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Abstract
Plants with different photosynthetic pathways could produce different amounts and 
types of root exudates and debris which may affect soil respiration rates. Therefore, 
wetland vegetation succession between plants with different photosynthetic pathways 
may ultimately influence the wetland carbon budget. The middle and lower reaches of 
the Yangtze River has the largest floodplain wetland group in China. Tian’e Zhou wet-
land reserve (29°48'N, 112°33′E) is located in Shishou city, Hubei province and covers 
about 77.5 square kilometers. Hemathria altissima (C4) was found gradually being re-
placed by Carex argyi (C3) for several years in this place. An in situ experiment was 
conducted in Tian’e Zhou wetland to determine the change of soil respiration as the 
succession proceeds. Soil respiration, substrate-induced respiration, and bacterial res-
piration of the C4 species was greater than those of the C3 species, but below-ground 
biomass and fungal respiration of the C4 species was less than that of the C3 species. 
There were no significant differences in above-ground biomass between the two spe-
cies. Due to the higher photosynthesis capability, higher soil respiration and lower total 
plant biomass, we inferred that the C4 species, H. altissima, may transport more pho-
tosynthate below-ground as a substrate for respiration. The photosynthetic pathway 
of plants might therefore play an important role in regulating soil respiration. As C. 
argyi replaces H. altissima, the larger plant biomass and lower soil respiration would 
indicate that the wetland in this area could fix more carbon in the soil than before.
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O R I G I N A L  R E S E A R C H

Does the different photosynthetic pathway of plants affect soil 
respiration in a subtropical wetland?

Jingrui Chen1,2  | Qiulin Wang1,3 | Ming Li1 | Fan Liu1 | Wei Li4

1  | INTRODUCTION

Soil respiration is estimated to be 80 Pg C yr−1 and is the second larg-
est flux of carbon between terrestrial ecosystems and the atmosphere 
(Raich, Potter, & Bhagawati, 2002). The annual carbon (C) flux through 
soil respiration represents approximately 10% of the atmospheric C 
pool and is 10 times greater than that through fossil fuel combus-
tion (Raich & Schlesinger, 1992; Schlesinger & Andrews, 2000). Small 
changes in soil respiration across large scale may affect atmospheric 

carbon dioxide concentration that is critical for the atmospheric and 
surface temperature of the earth and ultimately affects global warming 
(Grace & Rayment, 2000; Schlesinger & Andrews, 2000).

Temperature (soil temperature and/or air temperature) and/or soil 
moisture were believed to be the key factors in driving soil respiration 
change in forests (Ekblad, Boström, Holm, & Comstedt, 2005), des-
erts (Feng et al., 2014), wetlands (Chen et al., 2013), and other eco-
systems (Barthel, Cieraad, Zakharova, & Hunt, 2014; Lloyd & Taylor, 
1994; Wildung, Garland, & Buschbom, 1975). For example, soil 
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temperature accounted for 70.8% of the variation of soil respiration 
under natural condition (Chen et al., 2013). Soil respiration mainly 
includes root respiration and microbial respiration. All these abiotic 
factors affected soil respiration through their impacts on biotic fac-
tors. Photosynthesis is considered as the important process linking 
the abiotic and biotic factors that affect soil respiration (Barthel et al., 
2011; Ekblad et al., 2005; Kuzyakov & Cheng, 2004). Recent research 
is increasingly reporting that soil respiration is also determined by 
photosynthesis (Gong et al., 2015; Högberg et al., 2001; Jing et al., 
2014; Kuzyakov & Gavrichkova, 2011). Appropriate temperature 
and soil water content are beneficial to plant growth. The better a 
plant grows, the more the photosynthate and root biomass can be 
produced, and the more the photosynthetic products are transported 
to roots and into soil carbon substrates, and this could contribute to 
higher root and microbial respiration (Gong et al., 2015; Han, Zhang, 
Wang, Jiang, & Xia, 2012; Jia et al., 2013).

