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Abstract

Communication between acute myeloid leukemia (AML) and the bone marrow microenvironment 

is known to control disease progression. Therefore, regulation of AML cell trafficking and 

adhesion to the bone marrow is of significant interest. In this study, we demonstrate that 

differential expression of the membrane scaffold CD82 modulates the bone marrow homing of 

AML cells. By combining mutational analysis and super-resolution imaging, we identify 

membrane protein clustering by CD82 as a regulator of AML cell adhesion and bone marrow 

homing. Cluster analysis of super-resolution data indicates that N-linked glycosylation and 

palmitoylation of CD82 are both critical modifications that control the microdomain organization 

of CD82 as well as the nanoscale clustering of associated adhesion protein, N-cadherin. We 

demonstrate that inhibition of CD82 glycosylation increases the molecular packing of N-cadherin 

and promotes the bone marrow homing of AML cells. In contrast, we find that inhibition of CD82 

palmitoylation disrupts the formation and organization of N-cadherin clusters and significantly 

diminishes bone marrow trafficking of AML. Taken together, these data establish a mechanism 

where the membrane organization of CD82, through specific post-translational modifications, 

regulates N-cadherin clustering and membrane density, which impacts the in vivo trafficking of 

AML cells. As such, these observations provide an alternative model for targeting AML where 

modulation of protein organization within the membrane may be an effective treatment therapy to 

disrupt the bone marrow homing potential of AML cells.
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Introduction

AML, the most common acute leukemia affecting adults, is characterized by an increase of 

immature myeloid blasts in the bone marrow that results from a loss of normal 

differentiation and proliferation of hematopoietic stem/progenitor cells (HSPCs) (1). 

Multiple subtypes of AML exist with a range of aggressiveness and treatment sensitivity (2). 

One sign of disease aggressiveness is the ability of AML cells to home to the bone marrow 

and displace HSPCs (3). Homing requires multiple steps including the ability to respond to a 

chemotactic gradient, extravasation, and adhesion to specialized niches within the bone 

marrow. In fact, adhesion-mediated interactions between AML cells and the bone marrow 

play an important role in disease progression and chemoresistance (4–7). Therefore, 

identifying the molecules and mechanisms that mediate AML-bone marrow adhesion and 

homing are fundamental to the development of future therapeutic treatments.

Recently, an AML protein profile was identified for a subpopulation of leukemic blasts, the 

leukemia stem cells (LSCs). This mass spectrometry study found an enrichment of specific 

adhesion-related proteins including CD44, integrin α6, CD47 and CD82 on LSCs (8). An 

alternative AML screen also identified the upregulation of CD82 in LSCs where it was 

suggested to modulate AML adhesion to the bone marrow (9). Following its initial cloning 

(10–12), the tetraspanin CD82 (or Kai1) was described as a metastasis suppressor in solid 

tumors (13). Tetraspanins are evolutionarily conserved membrane proteins present in most 

eukaryotes that function as mediators of cell adhesion, trafficking, and cell signaling (14). 

Through their ability to associate in cis with other tetraspanins, cell adhesion molecules, and 

signaling receptors, tetraspanins form tetraspanin-enriched microdomains (TEMs) (15, 16). 

Formation of TEMs enables tetraspanins to serve as molecular organizers for membrane 

proteins (15). Our recent work identified a role for CD82 in the homing of human HSPCs, 

which we linked to the membrane organization of CD82 and associated adhesion and 

signaling molecules (17). Currently, basic questions concerning the formation and regulation 

of TEMs and their modulation of adhesion receptors, which specifically impact bone 

marrow homing, still remain.

N-cadherin is a classical cadherin that interacts homophilically with cadherins on 

neighboring cells to form adherence junctions, which mechanically link cells and relay 

signaling information from the extracellular environment (18, 19). While the function of N-

cadherin remains controversial for HSPCs (20–22), its role in the regulation of specific 

leukemias is more evident. In AML, the LSC compartment that expresses N-cadherin is 

relatively resistant to chemotherapy treatments and highly enriched following chemotherapy 

(23). Subsequent studies suggest that N-cadherin expression facilitates LSCs to initiate and 

induce AML development (24). In combination, these data indicate that N-cadherin 

participates in the protection of LSCs and the relapse of AML; therefore, the regulation of 

N-cadherin function in AML is of significant interest.

