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1  | INTRODUCTION

Rapid urbanisation and life style change accelerated the epidemic 
expansion of diabetes (Hu, 2011). Hyperglycemia, obesity, and in-
sulin resistance are associated with type 2 diabetes and metabolic 
disorders. The development of diabetic complications is linked to 
diabetes duration in patients (Ahmed, Khalil, & Al‐Qahtani, 2016; 

Cai, Wang, & Ji, 2006; Hussain, Qamar, Iqbal, Ahmad, & Ullah, 2013; 
Klein, Klein, Moss, Davis, & DeMets, 1984).

Diabetic retinopathy (DR) is a visual deficiency that is one of the 
major complications of long‐term diabetes affecting approximately 
4.2 million people worldwide and representing a leading cause of 
blindness. It is a microvascular retinal disease characterized by vas-
cular occlusions, increased capillary permeability, loss of pericytes, 
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Abstract
Astaxanthin (ATX) is a marine carotenoid known for its powerful antioxidant and 
neuroprotective properties. In this study, we investigated the in vitro and in vivo 
potential inhibitory effect of ATX on the aldose reductase (AR) activity, a key en-
zyme in the polyol pathway responsible for the pathogenesis of diabetic complica-
tions including diabetic retinopathy (DR). The gerbil Psammomys obesus (P. ob.), an 
animal model for type 2 diabetes and DR has been used. The erythrocyte and retinal 
AR activity of P. ob. individuals were, respectively, assessed monthly and at the 7th 
month during a 7‐month hypercaloric diet (HD) using a NADPH oxidation method. 
Meanwhile, the body weight and blood glucose of the gerbils were monitored. After 
7 months, P. ob. individuals were fed with ATX (4.8 mg/kg of body weight) once a day 
for 1 week. The results showed that the HD‐fed animals developed significant obe-
sity and hyperglycemia in comparison with controls. Erythrocyte AR activity showed 
a progressive and significant increase in the HD‐fed group compared with controls. 
Retinal AR activity was higher in the 7‐month HD‐fed group compared with controls. 
Erythrocyte AR activity was markedly decreased after ATX‐treatment in vitro and in 
vivo. These findings suggested that ATX inhibited the erythrocyte AR activity and 
could be used for DR prevention and/or early treatment.
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microaneurism, intraretinal hemorragies, macular edema, and neo-
vascularization (Hendrick, Gibson, & Kulshreshtha, 2015).

Previous studies indicated that several biochemical pathways 
have been proposed to explain the effect of hyperglycemia in the 
development of microvascular complications including the ac-
tivation of the polyol pathway and of the protein kinase C, the 
increased formation of advanced glycation end products and ox-
idative stress (Brownlee, 2005; Geraldes & King, 2010; Giacco 
& Brownlee, 2010). Among these, the polyol pathway has been 
extensively studied involving aldose reductase (AR), the first and 
rate‐limiting enzyme in this pathway belonging to the aldo‐keto 
reductase superfamily. It reduces the excess of glucose to sorbitol 
using nicotinamide adenine dinucleotide phosphate (NADPH) as 
cofactor. Sorbitol is then metabolized to fructose by the sorbitol 
dehydrogenase (Das‐Evcimen et al., 2012). Previous researches 
demonstrated that activation of polyol pathway induced intra-
cellular hyperosmolarity throughout the accumulation of sorbitol 
(Lorenzi, 2007), oxidative stress (Giacco & Brownlee, 2010), alter-
ation of the ratio of NADPH/NADP (Brownlee, 2005) and NADH/
NAD (Lorenzi, 2007), and myo‐inositol depletion (Chung & Chung, 
2005).

Psammomys obesus (P. ob.), a semi‐desertic rodent, is an exten-
sively used model for nutritionally induced diabetes and metabolic 
syndromes (Leibowitz et al., 2001; Marquie, Duhault, & Jacotot, 
1984). When subjected to a hyper caloric diet (HD), it has been 
shown that this rodent develops type 2 diabetes and DR with simi-
lar functional and structural alterations to that observed in humans 
(Saïdi, Mbarek, Chaouacha‐Chekir, & Hicks, 2011; Saïdi, Mbarek, 
Omri, et al., 2011). This suggests that P. ob. can be used as a valuable 
model for screening new therapeutic strategies for DR.

