of these MAEs is not
sufficient for most applications and the large standard deviation
of the validation set MAE suggests that the regression is prone
to errors due to fortuitous data selection. The lasso and ridge
modifications of LR offer no benefit, indicating that the
addition of an error function is insufficient to capture what is
inherently a highly nonlinear data set. Accordingly, linear
models should not be expected to provide accurate pyrolysis
yield predictions, except possibly over very narrow ranges of
conditions where the problem might be nearly linear.
All of the nonlinear models tested here provided superior

performance compared to the linear models. Of the four
nonlinear methods, the MAE provided by the RF, XGBoost,
and ANN models is less than that provided by the DT model.
While the DT model fits the validation data better than the
linear methods, the MAE of the validation and test sets along
with the validation set standard deviation of DT is greater than
that of the other three nonlinear models. In comparison, the
modest value of validation set standard deviation observed for
RF indicates that it is much less sensitive to the subset of data
it is trained on than any of the other models tested here. The
comparison of validation set standard deviations recommends
selection of RF over ANN or XGBoost, especially since all
three methods yield similar values of MAE. The performance
of RF, ANN, and XGBoost is nearly identical, and therefore,
any method could justifiably be used for further analysis. In
this work, XGBoost was chosen for future model applications
due to its relative simplicity, low MAE for validation and test
sets (8.7 and 9.1%, respectively), and low standard deviation in

Figure 3. Mean absolute error (MAE) of the validation and test sets
for linear regression (LR), lasso regression (LR-lasso), ridge
regression (LR-ridge), decision tree, eXtreme Gradient Boosting
(XGBoost), random forest (RF), and artificial neural network
(ANN).
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validation (±1.2%). A parity plot of the experimental vs
predicted oil yields of the test set for the optimal XGBoost
model can be found in the Supplementary Information Figure
SI.1. The majority (67%) of predictions fall within ±10% of
the experimentally reported values, with the remainder
contributing to the observed value of MAE (9.1%) as seen
in Table SI.3.
The MAE of the XGBoost model captures the residual error

of the current data set as it was extracted from the literature.
Residual error likely arises from several factors, and reducing
the error can be achieved in several ways. First, the available
data set (<500 data points) is at the lower limit of what can be
studied using machine learning. Increasing the amount of
data�for example, by updating the model periodically as new
data appear in the literature�should improve accuracy over
time.51 Second, the experimental data themselves are subjected
to experimental uncertainty, which is on the order of several
percent. Experimental uncertainty detracts from model
accuracy, and reducing the inherent experimental error should
reduce the MAE that the model can achieve. Experimentalists
should adopt methods such as mass balance and carbon
balance closure to ensure data quality and reduce uncertainty.
Third, different studies use slightly different methods�
including reactor types, as previously discussed, and also
analytical methods for recovering and quantifying oil yields.
Differences in methodology give rise to systematic differences
between oil yields reported in different studies. Greater
consistency in analytical methods, especially in recovery
conditions and oil yield definitions (e.g., instead of reporting
total gravimetric yield and reporting yield obtained over a
certain distillation range), should improve consistency in the
data set and help to reduce uncertainty. Application of
XGBoost-based regression on a single, uniform data set�of
sufficient size (>500 data points)�can realistically be expected
to achieve MAE values less than seen here. That data set does
not exist in the public domain at this time.
A common analysis of regression error is to determine the

statistical significance of the various features. For linear models,
a common method is the F test.52 For DT models, the
corresponding metric is feature importance. Figure SI.2
provides the feature importance extracted from the XGBoost
model. Plastic type and particle size have similar levels of
importance (∼10%), indicating that they have statistically
significant effects on model predictions. Interestingly, the
feature importance of catalyst was negligible compared with
the other features. Effectively, the pyrolysis oil yields obtained
using a catalyst may often be reproduced by increasing the
pyrolysis temperature. However, other studies found that
catalyst use has minimal or even negative effects on yields and
instead mainly effects product distribution53�a dependent
variable not considered here, outside of how product
distribution affects oil yield. Data on the use of catalysts may
be biased to lower temperatures that accentuate the perceived
benefit on yield. In these cases, the benefit of using a catalyst is
not so much as to increase oil yields but to lower the
temperature at which an acceptable yield can be obtained. The
net effect of catalyst use in these cases is to improve energy
yield, an outcome that is not explicitly predicted by the models
presented here.
The feature importance also highlights that the influence on