The dynamic regulation of cadherin-mediated adhesiveness is thought to involve modulation 

of cadherin density arrangement on the cell surface (25). Moreover, clustering of cell surface 

cadherins is known to modify cadherin-mediated adhesion and signal transduction, but the 

mechanism of cadherin clustering is poorly understood (26). Combining super-resolution 
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imaging, CD82 mutational analysis, and in vivo functional studies, we utilize a multiscale 

approach that identifies CD82 as a regulator of AML cell adhesion and bone marrow 

homing. Our work establishes a mechanism where the membrane organization of CD82, 

which is dependent upon specific post-translational modifications, regulates N-cadherin 

clustering and membrane density. We demonstrate that the spatial regulation of N-cadherin 

by CD82 leads to functional in vivo consequences for AML cell behavior.

Results/Discussion

CD82 expression increases AML cell homing to the bone marrow and modulates N-
cadherin mediated adhesion

To gain mechanistic insight into how CD82 affects bone marrow homing, we used the 

previously described control, CD82 overexpression (CD82OE), and CD82 knock down 

(CD82KD) human KG1a cells (Fig. 1A) (27) to monitor changes in AML cell homing using 

NSG mice. Sixteen hours following injection, we detected no difference in AML cell 

localization to the spleen or blood (Fig. 1B). However, when we analyzed the bone marrow, 

we identified a marked reduction in bone marrow homing of the CD82KD cells along with a 

modest increase in the bone marrow homing of CD82OE cells when compared to control 

cells. Therefore, CD82 expression can modify the in vivo trafficking of AML cells. To 

further evaluate this finding, we compared the homing capacity of primary human AML 

cells with differential CD82 expression (Fig. 1C, E). Consistent with the cell line data, we 

find that AML cells with higher CD82 expression display improved bone marrow homing 

when compared to AML cells with lower expression of CD82 (Fig. 1D, F). The combined 

cell line and primary AML cell data suggest that CD82 expression modulates AML cell 

homing to the bone marrow microenvironment, which is an indicator of aggressive AML.

Bone marrow homing of AML cells requires a series of complex steps involving a 

combination of cell migration and adhesion signaling. The chemokine receptor, CXCR4, 

with its ligand, stromal derived factor-1 (SDF-1), is the major receptor signaling pathway 

used for bone marrow homing by HSPCs (28) and various types of leukemic cells (29). 

While functional interactions between tetraspanins and CXCR4 signaling were shown 

previously (30), we did not detect any CXCR4 expression differences between the control, 

CD82OE, and CD82KD cells (Suppl. Fig. 1A, B). Additional analysis of cell migration 

toward SDF-1 illustrates no difference in the migratory behavior of these cells in a transwell 

assay (data not shown). Therefore, these data suggest that the observed changes in bone 

marrow homing are not likely due to CD82-mediated effects on the CXCR4 homing signal.

Next, we turned to evaluate whether CD82 expression may affect AML cell adhesion within 

the bone marrow by screening the cell lines for expression changes in the cadherin family of 

cell-cell adhesion molecules (18, 19). While we were unable to detect differences in the 

expression of E-cadherin and P-cadherin (Suppl. Fig. 1C, D), the surface expression of N-

cadherin was significantly reduced in the CD82KD cells (Fig. 1G). Recently, N-cadherin 

enrichment was identified on the surface of LSCs, which was proposed to enable the cell 

adhesion of AML cells to the bone marrow (23, 24). Therefore, we used a fluorescence-

based adhesion assay to measure changes in cell adhesion to osteoblasts and purified N-

cadherin. Consistent with the homing experiments, we find that CD82KD results in a 
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decrease in cell adhesion to osteoblastic cells as well as purified N-cadherin, whereas 

CD82OE cells display an increase in cell adhesion (Fig. 1H, I). Furthermore, the 

reintroduction of CD82 back into the CD82KD cells recovered the reduced adhesion 

phenotype (Fig. 1J, K). Together, these data implicate a specific role for N-cadherin in 

CD82-mediated AML cell adhesion.