Previous studies have shown that soil respiration is closely related 
to recent canopy photosynthesis on time scales ranging from hours 
to days using phloem girdling (Högberg et al., 2001; Jing et al., 2014), 
root exclusion by trenching (Gaumont-Guay, Black, Barr, Jassal, & 
Nesic, 2008), shading and defoliation (Jing et al., 2014; Kuzyakov & 
Cheng, 2004), and isotopic labeling (Barthel et al., 2011; Ekblad et al., 
2005; Wingate et al., 2010). In grassland, a time lag of <3 hr was found 
between photosynthetic production and below-ground respiration 
(Bahn, Schmitt, Siegwolf, Richter, & Brüggemann, 2009; Yan, Chen, 
Huang, & Lin, 2011). These short time lags between soil respiration 
and photosynthesis suggest that soil respiration is closely linked to 
recent photosynthate (Kuzyakov & Gavrichkova, 2011). Although all 
this research proved that soil respiration was strongly related to plant 
photosynthesis, the potential relationship between the photosyn-
thetic pathway of plants and soil respiration has not been explicitly 
addressed (Schönwitz, Stichler, & Ziegler, 1986).

The middle and lower reaches of the Yangtze River, the largest 
floodplain in China, have hundreds of wetlands with an average water 
depth <5 m. Tian’e Zhou wetland, a typical representative of these 
wetlands located in the middle and lower reaches of Yangtze River, 
covers about 77.5 square kilometers. It is a seasonal flooded wetland, 
with Hemathria altissima (with the C4 photosynthetic pathway) and 
Carex argyi (with the C3 photosynthetic pathway) being the dominant 
plant species. The Three Gorges Dam, completed in 2006, has reduced 
flood flows downstream in the wet and dry season (Xu & Milliman, 
2009) which will lead to lowered groundwater tables. Lowering of the 
groundwater table has been suggested to be the driving forces for 
vegetation succession (Lameire, Hermy, & Honnay, 2000). After the 
completion of Three Gorges Dam, we found that the distribution of 
H. altissima was declining and was gradually being replaced by C. argyi 
(data unpublished), which may relate to hydrologic regime changes 
downstream. We chose H. altissima and C. argyi as representative of 
C4 and C3 plant and to address: (1) Are there any differences of soil 
respiration between the two species? If so, could the differences be 
explained by the photosynthetic pathway, plant productivity, and/or 
plant biomass; (2) as the succession progressed, will it increase or de-
crease soil respiration in this area?

2  | MATERIALS AND METHODS

2.1 | Study site

Tian’e Zhou wetland, a natural reserve dedicated to the protection 
of Pere David’ deer, is a periodical flooded marsh located in Shishou 
city, Hubei province, along the north side of Yangtze River. It has a 
typical subtropical monsoon climate, and its mean annual temper-
ate and annual precipitation are 16°C and 1200 mm, respectively. 
Hemathria altissima and C. argyi were the two dominant species in 
this wetland although C. argyi covers a larger area. Hemathria altissima 
mainly grew 3 m to 500 m from the river, while C. argyi grew 0 m to 
1000 m from the river (Yang et al., 2011). The two species are distrib-
uted in a patchy and miscellaneous pattern in different areas in the 
wetland depending on soil moisture.

Field experiments were carried out from May 2009 to April 2010. 
An experimental area (100 × 100 m) was fenced with a metal barrier 
to prevent disturbance by deer and humans. The C4 species and the C3 
species distributed in the experimental area were mainly in the patchy 
patterns. As the two species were co-occurring species in the natural 
reserve, we assumed that the soil physico-chemical characteristics, 
soil temperature, and soil moisture of the two species were the same. 
Six plots were set up for each species (5 × 5 m) for soil samples and soil 
respiration measurement. All of the measurements and sample collec-
tions were performed monthly.