Aldose reductase (AR) is a target for the treatment of diabetic 
complications. Considerable effort has been devoted to the study 
of several AR inhibitors extracted from the biomass and which have 
shown promising effect by preventing and slowing the progression 
of DR (Akileshwari et al., 2012; Duan, Huang, Li, & Tang, 2013; Kim, 
Kim, Sohn, Lee, & Kim, 2011; Liu et al., 2008).

Astaxanthin (ATX) is a potent natural antioxidant belonging to 
the xanthophyll carotenoid family occurring in crustaceans, salmons, 
and crabs. It is used as a dietary supplement to promote health con-
dition. ATX has been investigated for its anti‐inflammatory (Yang, 
Kim, & Lee, 2013), antitumoral (Zhu, 2013), and antiaging poten-
tials (Kidd, 2011). In diabetic studies, ATX decreased blood glucose 
level in diabetic mice (db/db) (Uchiyama et al., 2002), inhibited lipid 
peroxidation (Marin, Bolin, Macedo, Sampaio, & Otton, 2011), and 
decrease oxidative stress in alloxan diabetic rats (Wang, Chen, & 
Lu, 2012). As reported by Baccouche et al. (2017) and Baccouche, 
Benlarbi, Barber, and Ben Chaouacha‐Chekir (2018), respectively, in 
vitro and in vivo, ATX exerted neuroprotection against high glucose‐
induced damage on P. ob. retinal cells. However, there have been no 
reports studying the inhibitory effect of ATX on AR activity. Based 
on these observations, the aim of this paper was to determine eryth-
rocyte AR activity of P. ob. exposed to HD and evaluate the potential 
inhibitory effect of ATX on this activity both in vitro and in vivo.

2  | MATERIALS AND METHODS

2.1 | Animals

Experiments were performed in young adult P.  ob. captured from 
the southern region of Tunisia (Bouhedma Park) with the au-
thorization of Tunisian Agriculture Ministry (number of approval: 
2012‐2016/2214‐1693). Gerbils were transferred to animal fa-
cilities and kept in standard laboratory conditions: 12 hr light and 
dark cycle, a constant temperature (25  ±  2°C), relative humidity 
was maintained at 70  ±  10% with free access of water and food. 
Animal experimentation was conducted in accordance with the ethi-
cal guidelines of the Pasteur institute ethics committee of Tunisia 
(number of approval: 2016/11/E/ISBST/V1). Animals were used and 
handled according to the principles of the Association for Research 
and Vision Ophthalmology (ARVO) Statement for the Use of Animals 
in Ophthalmology and Vision Research.

2.2 | Diabetes induction

Animals were acclimated for a couple of weeks and received a natu-
ral vegetable diet, that is, halophilic plants rich in water and mineral 
salts (0.4  Kcal/g wet weights). Data presented in this study came 
from two independent field excursions. Animals were divided ran-
domly into the two following groups: a control group (n  =  7) was 
fed with only halophilic plants, and a HD group (n = 14) received a 
standard laboratory rat chow (4 kcal/kg). Both groups were followed 
up for 7 months with measurements of body weight (every week) 
and plasma glucose (once a month). The animals were considered 
diabetic when their blood glucose levels >200 mg/dl.

2.3 | Aldose reductase assay

2.3.1 | Preparation of blood homogenate

Blood was collected from the infraorbital sinus of rats into hep-
arinized tubes. Red blood cells (RBC) were separated by centrif-
ugation at 5,000  g for 10  min and transferred immediately for 
analysis. 10 µl of RBC freshly collected from control P. ob. (n = 4) 
and diabetic P. ob. (n = 4) was added to 90 µl of sodium phosphate 
buffer (50 mM; pH = 7.4) containing 150 mM NaCl. The suspen-
sion was lysed by repeated freezing and thawing for three cycles 
(Reddy et al., 2008). Erythrocyte AR activity was followed up from 
the fourth month to the seventh month of hypercaloric diet (4th, 
5th, 6th, and 7th).