oil yield of pyrolysis of plastics falls into two categories: factors
that capture chemical reactivity and factors that are related to
heat transfer. The chemical reactivity factors include plastic

type, temperature, and presence of catalyst, and together they
account for 57.2% of the observed correlation. Heat transfer
factors include particle size, plastics loading, and heating rate,
which combine to account for 40% of the correlation. The
importance of chemical reactivity and heat transfer factors is
consistent with intuition,54 which is a comforting result for a
data-driven model that is ignorant of physics.
Of all of the features considered in the present study, the

value of the feature importance assigned to temperature was
the greatest (43.6%), indicating that temperature had the most
significant effect on pyrolysis yields. Due to the high feature
importance of temperatures, understanding how temperature
appears in the current data set is critical to understand before
the corresponding model can be used to make predictions of
new systems. Since model predictions can only be trusted for
conditions that fall within the limits established by the data set,
the temperature limits where model predictions can be trusted
are based on the appearance of temperature in the data set. As
a temperature-activated process, pyrolysis temperatures will
naturally be biased to values that result in appreciable oil
yields. Researchers use their knowledge of the system to
determine the temperatures at which they run their experi-
ments, meaning that temperatures much less and much greater
than optimal do not appear in the literature. The result is that
predictions for conditions that fall outside of the limits
appearing in the data set cannot be trusted. Because each
plastic has its own temperature, which optimizes pyrolysis oil
yields, the available data set must be evaluated to understand
the temperature range over which each plastic has been
studied.
Figure 4 plots the temperature range covered by each of the

plastics included in this study, as well as the temperature range
covered by pyrolysis of mixtures, as a box−line plot where the
box represents the 25 and 75% limits of the available data and
the line represents the absolute limits. As expected, the
temperature range studied for each plastic varies with the
plastic, with PP, PS, and PET tending to be studied at low

Figure 4. Temperature distribution for each polymer and mixtures in
the data set showing the 25−75% range (box), the min−max range
(line), the median line, and the mean (white small square).
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temperatures and PE at higher ones. PVC pyrolysis has been
studied at a single temperature (700 °C). Fortunately, in
aggregate, the temperature range over which pyrolysis yields
are optimized from 400 to 700 °C is well covered in the data
set�provided that pure PVC is excluded from the analysis.
PVC is generally regarded as an unsuitable feed for plastic
pyrolysis due to the formation of hydrochloric acid during
pyrolysis. Hydrochloric acid is corrosive, and chlorine
contamination detracts from fuel properties.55 Hence, a
predictive model that is appropriate for pure or mixed plastics
with the exception of PVC in the range from 400 to 700 °C is
valuable for many applications. Predictions made outside this
range are not physically realistic with the consistent over
prediction of pyrolysis oil yields at temperatures less than 400
°C.
Figures 3 and 4 indicate that an XGBoost model can make

accurate pyrolysis oil yield predictions in the temperature
range from 400 to 700 °C. The next step was to demonstrate
the method for two realistic applications: pyrolysis of plastics
collected at MRFs and pyrolysis of plastics present in river
outflows to the ocean.
A major benefit of pyrolysis colocated with MRFs is that

they exist in centralized locations where plastic is collected.
Although the exact composition of plastics at these facilities
can change from location-to-location, representative averages
exist for different countries/areas. These averages can vary
significantly from country to country, and therefore, the
expected oil yields from converting the plastic to fuels are also
expected to vary. The machine-learned model can predict oil
yields for these different streams. To ensure reliable model
predictions, the model was run in a batch reactor and at a
constant temperature of 500 °C well within the limits
suggested by Figure 4.
Table 1 provides average compositions and corresponding

predictions of oil yields for municipal solid waste (MSW)
collected in both the USA and EU. The two plastic streams
vary considerably, especially in their relative ratios of HDPE
and LDPE and their amounts of PS and PVC. These
composition differences translate into predicted oil yields
that differ by almost 15% from one another, with the oil yield

predicted for pyrolysis of EU plastic waste being greater than
that predicted for U.S. waste. That difference is likely related to
the greater PS content of EU waste than U.S. waste since PS is
more easily pyrolyzed to obtain high oil yields than PP or PE.56