CD82 membrane clustering is altered by glycosylation and palmitoylation status

A distinct feature of tetraspanins is their ability to associate with other tetraspanins, cell 

adhesion molecules and signaling receptors, thereby serving as molecular facilitators for 

membrane proteins (15, 16). Therefore, the mechanism by which CD82 regulates AML cell 

adhesion and homing is likely to be dependent upon its ability to form higher order protein 

complexes in the cell membrane. Moreover, the regulation of TEM formation and stability is 

of significant interest. Previously, our group and others showed that the palmitoylation of the 

membrane proximal cysteines of CD82 promotes the oligomerization and dynamic 

reorganization of proteins into microdomains (27, 31–33). Furthermore, cell surface 

glycosylation, which can alter protein-protein interactions, also regulates the membrane 

organization of proteins. The glycosylation of membrane bound proteins is perturbed in 

many cancers and can be regulated by oncogenic factors (34–36). Recently the membrane 

glycosylation of CD82 was shown to play a role in cell adhesion and motility in specific 

cancers (37, 38). To evaluate how palmitoylation and glycosylation of CD82 affect its 

membrane organization and the aggressive potential of AML, two constructs were generated 

where: 1) the membrane proximal cysteines were mutated to serine, preventing 

palmitoylation (Palm-CD82) (27, 39), and 2) the three N-linked glycosylation sites were 

mutated to glutamine, inhibiting glycosylation (Ngly-CD82) (Fig. 2A). These constructs 

were stably transfected into KG1a cells and Figure 2B indicates that the Ngly-CD82 and 

Palm-CD82 cells express similar CD82 surface levels as the CD82OE cells. Interestingly, 

both mutants contain intracellular CD82, which may further suggest changes in CD82 

protein trafficking that are regulated by these post-translational modifications.

Next, we assessed how these CD82 mutations affect the membrane organization of the CD82 

scaffold. To measure differences in microdomain organization between control, CD82OE, 

Ngly-CD82 and Palm-CD82 cells, we used the super-resolution imaging technique, direct 

stochastic optical reconstruction microscopy (dSTORM) (40). Super-resolution imaging 

allows us to quantify changes in CD82 membrane organization at the level of individual 

molecules on the nanometer scale (Fig. 2C–F). Initially, the reconstructed dSTORM images 

were analyzed using the Hopkins index, which determines the extent to which CD82 is 

present in a random distribution on the cell surface (41, 42). Consistent with our visual 

observations, we find that each of the CD82 expressing AML cells has a Hopkins index that 

is significantly higher than what would be expected for a random distribution of molecules 

(0.5), demonstrating that CD82 is not randomly distributed, but organized into membrane 

clusters (Fig. 2G).

The CD82 dSTORM images were also analyzed using the density-based spatial clustering of 

applications with noise clustering algorithm (DBSCAN) (Fig. 2C–F, zoom) as previously 

described (43). From these measurements, we determined that CD82OE cells have an 
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increased CD82 cluster diameter and area with respect to control cells, which is likely due to 

the increased expression of CD82 (Fig. 2H, I). Interestingly, the CD82 cluster size quantified 

for both the Ngly-CD82 and Palm-CD82 cells indicates an even further increase in CD82 

cluster diameter and area when compared to CD82OE cells (Fig. 2H, I). Measurements of 

the Palm-CD82 cells detect the most significant increase in CD82 cluster size and decrease 

in CD82 cluster organization, which is consistent with previous work demonstrating the 

importance of the palmitoylation sites in the lateral packing of CD82 (27, 33). Previous 

work from our lab identified smaller CD82 cluster sizes in the Palm-CD82 cells using pair-

auto correlation function analysis, which is an averaged radial cluster measurement. In 

contrast, the DBSCAN algorithm enables the quantification of larger scale clusters of 

varying shapes and sizes, which is what we find for CD82. As for the N-glycosylation 

mutation, the effects on CD82 cluster size are more modest, however we do detect an 

increase in CD82 cluster diameter and area. We also imaged and analyzed the CD82 cluster 

area and diameter in primary AML cells. Consistent with the cell line data, Fig. 2J–L further 

illustrate the differentiation clustering of CD82 in primary patient samples. In combination, 

these data illustrate that while the CD82OE, Ngly-CD82 and Palm-CD82 cells all have 

similar CD82 surface expression, the Ngly- and Palm- mutations change the CD82 

membrane distribution into larger ordered CD82 clusters. Therefore, these specific post-

translational modifications regulate the membrane organization of CD82, which may in turn 

modulate protein-protein interactions important for bone marrow homing and adhesion.