2.2 | Soil respiration

Soil respiration was measured from 9:00 a.m. to 11:00 a.m. once every 
month from May 2009 to April 2010, with a LICOR-6400 portable 
photosynthesis system equipped with a LICOR 6400-09 soil respira-
tion chamber (LICOR, Inc., Lincoln NE, USA). Polyvinyl chloride col-
lars (10.4 cm diameter × 5 cm height) were inserted into the soil to a 
depth of 1.5 cm at least 24 hr prior to each measurement to reduce a 
disturbance-induced CO2 efflux (Chen et al., 2013).

2.3 | Above- and below-ground biomass

Six 1 × 1 m quadrats (spaced more than 10 m) were chosen randomly 
at each sampling time for each species. All above-ground plant mate-
rials were collected in each quadrat and dried in an oven at 80°C for 
more than 48 hr and weighed.

In each quadrat, six soil cores (8 cm diameter × 30 cm height) were 
taken for the measurement of below-ground biomass (BB). Soil cores 
were immersed separately in water for more than 24 hr and washed 
gently through a 60-mesh sieve. The BB was collected from the sieve 
then dried at 80°C for more than 48 hr and weighed.

2.4 | Soil samples and analysis

Soil samples were collected randomly for each species from the sur-
face layer (0–10 cm), the day when soil respiration was measured, 
and delivered to the laboratory as soon as possible under cooled 
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conditions. They were ground and sifted through a 2-mm sieve to re-
move roots and debris. Half of the soil samples were stored at 4°C 
for substrate-induced respiration, fungal respiration, and bacterial res-
piration analysis, and the other half was air-dried for analysis of soil 
organic matter and total carbon.

Substrate-induced respiration, fungal respiration, and bacterial 
respiration were measured by the incubation method. CO2 evolved 
from the soil (30 g soil per sample) during 24-hr incubation at 20°C in 
a 1000-ml glass bottle was trapped by 3 ml of 0.5 mol L−1 NaOH and 
then quantified by titration with 0.05 mol L−1 HCl after addition of ex-
cess BaCl2. The three kinds of respiration above were expressed as mg 
CO2 g−1 (dry weight soil) day−1. Blank samples (no soil) were used to 
assess CO2 trapped during incubation (from the air closed in bottle) 
and handling. Soils for fungal and bacterial respiration were added 
with following different treatments: (1) substrate-induced respiration: 
glucose; (2) fungal respiration: glucose + bactericide (Bronopol); (3) 
bacterial respiration: glucose + fungicide (Captan). The amounts of 
glucose, bactericide, and fungicide used were 10 mg g−1, 8 mg g−1, 
and 1 mg g−1, respectively (Chen et al., 2013). Soil bacterial and fungal 
densities were measured by plate count methods. Soil organic matter 
content was measured by the ignition loss method (Dean, 1974). Soil 
total carbon was measured with Vario Micro cube elemental.

2.5 | Statistical analysis

All statistical analyses were performed by SPSS 13.0 (SPSS for 
Windows, version 13.0). Significant differences between the two spe-
cies were analyzed by repeated-measures ANOVA (RM-ANOVA) with 
sites being the main factor and time being the repeated measure. The 
data collected over the entire year for each species were treated as 
a whole for comparison in the RM-ANOVA. Correlation analysis (soil 
respiration, above-ground biomass (AB), BB, substrate-induced res-
piration, bacterial respiration, fungal respiration, density of bacteria, 
and density of fungi) was carried out with the Pearson test. Stepwise 
regression analysis was applied to explore the importance of different 
variable on soil respiration. Soil respiration was set as the depend-
ent variable, and AB, BB, fungal respiration, bacterial respiration, and 
substrate-induced respiration were the initial independent variables. 
Backward elimination was used to eliminate the redundant variables. 
The significance level was set as p < .05.