The XGBoost model can also be used to explore the benefits
of partial separation for optimizing oil yields. In addition to
PVC, oil yields obtained from pyrolysis of PET are generally
less than those obtained from HDPE, LDPE, PS, and PP.56,57

Consistent with this expectation, the XGBoost model predicts
that pyrolysis of pure PET at 500 °C results in 28% oil yield
much less than that predicted for PP, PS, or HDPE at the same
conditions (74, 70, and 63%, respectively, as seen in
Supplementary Information Figure SI.3). Similarly, whereas
HDPE, LDPE, PS, and PP are all hydrocarbon plastics that
yield oils with properties similar to hydrocarbon fuels, PET is
an oxygenate that yields small oxygenated compounds,
especially ethylene groups and benzoic acid,58 that are more
suitable for use as monomers than as fuels. Finally, of the six
commonly used plastics, PET has the most robust recycling
market, meaning that recycled PET has an existing valorization
channel that the other plastics lack.59 For these reasons,
separation of PET prior to pyrolysis is worth evaluating. Both
new and existing60 technologies can be used for PET
separation.
To evaluate the effect of PET on pyrolysis oil yields, the

XGBoost model was run many times for different ratios of PET
in a PP and HDPE mixture and separately for PET in a PP and
PS mixture. The combinations of plastics shown in Figure 5
were chosen due to the prevalence of HDPE, PP, and PS in
both the USA and European MSW.15,20 The result of these
simulations is ternary diagrams relating composition to
predicted oil yields as shown in Figure 5. The oil yield
analysis was performed for a mixture of LDPE, PP, and PET
and results can be found in the Supplementary Information as
Figure SI.3. The general trend observed in Figure 5 is that oil
yields decrease with increasing PET content, strongly
recommending PET removal prior to pyrolysis. Some
interesting areas of potential synergy exist, for example
mixtures of approximately 80% PET and 20% PP.

Table 1. Comparison of Plastics in European and American Municipal Solid Waste and Their Predicted Oil Yields

location HDPE (%) LDPE (%) PP (%) PS (%) PVC (%) PET (%) predicted oil yield (%)

USA15 17.86 24.08 22.78 6.29 2.4 14.79 35.3
Europe20 44.4 0 21.2 13.3 12.2 8.9 48.9

Figure 5. Predicted oil yields for mixtures of HDPE, PP, and PET and PS, PP, and PET pyrolyzed in a horizontal tube reactor at 500 °C with a
heating rate of 10 °C/min, a particle size of 13 mm, and plastics loading of 200 g without catalyst.
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In addition to waste already collected at MRFs, significant
waste ends up in the environment. Waste plastic in rivers
throughout the world is especially damaging as it not only
pollutes the river ecosystems but also eventually pollutes the
ocean as rivers act like highways to transport waste plastic to
the ocean.9 Rivers polluted with waste plastic exist all over the
world,11 and targeting these rivers as sources of plastic for
conversion to oil could cut off these plastic highways into the
world’s oceans. The complete system would include a
mechanism to collect the plastic, remove it from the river,
feed it to the pyrolysis process, pyrolyze the plastic, and
recover the oil similar to a system designed for ocean plastics.61

The composition of plastics varies significantly from river to
river62 due to differences in regional industry and community
usage. The natural consequence of these differences in
composition is differences in oil yields obtainable by pyrolysis.
Prioritizing specific rivers to implement plastic capture and
conversion systems allows for optimal use of finite resources.
One way to prioritize rivers is to predict the oil yields that can
be obtained for pyrolyzing the plastic present in them,
potentially feeding those predictions into economic models
to optimize return on investment. Alternatively, prioritization
could be based on relative ecological importance (i.e.,
proximity to fragile ecosystems), in which case predictions of
oil yields are necessary to build a business model.
As a concrete example, the XGBoost model was used to

predict the oil yields obtainable from pyrolysis of plastic found
in the Rhine River in Europe. This river was chosen for the
abundantly available data about plastic types and concen-
trations found along the length of the river.42,43 The Rhine
River waste plastic consists of mainly HDPE, PP, and PS (27,
37, and 26% by mass respectively). This average composition
was then used along with a common set of reaction parameters
(found in the Supplementary Information Tables SI.4 and
SI.5) to predict an oil yield range of 44.1 to 56.7% for pyrolysis
temperatures from 400 to 650 °C comparable to the value
observed for the MRF present in the EU. The predicted oil
yields for each temperature can be found in the Supplementary
Information Table SI.6.
The predicted oil yields were then inputted to a stochastic