N-cadherin clustering is regulated by CD82 membrane organization

Next, we set out to determine whether the described changes in CD82 membrane 

organization affect the expression and distribution of N-cadherin. First, we confirmed that 

N-cadherin surface expression is consistent between the CD82OE, Ngly-CD82, and Palm-

CD82 cell lines (Fig. 3A). Next, we performed confocal immunofluorescence imaging to 

analyze N-cadherin distribution in the cells. Figure 3B illustrates that both CD82 and N-

cadherin are localized to the plasma membrane in each of the cells except for the CD82KD 

cells, which have reduced expression levels of CD82 and a punctate distribution of N-

cadherin. In addition to the change in N-cadherin distribution upon CD82KD, a reduction in 

N-cadherin expression is observed, which is consistent with the flow cytometry data (Fig. 

1F). Moreover, double staining of primary AML cells suggests a similar surface expression 

profile for CD82 and N-cadherin (Fig. 3C). To further assess potential protein-protein 

interactions between CD82 and N-cadherin, we completed co-immunoprecipitation 

experiments using Brij lystates. The ability of CD82 to pull down N-cadherin in this mild 

detergent (Fig. 3D) suggests that CD82 and N-cadherin are present in a protein complex.

Surface clustering of N-cadherin can trigger signaling events, which promote cell adhesion 

(25). Furthermore, the regulatory mechanism of cadherin clustering is a critical aspect of 

cadherin adhesion since the adhesive capacity of individual cadherins is negligible (26). 

Therefore, the lateral association between cadherin receptors is a prerequisite for the 

formation of adhesive dimers (44). To quantify how changes in CD82 membrane 

organization affect the nanoscale organization of N-cadherin, we again used dSTORM (Fig. 

4A–D). Analysis of the N-cadherin dSTORM images with the DBSCAN algorithm (Fig. 

4E–H) suggests that N-cadherin cluster size and diameter is significantly decreased in Ngly-
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CD82 and Palm-CD82 cells when compared to control and CD82OE cells (Fig. 4I, J). More 

importantly, Palm-CD82 cells display a marked decrease in the number of N-cadherin 

clusters when compared to CD82OE or control cells (Fig. 4K). Additional analysis of Palm-

CD82 cells also identified that the majority of the N-cadherin molecules are distributed 

diffusely throughout the membrane and not localized to organized clusters (Fig. 4L). Thus, 

the palmitoylation of CD82 and its lateral assembly significantly affects the formation of N-

cadherin adhesive protein complexes. Interestingly, we also find that the Ngly-CD82 cells 

demonstrate a significant increase in the density or molecular confinement of N-cadherin 

molecules into a cluster (Fig. 4M), which is predicted to modulate N-cadherin function. We 

find that N-glycosylation of CD82 maintains N-cadherin clusters at approximately 80 nm. 

However, when the N-linked glycosylation sites on CD82 are mutated, the average size of 

N-cadherin clusters shrinks to approximately 65 nm, which leads to an increase in the 

molecular confinement of N-cadherin in each cluster. Together, these data suggest that while 

palmitoylation of CD82 regulates N-cadherin assembly into clusters, N-glycosylation of 

CD82 affects the nanoscale packing of N-cadherin. Therefore, in addition to N-cadherin 

expression, the regulation of N-cadherin membrane organization by CD82 may also be an 

important regulatory mechanism for controlling N-cadherin function and subsequent 

behavior of AML.