2.3.2 | Preparation of retina homogenate

Animals were humanely sacrificed, euthanized by CO2 inhalation 
and then decapitated. Eyes were immediately enucleated, rinsed 
with alcohol and placed into binocular dissecting microscope. Lens 
and cornea were removed after cutting the anterior segment via an 
incision in the pars plana. The neural retina was gently isolated from 
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the pigment epithelium and homogenated in 1 ml of potassium phos-
phate buffer (50 mM, pH = 6.2). The homogenate was centrifuged at 
15,000 r/min for 30 min, and the supernatant containing the enzyme 
fraction was kept in −20°C.

2.3.3 | Aldose reductase activity assay

Aldose reductase activity was measured at 340  nm using a spec-
trophotometer and in the presence of D, L‐glyceraldehyde, a sub-
strate of the enzyme. The assay mixture of 1 ml contained potassium 
phosphate buffer (50 mM; pH = 6.2), 0.4 mM lithium sulfate, 5 mM 
mercapthoethanol, 10 mMglyceraldehyde, 10 mMNADPH, and the 
enzyme fractions preparations from erythrocytes or retina (Duan et 
al., 2013). The reaction was initiated by the addition of NADPH. The 
change in the absorbance due to NADPH oxidation was followed. 
Readings were taken at t1 = 0 min and t2 = 5 min. AR activity unit 
(U) was defined by the absorbance decrease in the assay mixture 
per min.

2.4 | In vitro astaxanthin effect on AR activity

To evaluate the effect of ATX in vitro on AR activity, blood was col-
lected from the control group (n = 4) and the 7‐month HD‐fed P. ob. 
group (n = 4) then processed as described previously. Measurement 
of AR activity was performed with or without 50  µg/ml of ATX 
(Sigma Aldrich, SML 0982) in the assay mixture dissolved in dimethyl 
sulfoxide (DMSO).

2.5 | In vivo astaxanthin effect on AR activity

After 7 months of HD, P. ob. (n = 4) were fed 4.8 mg ATX per kg of 
their body weight during 7 days. To evaluate the effect of ATX on the 
AR activity of diabetic P. ob., blood was collected and AR activity was 
measured as described previously and compared with that of diabetic 
P. ob. untreated with ATX (n = 4) and to that of a control group (n = 4).

2.6 | Statistical analysis

The results are presented as mean  ±  standard deviation. A p value 
<.05 was considered statistically significant. Significance between 2 
groups was determined by using two factors ANOVA for changes in 
body weight, blood glucose levels and the evolution of AR activity. 
Independent sample Student t test was used for the measurement of 
AR activity in retina. One way ANOVA followed by Tukey's post hoc 
test was used for the measurement of erythrocyte AR in vitro and in 
vivo. The tests were performed using the SPSS program (version 17).

3  | RESULTS AND DISCUSSIONS

3.1 | Body weight change

The weight change, determined as a percentage of initial weight of both 
groups, is shown in Figure 1. These results showed that the weight of 
the P. ob. individuals of the control group did not change significantly 
throughout the 7‐month experimentation. Indeed, they maintained a 
roughly stable weight with an increase of approximately 38.06%, prob-
ably due to their condition of life in captivity (lack of activity) and/ or 
to a normal evolution of their weight according to age. However, the 
P. ob. individuals fed with HD developed a progressive increase of their 
body weight starting from the 2nd week of treatment with a significant 
gain (233.71%±34.13) of their body weight after 7 months (p < .05), in 
comparison with controls.

3.2 | Evolution of blood glucose level

Monthly measurements of blood glucose levels of the control and 
the HD‐fed groups of P. ob. are shown in Figure 2. The animals were 
considered diabetic when blood glucose was >200 mg/dl. Our find-
ings showed no significant variation in blood glucose levels through-
out the experimentation in the control group. However, the animals 
subjected to HD showed a significant increase compared with 

F I G U R E  1   Body weight evolution 
of P. ob. individuals during 7 months 
of captivity fed with hypercaloric diet. 
Control (C) P. ob. (n = 9) weight remained 
stable through the entire period. Diabetic 
(D) P. ob. (n = 14) showed a weight gain 
under hypercaloric conditions. Data 
expressed as mean ± standard deviation. 
(*): designates significant difference in 
comparison with C group (p < .05)
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controls (p < .05). Mean values increased from 119.75 ± 37.27 mg/
dl at the start of the experimentation to 281.25  ±  95.18  mg/dl 
after 7 months and were classified as diabetic from the 3rd month 
(Baccouche et al., 2018; Dellaa et al., 2018).