process model that utilizes the Monte Carlo (MC) technique
for evaluating thermodynamic outcomes61 of a plastic recovery
and conversion process as a function of pyrolysis temperature
and feed rate. In addition to the pyrolizer itself, the process
includes pumps, shredders, blowers, filters, and other
peripheral equipment. Modifications to the model previously
published by Belden et al. can be found in the SI. In brief, the
system consists of collection, shredding, pyrolysis, and oil
recovery steps. The energy requirements for all auxiliary steps
were taken from manufacturer specifications and assumed not
to allow turn down to less than full power consumption. The
energy requirement of the pyrolysis step was taken from
thermochemical analysis of the enthalpy of reaction.
A major unknown in the analysis is the amount of plastic

exiting the river that can be harvested. Accordingly, simulations
were performed over a range of plastic feed rates with the goal
of identifying under what conditions the process can be
expected to be self-sufficient. All equipment in the process
were off-the-shelf parts, and their energy consumption was
based on vendor specifications and did not scale with plastic
feed rate. The exergy required for the pyrolysis reactor was
based on the heat of reaction, and the exergy of the oil product
was the process output; both of these values scaled linearly

with the mass flow rate of plastic entering the process. To
handle parameter uncertainty, the pyrolysis oil yield was
handled as a stochastic variable in the MC simulation; its value
was varied to reflect the observed model MAE (±9.1%). The
remaining stochastic variables can be found in the Supple-
mentary Information Table SI.6.
Figure 6 shows the results of this analysis as a function of

flow rate over a range of realistic temperatures as the

probability of producing more exergy (based on fuel heating
value) than it consumed (“net exergy production”). For feed
rates of 1.0 and 2.0 kg/h, the process is unlikely to produce
more exergy than it consumes (<20%) since the energy
required by the peripheral equipment is predicted to be greater
than that in the fuel product. Between a feed rate of 2.0 and 2.5
kg/h and for temperatures less than 550 °C, the probability of
net exergy production increases by a factor of 4; this sharp
increase corresponds to the point at which the exergy
embodied in the pyrolysis oil exceeds that required by the
auxiliary equipment (∼5 kW of fixed consumption). Increasing
from 2.5 to 3.0 kg/h results in >80% probability of net exergy
production for pyrolysis temperatures less than 550 °C.
In general, the model predicts that thermodynamic efficiency

decreases with increasing pyrolysis temperature, a consequence
of the high reactivity of the Rhine River plastic mixture. The
exception to this trend is that the probability of net exergy
production predicted at 500 °C is greater than that predicted
at 450 °C. Here, the model predicts that the oil yield at 450 °C
is slightly less than at 500 °C (53% compared to 55.2%),
accounting for the counter-intuitive finding. In fact, this
difference in oil yield is within model uncertainty, meaning that
the model indicates operating in the range between 400 and
500 °C for optimal thermodynamic efficiency. This range can
be then used to minimize time spent in the evaluation of
process performance with actual plastic mixtures.
Figure 6 can be interpreted to predict that pyrolytic

conversion of Rhine River plastic is very likely to be energy
self-sufficient, assuming that 100% of the plastic carried by the
river can be captured. An estimated 20 to 30 tons of plastic is
discharged from the Rhine River annually,63 which corre-
sponds to plastic flowrates of ∼2 to 3 kg/h, right in line with
the predictions seen here for thermodynamically self-contained
capture and pyrolytic conversion. Lower ends of this plastic

Figure 6. Percent probability of net exergy production for the Rhine
River from 1 to 5 kg/h flowrates and over a pyrolysis temperature
range of 400 to 650 °C.
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exit rate may argue for the accumulation of plastic and the
semicontinuous operation of the conversion system to permit
modest process scale-up to achieve energy self-sufficiency�or
for redesign to improve efficiency. The analysis shown in
Figure 6 assumes fixed power requirements for peripheral
equipment, whereas the energy required for pyrolysis is
embodied in the fuel scale with plastic feed rate. If the energy
consumed by peripheral equipment can somehow be scaled to
the feed rate�i.e., less energy might be consumed by the
shredder for a dilute mixture than a concentrated one, then
more favorable outcomes can be achieved for lower flow rates
than that are shown here. The analysis presented here for the
Rhine River also suggests that other rivers with higher plastic
discharge rates, including the Yangtze, Ganges, and Xi,11 may
yield self-sustaining plastic removal and pyrolysis systems,
especially when complete capture of plastics is not possible,
even accounting for the possibility that the oil yields for those
rivers may be less favorable than predicted for the Rhine River.
The examples of MRF and Rhine River plastic pyrolysis