3  | RESULTS

3.1 | Soil respiration and microbial respiration

During the growing season (May to September in 2009), soil respi-
ration rates of the two species were relatively high (Figure 1a), but 
decreased quickly in October and the low level was maintained until 
the end of the experiment. The soil respiration of the C4 species was 
significantly larger than that of the C3 species over the whole time 
(RM-ANOVA, p < .001). Substrate-induced respiration of the two spe-
cies showed the same trend as their soil respiration rate (Figure 1b): 
From May to September in 2009, both of the C4 and C3 species’ 

substrate-induced respiration increased gradually and then decreased 
in October. The highest values of the C4 and C3 species’ substrate-
induced respiration were 508.3 mg g−1 day−1 and 301.4 mg g−1 day−1, 
and both occurred in March 2014. RM-ANOVA analysis showed that 
the C4 species had higher substrate-induced respiration than that of 
the C3 species (p < .01). In most months of the experiment, the C4 spe-
cies showed higher bacterial respiration than that of C3 (Figure 1c), 
but the fungal respiration showed otherwise (Figure 1d). RM-ANOVA 
analysis showed that both bacterial respiration and fungal respiration 
differed between the two species (p < .01).

3.2 | Above-ground and below-ground biomass, 
soil organic matter

From May 2009, the AB of the C4 species increased and reached a peak 
value of 2139 g m−2 in September and then decreased (Figure 2a), 
while highest value of the C3 species, 1993 g m−2, occurred in May 
2009. However, the AB of the two species was not significantly dif-
ferent (RM-ANOVA, p > .05). In contrast, the C4 species had a lower 
BB every month, and RM-ANOVA analysis also showed that the dif-
ference between the two species was significant (p < .01) (Figure 2b). 
Soil organic matter and total carbon showed no significant differences 
between the two species over the whole time (Figure 3a,b).

3.3 | Relationship between soil respiration and 
biotic variable

The soil respiration of the two species showed significant relationships 
with their ABs, bacterial respirations, fungal respirations, and fungal 
densities (Table 1). Soil respiration of the C4 species also showed a sig-
nificant relationship with density of bacteria while the C3 species did 
not. The AB and BB of the C4 species were positively related. Bacterial 
respiration and fungal respiration were positively related in both spe-
cies. Stepwise regression analysis showed that annual soil respiration 
could be expressed by the following equation:

FR: fungal respiration; BB: below-ground biomass; AB: above-ground 
biomass.

4  | DISCUSSION

4.1 | Soil respiration and plant photosynthesis

Plant productivity or biomass is believed to be a key driver in regu-
lating soil respiration changes among different plant species, plant 
species richness, plant physiological genotypes, and plant community 

Soil respiration (C3)=3.709−0.008FR

−0.305BB (R2= .448, t=−2.158, p= .038)

Soil respiration (C4)=3.106−0.013FR−1.433BB

+0.001AB (R2= .728, t=3.073, p= .002)



     |  8013CHEN et al.

composition (Bréchet et al., 2009; Dias, Van Ruijven, & Berendse, 
2010; Metcalfe, Fisher, & Wardle, 2011; Migliavacca et al., 2015). 
Han et al. (2014) showed that changes in gross primary productivity 
caused by sunny days and adjacent cloudy days regulated the changes 
in daytime soil respiration under the same soil temperature, and con-
cluded that the effect of photosynthesis of plants on soil respiration 
should be taken into consideration in order to simulate accurately 
the magnitude and temporal variation of soil respiration. However, 
results of some other research showed the opposite (e.g., De Boeck 
et al., 2007; Johnson, Phoenix, & Grime, 2008). Johnson et al. (2008) 
reported that the effects of plant community on soil respiration were 
more than shoot biomass and root density, and suggested that other 
mechanisms (such as arbuscular mycorrhizal existence) may exist in 

determining variation in soil respiration. In our study, although both 
above- and below-ground biomass showed significant relationships 
with soil respiration (Table 1), the C3 species with higher total plant 
biomass (the sum of above- and below-ground biomass) produced 
lower soil respiration. The results also revealed that higher plant bio-
mass did not necessarily lead to higher soil respiration, and possibly 
therefore, there were some other factors involved that counteracted 
production-induced stimulation of soil respiration. It was inferred that 
the photosynthetic pathways of the two species may be one of these 
other factors.