After 3 months, HD‐induced hyperglycemia and obesity in P. ob. 
These results are in accordance with previous reports (Baccouche et 
al., 2018; Dellaa et al., 2018).

3.3 | Evolution of erythrocyte aldose reductase 
activity in time

AR is a NADPH‐dependent enzyme. In vitro, it converts glyceralde-
hyde to glycerol with an equimolar oxidation of NADPH. Erythrocyte 
AR activity was measured in diabetics P. ob. from the 4th month of 
HD, which has been shown to be the earlier stage of the develop-
ment of DR (Baccouche et al., 2017) to the 7th month (Saïdi, Mbarek, 

Chaouacha‐Chekir, et al., 2011; Saïdi, Mbarek, Omri, et al., 2011) 
and compared with P. ob. control AR activity. Our results (Figure 3) 
showed that AR activity increased progressively with longer diabe-
tes duration but remained unchanged in control animals. Diabetic 
animals in the 4th, 5th, 6th, and 7th months showed a significant 
increase (p < .05) in AR activity compared with control animals rang-
ing from 0.0008 U in the 4th month to 0.001 U in the 7th month 
in diabetic animals. Previous researches showed that the high ac-
tivity of AR is caused by an increase of AR protein level (Liu et al., 
2008; Nishimura et al., 1994) which is itself in correlation with the 
duration of diabetes and the prevalence of DR in diabetic patients 
(Oishi et al., 2002). The role of AR in the pathogenesis of diabetic 
complications is further supported by evidence that inhibition of the 
enzyme prevents and/ or delays the development of diabetic cata-
racts, neuropathy, nephropathy, and retinopathy (Hotta et al., 2006; 
Kawakubo, Mori, Sakamoto, Nakahara, & Ishii, 2012; Oates, 2010; 
Toyoda et al., 2014).

Our results showed that AR activity level could be a marker for 
the diagnosis of diabetes in P. ob., which is, as demonstrated in our 
laboratory, an appropriate model to study diabetes and DR in hu-
mans (Dellaa et al., 2018, 2017; Saïdi, Mbarek, Chaouacha‐Chekir, et 
al., 2011; Saïdi, Mbarek, Omri, et al., 2011; Zhu, 2013).

3.4 | Retina aldose reductase activity

Preliminary measurements showed an increase in diabetic P. ob. ret-
ina AR activity (0.0015 U) compared with P. ob. control AR activity 
(0.0007 U) even though the difference is not statistically significant 
(Figure 4). The activation of the polyol pathway under hyperglycemic 
conditions results in the conversion of the glucose to sorbitol, which 
accumulates especially in pericytes leading to their degeneration 
and selective death. The loss of pericytes is the hallmark of DR in 
its early stages (Chung & Chung, 2005). However, at the 7th month 
of HD, the retinal metabolism of P. ob. may be only slightly affected. 
Therefore, a simple blood test could be helpful to measure the AR 
activity and to establish the diagnosis of the progress of the disease 
without sacrificing animals.

F I G U R E  2   Blood glucose level 
evolution of P. ob. individuals during 
7 months of captivity. Control (C) P. ob. 
(n = 6) showed a stable blood glucose 
level along the period of captivity. 
Diabetic (D) P. ob. (n = 4) showed a highly 
significant increase of blood glucose 
level under hypercaloric conditions. Data 
expressed as mean ± standard deviation. 
(*): designates statistical significance in 
comparison with C group; (p < .05)
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F I G U R E  3   In vivo evolution of erythrocyte aldose reductase 
(AR) activity at different stages of hypercaloric diet in diabetic (D) 
P. ob. individuals (4th, 5th, 6th, and 7th month) versus P. ob. control 
(C). Data represent mean ± standard deviation of AR activity 
in D P. ob. (n = 4) and C P. ob. (n = 4). (*): designates statistical 
significance in comparison with Control group; (p < .05)
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3.5 | In vitro effect of astaxanthin on erythrocyte 
aldose reductase activity

Data show a decrease of the erythrocyte AR activity of P. ob. individ-
uals after addition of ATX. In control animals, AR activity decreased 
slightly from 0.0018 to 0.0011 U, and the difference was not statisti-
cally significant (p > .05) (Figure 5). However, a significant decrease 
of AR activity was noticed in diabetic animals after addition of ATX 
(p < .05). Our results indicated that in vitro, ATX exhibited a signifi-
cant direct inhibitory effect on erythrocyte AR activity probably 
by its particular structure via the polyene chain (the nonpolar part) 
binding to the hydrophobic site of AR slowing therefore its action.