Molecular scale organization of CD82 alters the bone marrow homing capacity of AML 
cells

The lateral assembly of cadherins in the membrane can stimulate signaling events and 

promote cell adhesion (25). Therefore, we assessed whether the CD82-mediated changes in 

N-cadherin clustering affect the homing of AML cells into the bone marrow. We injected the 

Ngly-CD82, Palm-CD82 and control cells into NSG mice to measure potential differences in 

bone marrow homing. Interestingly, we detect a significant increase in the ability of the 

Ngly-CD82 cells to home to the bone marrow when compared to control cells, while the 

Palm-CD82 cells display a substantial decrease in bone marrow homing (Fig. 4N, O). 

Analysis of the blood and spleen for Ngly-CD82 and Palm-CD82 cell localization identified 

no differences. To assess the role of N-cadherin in the enhanced homing of the Ngly-CD82 

cells, we pretreated the cells with the N-cadherin blocking antibody (GC-4) prior to 

injection. Fig. 4P shows a disruption in Ngly-CD82 cells homing when N-cadherin is 

inhibited. Together these data demonstrate that CD82 and its post-translational modifications 

regulate N-cadherin cluster size, organization, and density, which modulate AML bone 

marrow homing.

While protein expression plays a critical role in AML (45), our study suggests that protein 

organization can be equally important. We define a pathway by which CD82 regulates bone 

marrow homing of AML cells through the membrane clustering of N-cadherin (Fig. 4Q). 

Establishment of AML within the bone marrow has extremely poor patient outcomes and we 

speculate that N-cadherin clustering may serve as a valuable marker to predict the aggressive 

behavior of AML. In addition, these findings provide an alternative model for targeting 

AML where modulation of protein organization within the membrane may be an effective 

treatment to dislodge AML cells from the protective environment of the bone marrow. 

Although N-cadherin is a focus of this study, we propose that N-cadherin will most likely 
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model other adhesive proteins expressed on the cell surface such as selectins and integrins. 

In fact, CD82 regulation of specific integrin organization has been previously described in a 

variety of cellular systems (27, 46, 47).

In summary, these observations strengthen the significance of tetraspanin-mediated 

membrane organization within a complex multi-step process such as bone marrow homing. 

Moreover, we reason that CD82 serves as to regulate cellular behavior by modulating the 

topological distribution of protein networks on the cell membrane. It is plausible that this 

regulation ultimately leads to more robust signaling and adhesive potential that can be 

harnessed in disease states such as AML where cancer stem cells have a greater fitness 

advantage over normal HSPCs. Together, these data suggest that membrane clustering of 

proteins can regulate the aggressive potential of AML cells and may serve as a novel 

therapeutic target for future disease treatments.
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Figure 1. CD82 expression regulates homing to the bone marrow and adhesion to niche 
components
(A) Flow cytometry analysis of CD82 surface expression using previously described 

CD82OE, CD82KD and control KG1a cell lines(27) (ATCC; CCL-246.1). Cells were 

characterized using Alexa Fluor 647 anti-human CD82 (clone ASL-24, BioLegend). Data 

was acquired using an Accuri flow cytometer C6 (BD Bioscience) and analyzed with FlowJo 

X software (Tree Star, Inc). (B) Bone marrow homing of CD82OE, KD or Ctrl KG1a cells. 

Cells were labeled with CFSE according to manufactures protocol. After labeling, 1×106 

cells were injected i.v. into female NOD.Cg-PrkdcscidIl2rgtm1wjl/SzJ (NSG) mice 8–12 

weeks of age. NSG mice were housed and bred at the Animal Research Facility under 

specific pathogen free conditions at the University of New Mexico Health Sciences Center 

(Albuquerque, NM). All procedures were approved by the University of New Mexico 

Institutional Animal Care and Use Committee and carried out in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals. 16 hours after injection the blood, 

spleen and bone marrow were harvested. A single cell suspension was generated and red 

blood cells were lysed with ACKs buffer (15M NH4Cl, 10mM KHCO3, 0.1mM EDTA). 