Root respiration, as an important part of soil respiration, was 
defined as respiration by roots, their associated mycorrhizal fungi 
and other microorganisms in the rhizosphere directly dependent on 

F IGURE  1 Changes of soil respiration (a), substrate-induced respiration (b), bacterial respiration (c), and fungal respiration (d) of the C3 and C4 
species. Vertical bars are the standard error of the mean
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labile C compounds leaked from roots (Nordgren, Ottosson Löfvenius, 
Högberg, Mellander, & Högberg, 2003). Its carbohydrate sources pri-
marily came from plant photosynthate (Davidson & Holbrook, 2009). 
Root respiration is very sensitive to changes in photosynthesis and 
decreased significantly without photosynthesis (Ekblad et al., 2005; 
Högberg et al., 2001). Root respiration and rhizomicrobial respiration 

can consume up to 30% of total net photosynthetic production 
(Cheng et al. 1993). Labeling of photosynthate with 13C showed that 
the contribution of currently assimilated carbon to total root respi-
ration reached constant values of 40%–60% in Glycine max (Hansen, 
Yoneyama, & Kouchi, 1992; Kouchi, Akao, & Yoneyama, 1986). In a 
previous study, net photosynthetic rate was higher in H. altissima (the 

F IGURE  2 Changes in the above-ground biomass (a) and below-ground biomass (b) of the C3 and C4 species. Vertical bars are the standard 
error of the mean
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F IGURE  3 Changes in soil organic matter (a) and soil total carbon concentration (b) of the C3 and C4 species. Vertical bars are the standard 
error of the mean
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TABLE  1 The Pearson correlation between soil respiration and the seasonal variables during the whole year

AB BB SIR BR FR DB DF

C3 SR .440* −.393* .139 −.566** −.519** −.290 .683**

C4 SR .444* −.114 −.095 −.564** −.685** −.373* .471*
SR, soil respiration; AB, above-ground biomass; BB, below-ground biomass; SIR, substrate- induced respiration; BR, bacterial respiration; FR, fungal respira-
tion; DB, density of bacteria; DF, density of fungi.
*p < .05; **p < .01.
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C4 species) than in Carex cinerascens (another C3 species) in Tian’e 
Zhou wetland (Li, Yang, & Li, 2007). However, its total biomass was 
lower than that of the C3 species. It has been reported that photosyn-
thesis could affect soil respiration by altering below-ground substrate 
availability (Sampson, Janssens, Curiel Yuste, & Ceulemans, 2007). 
Hence, we inferred that more photosynthate was allocated to below-
ground as available substrate for root and microbial respiration in the 
C4, compared to the C3 species.

4.2 | Microbial activity and soil carbon input

Microbial communities contributing to soil heterotrophic respiration 
are mainly composed of bacteria and microfungi (Smith & Paul, 1990). 
In this study, the C4 species favored higher bacterial respiration while 
the C3 species had higher fungal respiration. This difference may re-
late to different quantity and quality of plant litter and root exuda-
tion caused by different photosynthetic pathways. Changes in litter 
quantity and quality can directly and/or indirectly influence microbial 
community activity, abundance, and composition (Bardgett, Bowman, 
Kaufmann, & Schmidt, 2005; Carney & Matson, 2005; Curiel et al., 
2007; De Deyn, Cornelissen, & Bardgett, 2008; Zak, Holmes, White, 
Peacock, & Tilman, 2003; Zavaleta & Hulvey, 2007), thereby alter-
ing carbon cycling rates, and potentially changing soil respiration. Soil 
total carbon and soil organic matter sampled from the place where 
the two species grow were not significantly different over the whole 
year (Figure 3a,b), while the C4 species had higher net photosynthetic 
rates with lower total plant biomass. One possible explanation for this 
conflicting result is that the C4 species may release greater quantities 
of labile material to the microbial community through its root system 
(e.g., fine root turnover and exudation), stimulating carbon mineraliza-
tion in the rooting zone (Baer, Kitchen, Blair, & Rice, 2002), and the 
higher substrate-induced respiration in the C4 species is consistent 
with this explanation.