demonstrate how the current model can be used. The
emphasis has been placed on predicting pyrolysis oil yields,
with the end application of replacing petroleum-derived fuels.
Because the origin of synthetic plastics is petroleum,
combustion of plastic-derived fuels releases the same amount
of CO2 into the atmosphere as does combustion of petroleum-
derived fuels. Using estimates of the global use of plastics64

minus PVC and PET and the current model, approximately
130 million metric tons of plastic-derived fuel can be produced
annually. Using typical emissions factors,65 combustion of this
plastic-derived fuel would be equivalent to 230 million tons/
year of CO2, approximately 1% of annual emissions.66 That
stated, on a per mass basis, the environmental impact of plastic
entering the environment is almost certainly greater than that
of CO2 despite the threat of climate change.
Nonetheless, the CO2 emissions analysis indicates that using

pyrolysis to produce fuels incurs unacceptable climate
penalties. Therefore, pyrolysis to fuel should be used as part
of a comprehensive strategy, which includes pyrolysis for
chemical production, increased recycling, and increased use of
biodegradable plastics, to prevent plastic entering landfills or
the environment. Similarly, the climate impact of using plastic-
derived fuels can be minimized if they are reserved for use in
applications that are difficult to decarbonize using available
technologies, such as shipping or air transport.67 Alternatively,
to avoid new CO2 emissions entirely, pyrolysis can be used to
produce products other than fuels, such as lubricants,
monomers, or other chemicals. The current model method
can easily be adapted for these alternative products provided
that data are available.
The results presented here indicate that the accuracy of the

current model is sufficient for many practical applications.
More generally, the accuracy of the model with the available
data set indicates substantial scope for improvement as more
data become available. Some of the uncertainty of the current
model likely arises from incomplete reporting of independent
variables�necessitating the use of KNN to fill data gaps�and
a lack of a uniform way to report oil yields. A consistently used
volatility-defined measure of oil yield based on simulated
distillation or thermogravimetric analysis of the product would
improve data quality and model predictability. More uniform
and quantitative reporting of individual product yields would
allow the model to be adapted for predictions of chemicals
production.

4. CONCLUSIONS
Seven machine-learned models were optimized and evaluated
for predicting oil yields obtained from pyrolysis of the big six
plastics using feed composition, reaction conditions, reactor
type, and the presence or absence of catalyst as independent
variables. Of these seven models, the accuracy profile of
nonlinear models was found to be superior to the one
associated with conventional linear models included in the
study, with XGBoost providing the most accurate predictions
based on the MAE criterion. Because of the content of the
specific data set used to train the proposed machine-learned
models, they are expected to be accurate in the temperature
range from 400 to 700 °C, inclusive.
As a demonstration, the XGBoost model was used to predict

the oil yields expected from pyrolysis of the U.S. and EU
plastic recycling waste, with the finding that EU waste appears
to be a superior feed candidate for pyrolysis. The same
regression model was used as part of a probabilistic Monte
Carlo-based thermodynamic analysis that was performed on a
process to remove plastic from the Rhine River, shred it, feed it
to a pyrolyzer, and convert it into fuel. Thermodynamic
analysis indicated that the process could be a net exergy
producer under realistic conditions, provided that the scale of
the pyrolyzer was sufficient to produce enough oil to offset
fixed energy requirements associated with the peripheral
equipment.
The model used here is therefore deemed sufficient for many

practical applications involving waste plastic pyrolysis and in
particular can be used in conjunction with thermodynamic
analysis to evaluate feasibility. As more data are reported, the
model can gradually be refined and its predictive and
performance evaluative capacity considerably enhanced. In
addition to pyrolysis, the general methodological, modeling,
and simulation framework proposed in the present study could
be readily applied to different technology options as well as
inform strategies and policy responses for plastic waste
reduction and management.
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