Cells were treated with Fc block then stained for human-CD45 and analyzed by flow 

cytometry for CFSE and huCD45 (Clone HI30, Biolegend) double positive cells. Percent 

input was calculated based on number of double positive events multiplied by total tissue 

cell number divided by the number of cells injected all multiplied by 100 (n = 5 mice). (C, 
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E) Flow cytometry analysis of CD82 on the surface of primary AML cells. (D, F) Tissue 

harvest from 8–10 week old male and female NSG mice 16 hrs after i.v. injection of CFSE 

labeled primary AML cells (1×106 cells) using protocol described above (n = 5 mice/patient 

sample). AML patient samples were deidentified and obtained from the UNM Health 

Science center (HSC) cell bank. Flow cytometry analysis of (G) N-cadherin (Clone 8C11, 

Biolegend) surface expression on Ctrl, CD82KD or CD82OE KG1a cells. (G) Fluorescence 

based cell adhesion assay using Ctrl, CD82KD, CD82OE cells. Cells were labeled with 2 

μM calcein (Invitrogen) and allowed to adhere to (H) SaOS-2 osteoblastic cells (ATCC) or 

(I) purified N-cadherin (R&D Systems) for one hour. Non-adherent cells were removed by 

washing and remaining fluorescent cells were measured by using synergyH1 plate reader 

(Biotek) and analyzed with the Gen5 2.00.18 plate reader software (n=3 replicates). (J) Flow 

cytometry analysis for CD82 following the nucleofection of mCherry or the mCherry-CD82 

vectors into the CD82KD cells. (K) Osteoblastic cell adhesion analysis (as previously 

described) for CD82KD cells upon CD82 reintroduction. For all graphs, mean is displayed 

with error bars denoting S.D., all variances were determined to be similar; no randomization 

or blinding methods were used; statistics were performed using two-sided unpaired t-test. (* 

p < .05, ** p < .01, *** p < .001).

Marjon et al. Page 12

Oncogene. Author manuscript; available in PMC 2016 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Palmitoylation of CD82 is critical for CD82 membrane organization
(A) Cartoon of CD82 highlighting N-linked glycosylation and palmitoylation sites. Using 

the mCherry-CD82 plasmid(27), three N-linked glycosylation sites on CD82, Asparagine 

129, 157 and 198 were mutated individually to glutamine using a QuickChange II site-

directed mutagenesis kit (Agilent) according to the manufacture’s instructions (Ngly-CD82). 

All mutations were confirmed by DNA sequence analysis (ACGT Inc.). CD82 

palmitoylation mutant was generated as previously described (Palm-CD82) (27). (B) Flow 

cytometry analysis of CD82 surface expression on CD82OE, Ngly-CD82, and Palm-CD82 

cells (clone ASL-24, BioLegend). (C–F) Reconstructed dSTORM images of CD82 

distribution on each cell line. The previously described labeling, imaging, and fitting 

protocols were followed (27, 48). (G) Hopkins analysis of CD82 cellular membrane 

organization on ctrl (n=8), CD82OE (n=11), Palm-CD82 (n=13) and Ngly-CD82 (n=12 

cells) using reconstructed dSTORM images was performed using SuperCluster Matlab 

software from the UNM Spatiotemporal Modeling Center. (Code availability: http://

stmc.health.unm.edu/tools-and-data/index.html). The reconstructed dSTORM images were 

also analyzed with the DBSCAN algorithm to generate DBSCAN images (C–F zooms), 

which represent clustered CD82 localizations in color and non-clustered CD82 localizations 

in gray. A 6 × 6 μm box was examined for clustering using an epsilon value of 100 nm and 

an n value of 10 localizations. Quantification of (H) CD82 cluster diameter and (I) CD82 

cluster area based on DBSCAN analysis (ctrl n=3 cells n=315 clusters, CD82OE n=4 cells 
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n=711 clusters, Ngly-CD82 n=5 cells n=772 clusters and Palm-CD82 n=3 cells n=356 

clusters). (J–L) dSTORM imaging and DBSCAN analysis for CD82 cluster area and 

diameter was performed on four primary AML samples (P1 n=4 cells n=130 clusters, P2 

n=3 cells n=74 clusters, P3 n=3 cells n=75 clusters, P4 n=3 cells n= 84 clusters). The mean 

is displayed with S.E.M.; statistics were performed using one-way ANOVA, post-hoc two-

sided unpaired t-test with Welch’s correction for groups with unequal standard deviations. 