C-rich substrates, such as sugars (50%–70% of total exudate), 
carboxylic acids (20%–30% of total exudate), and amino acids (10%–
20% of total exudate), make up the majority of exudate compounds 
(Hütsch, Augustin, & Merbach, 2002; Jones, 1998; Kraffczyk, 
Trolldenier, & Beringer, 1984). Labile soil C inputs could affect the 
activity and relative abundance of fungi and bacteria. Mahaney, 
Smemo, and Gross (2008) showed that C4-derived materials were 
more abundant in the labile components of active soil organic car-
bon, while the more stable components of active soil organic carbon 
were biased toward C3-derived materials. In general, bacterial de-
composition pathways support high turnover rates of easily available 
substrates, while slower fungal-dominated decomposition pathways 
favored more complex organic materials (Wardle, Bonner, & Barker, 
2002). This is consistent with our study that found higher bacte-
rial respiration rates in the soil below C4 species and higher fun-
gal respiration in the soil below C3 species. Although the soil below 
C4 species favored higher bacterial respiration, stepwise regression 
analysis showed that fungal respiration played an important role in 
soil respiration changes of the two species. The results were consis-
tent with Anderson and Domsch (1973, 1975) that fungal respiration 

contributed higher percentage on soil respiration than that of bacte-
rial respiration in soils.

4.3 | Vegetation succession and hydrologic change

Hydrology is a major determinant of wetland vegetation patterns and 
physiochemical characteristics of wetlands, such as nutrient cycling, 
organic matter accumulation, and soil chemistry (Mitsch & Gosselink, 
2000). Water table is the primary factor underlying the observed 
vegetation gradient (Zampella, Moore, & Good, 1992), and vegeta-
tion succession in wetlands has mostly been related to the change of 
water table (Elmore, Mustard, & Manning, 2003; Strȍmberg, Tiller, & 
Richter, 1996).

Increased temperatures lead to a lowered groundwater table in 
many areas (Bouraoui, Vachaud, Li, Le Treut, & Chen, 1999; Brouyère, 
Carabin, & Dassargues, 2004; Woldeamlak, Batelaan, & De Smedt, 
2007), and the decline of the groundwater table will be accelerated by 
dam construction (Huang, Sun, & Jiang, 2011; Xu & Milliman, 2009). 
The Three Gorges Dam, completed in 2006, has reduced flood flows 
downstream in the wet and dry season (Xu & Milliman, 2009), which 
significantly decreased the water table in downstream lakes and wet-
lands (Huang et al., 2011). As the Tian’e Zhou wetland lies on the 
Yangtze River, its water table was inevitably affected by the construc-
tion of the Three Gorges dam. Carex argyi is distributed in a wider area 
than H. altissima (Yang et al., 2011), which suggests it can tolerate a 
greater range of ecological conditions. As the water table draws down, 
C. argyi gradually replaces H. altissima in this area, causing more car-
bon to be fixed and less CO2 to be released in this area.

5  | CONCLUSION

Two dominant species of Tian’e Zhou wetland with different pho-
tosynthetic pathways (C4 and C3) were studied. The results showed 
that the C3 species with higher total biomass produced lower soil 
respiration, while the C4 species with lower total biomass produced 
higher soil respiration, which was inconsistent with previous studies 
that high productivity or biomass leads to high soil respiration. It was 
inferred that photosynthetic pathways may play an important role in 
determining soil respiration variation between the two species.
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