AR has been a potential target for drug design, and its inhibition 
has been an attractive approach for the prevention and treatment 
of diabetic complications. Zenerestat, Zoporestat, quinoxalinone, 
sorbinil, and tolerstat (Zhu, 2013) are some of the synthetic inhib-
itors clinically tested whereas they have demonstrated a significant 
side effects. ATX is a naturally occurring pigment and has been 
proven to promote health condition (Yang et al., 2013).

3.6 | In vivo effect of astaxanthin on erythrocyte 
aldose reductase activity

The results of the measurement of AR activity in vivo showed a sig-
nificant decrease (p < .05) in diabetics P. ob. which received a daily 
dose of 4.8 mg/kg of ATX for a week starting from the 7th month 
of HD compared with control diabetics (Figure 6). These results sug-
gest that ATX has a beneficial effect on DR through the inhibition of 
AR activity, which represents one of the major enzyme involved in 
the complications of diabetes and in particular of DR. It is possible 
to suggest that ATX could be an extremely interesting therapeutic 
candidate during the early stages of DR. Studies showed that ATX 
protected retinal cells cultured in high glucose levels by interfering 
with apoptosis mechanism and by preventing mitochondrial func-
tion from oxidative stress (Baccouche et al., 2017). A protective 
effect was confirmed in vivo with diabetic P. ob. fed with ATX for 
1 week. It induced the antioxidant enzyme (HO‐1) and reduced glial 
reactivity (Baccouche et al., 2018). The powerful antioxydant effect 
of ATX could be explained by the several conjugated double bonds 
of the molecule which act by donating electrons and reacting with 
free radicals to convert them into a more stable product. Moreover, 
ATX has shown better biological activity than other antioxydants as 
it could bind to the cell membrane (Yuan, Peng, Yin, & Wang, 2011) 
which, due to its polyunsaturated fatty acid content and metabolic 
activities, endogenously generates free radicals and other oxydants 
(Hulbert, Pamplona, Buffenstein, & Buttemer, 2007).

4  | CONCLUSION

The present study showed that erythrocyte AR activity of P.  ob. 
increased in time with the evolution of diabetes and its main 

F I G U R E  4   In vivo retinal aldose reductase (AR) activity in 
diabetic (D) and control (C) P. ob. at the 7th month of hypercaloric 
diet. Data represent mean ± standard deviation of AR activity in D 
P. ob. (n = 5) and C P. ob. (n = 2)
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F I G U R E  5   In vitro aldose reductase (AR) activity of control 
(C) (n = 4) and diabetic (D) P. ob. before (n = 4) and after (n = 4) 
adding astaxanthin (ATX). Data represent ± standard deviation. (*): 
designates statistical significance in comparison of D P. ob. before 
and after adding ATX; (p < .05)
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F I G U R E  6   In vivo effect of astaxanthin (ATX) on erythrocyte 
aldose reductase (AR) activity in control (C) P. ob. (n = 4), in diabetic 
(D) P. ob. with hypercaloric diet during 7 months (n = 4) and in 
diabetic P. ob. fed with astaxanthin (ATX) the last week of the 7th 
month (n = 4). (*): designates statistical significance in comparison D 
P. ob. with P. ob. fed with ATX; (p < .05)
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complication, DR. Therefore, AR activity might serve as an indicator 
for the onset and the progression of diabetes in this gerbil, which has 
been shown to develop similar structural and functional alterations 
to that observed for this disease in humans. ATX, a natural occurring 
carotenoid, is a potent inhibitor of AR activity both in vitro and in 
vivo and may prevent and treat diabetes complications in patients.
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