(** p < .01, *** p < .001, **** p < .0001).
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Figure 3. CD82 interacts with N-cadherin on the plasma membrane
(A) Flow cytometry analysis of N-cadherin surface expression on CD82OE, Ngly-CD82, 

and Palm-CD82 cells (Clone 8C11, BioLegend). (B) Confocal immunofluorescence imaging 

of CD82 and N-cadherin. Cells were fixed in 4% PFA then blocked and permeabilized with 

PBS + 1.0 % BSA + 0.1% tween 20. Alexa Fluor 647-conjugated anti-human CD82 (Clone 

ASL-24, BioLegend) and anti-human N-cadherin (clone 32/N-cadherin, BD Bioscience) 

antibodies were diluted 1:500 in permeabilization buffer and added to the sample overnight 

at 4°C. Cells were washed and then Alexa Fluor 488-goat-anti-mouse secondary antibody 

(Invitrogen) was added to the cells for 1hr at room temperature. Following PBS washes, 

cells were imaged by laser scanning confocal microscopy with a Zeiss Axiovert 100M 

inverted microscope (LSM 510) system using excitation wavelengths of 488 or 633 nm and 

a 63X 1.2 N.A. oil immersion objective. Image analysis was performed using the Zeiss LSM 

510 software and Image J (NIH, Bethesda, MD). (C) Double surface expression analysis by 

flow cytometry for CD82 and N-cadherin on primary AML cells. (D) Co-

immunoprecipitation of CD82 and N-cadherin. Co-immunoprecipitations were performed 

using BRIJ O10 cell lysates incubated with CD82 antibody (Clone B-L2, Abcam) or control 

IgG antibody (Santa Cruz Biotechnology) and then immunoprecipitated using protein A/G 

Beads (Santa Cruz Biotechnology). Western blots were performed as previously described 

(24) using the N-cadherin antibody (32/N-Cadherin, BD Biosciences).
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Figure 4. CD82 regulates N-cadherin cell membrane organization and AML homing
(A–D) Reconstructed dSTORM images of N-cadherin distribution on each cell line. (E–H) 

DBSCAN images of N-cadherin clustering generated from DBSCAN analysis from the 

highlighted white boxes from the reconstructed dSTORM images. Clustered N-cadherin 

localizations are displayed in color and non-clustered N-cadherin localizations are in gray. 

An epsilon value of 50 nm and an n value of 30 localizations were used to examine N-

cadherin clustering. Quantification of (I) N-cadherin cluster diameter, (J) N-cadherin cluster 

area, (K) number of N-cadherin clusters, (L) percent N-cadherin localizations clustered, and 

(M) density of N-cadherin in a cluster based on DBSCAN analysis (ctrl n=6 cells n=716 

clusters, CD82OE n=6 cells n=768 clusters, Ngly-CD82 n=8 cells n=677 clusters, Palm-

CD82 n=6 cells n=467 clusters). Bone marrow homing analysis of CFSE labeled ctrl, (N) 

Ngly-CD82 and (O) Palm-CD82 cells injected i.v. into 8–12 week old female NSG mice and 

analyzed as described in figure 1. (P) Ngly-CD82 cells were pretreated with 40 μg of N-

cadherin blocking antibody (GC-4: Sigma) or IgG control (Santa Cruz Biotechnology) for 

30 min at 37°C prior to i.v. injection into 8–10 week old male and female NSG mice (n=4). 

16 hours following injection, homing analysis was completed as previously described. (Q) 

Working model of how CD82 post-translational modifications regulate N-cadherin protein 

organization and confinement, thereby contributing to functional differences in adhesion and 

homing. For super-resolution data, means are shown with S.E.M.; for homing data, means 

are shown with S.D,. Data was analyzed using one-way ANOVA followed by a two-sided 

unpaired t-test with Welch’s correction for groups with unequal standard deviations; no 
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randomization or blinding methods were used. For homing studies, one animal was excluded 

based upon Grubbs outlier test (alpha =.05). (* p<.05, ** p < .01, *** p < .001).
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