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Abstract

A method of employing high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling was
developed in this study to investigate the effects of alcohol exposure on lipid homeostasis at the white adipose tissue
(WAT)-liver axis in a mouse model of alcoholic fatty liver. In order to differentiate the liver lipids synthesized from the fatty
acids that were transported back from adipose tissue and the lipids synthesized from other sources of fatty acids, a two-
stage mouse feeding experiment was performed to incorporate deuterium into metabolites. Hepatic lipids extracted from
mouse liver, epididymal white adipose tissue (eWAT) and subcutaneous white adipose tissue (sWAT) were analyzed. It was
found that 13 and 10 triacylglycerols (TGs) incorporated with a certain number of deuterium were significantly increased in
alcohol induced fatty liver at two and four weeks of alcohol feeding periods, respectively. The concentration changes of
these TGs ranged from 1.7 to 6.3-fold increase. A total of 14 deuterated TGs were significantly decreased in both eWAT and
sWAT at the two and four weeks and the fold-change ranged from 0.19 to 0.77. The increase of deuterium incorporated TGs
in alcohol-induced fatty liver and their decrease in both eWAT and sWAT indicate that alcohol exposure induces hepatic
influx of fatty acids which are released from WATs. The results of time course analysis further indicate a mechanistic link
between adipose fat loss and hepatic fat gain in alcoholic fatty liver.
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Introduction

It has been understood that dietary fats are digested in the

intestinal epithelial cells, and then converted to triacylglycerols

(TGs). TGs are assembled with apolipoproteins to form chylomi-

crons which are transported into the blood stream via the lymph

system [1]. TGs are also synthesized by the liver where they are

packaged as very low-density lipoproteins (VLDL) and secreted

into the blood [1]. Upon arrival in the adipose and muscle tissues,

lipoprotein lipase cleaves TG into free fatty acids and glycerol.

Fatty acids are taken up by these tissues, and are used as energy

sources via oxidation in muscles, or re-assembled into TGs to store

excess energy in the white adipose tissue (WAT) [2]. Glycerol is

transported to liver or kidneys where it is converted into

dihydroxyacetone phosphate by glycerol kinase and glycerol-3-

phosphate dehydrogenase.

WAT plays an important role in regulation of whole body

energy homeostasis. WAT stores excess energy in the form of TG

under positive energy balance condition, and releases fatty acids

for energy generation under negative energy balance condition

[2]. However, excess fatty acid release from the WAT may cause

fatty acid overflux into the liver, leading to development of fatty

liver [3]. Fatty liver is frequently associated with both alcohol

abuse (alcoholic fatty liver, AFL) and obesity (nonalcoholic fatty

liver, NAFL). Although previous studies have demonstrated

similarities and differences in the pathogenesis of fatty liver

between alcohol abuse and obesity, increased fatty acid uptake has
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been suggested to be a common mechanism for AFL and NAFL

[4,5]. While hepatocytes isolated from both alcohol-fed and obese

rats showed an increased fatty acid uptake [6], further investiga-

tion is needed to provide direct evidence that fatty acids released

from the WAT are indeed deposited in the liver.

Clinical studies have demonstrated that lower fat mass

(lipodystrophy) was associated with higher liver fat in alcoholics

[7,8]. Animal models of AFL also showed that reduction of WAT

mass was associated with an increased fatty acid uptake by

hepatocytes [9–11]. Our study demonstrated that alcohol expo-

sure to mice caused more hepatic accumulation of TGs which

were labeled before alcohol exposure [12]. We also found that

alcohol exposure stimulated adipose lipolysis and fatty acid release

from WAT [12,13]. These data suggest that alcohol exposure may

cause an excess reverse fatty acid transport, thereby inducing fatty

liver. Therefore, the animal model of AFL could be an ideal model

to identify the importance of WAT in maintaining lipid

homeostasis at the WAT-liver axis. Further determination of

triacylglycerol homeostasis at the WAT-liver axis could reveal the

direct link between WAT and liver, an organ-organ interaction

mechanism, in the development of fatty liver.

The objective of this work was to use high-resolution mass

spectrometry in combination with metabolite deuterium labeling

to test our hypothesis that alcohol exposure disturbs lipid

homeostasis at the WAT-liver axis towards triacylglycerol epitomic

deposition in the liver. In order to differentiate the liver lipids

synthesized using fatty acids from other sources from that

synthesized using the fatty acids transported back from adipose

tissue, a two-stage feeding experiment was performed, where all

mice were first fed with deuterated water (2H2O) to ensure that the

lipids stored in adipose tissue are deuterium labeled (stage one).

The mice were then randomly grouped into two cohorts, the

control cohort and the test cohort. Mice in the test cohort were fed

an alcohol-containing liquid diet while mice in the control cohort

were pair-fed an isocaloric maltose dextrin control liquid diet. The

mice in both the control and test cohorts were then sacrificed at

different times (stage two). Metabolite extracts from mouse liver,

epididymal white adipose tissue (eWAT) and subcutaneous white

adipose tissue (sWAT) were analyzed using linear trap quadru-

pole–Fourier transform ion cyclotron resonance mass spectrom-

eter (LTQ-FTICR MS) via direct infusion electrospray ionization–

mass spectrometry.

Methods

Animals and Treatments
Male C57BL/6N mice were obtained from Harlan (Indianap-

olis, IN, USA). All the mice were treated according to the

experimental procedures approved by the University of Louisville

Animal Care and Use Committee. To label lipids in adipose

tissues, an approach using 2H2O as the metabolic tracer was

followed [14]. Mice at two months old were given an initial

priming dose of 99.8% 2H2O via an intraperitoneal injection to

achieve 2.5% of body water enrichment, followed by administra-

tion of 5% 2H2O in the drinking water for five weeks (stage one,

time point 0 week). The mice were then randomly grouped into

two cohorts, the control cohort and the test cohort, for a 4-week of

alcohol exposure (stage two). The test cohort was fed a modified

Lieber-DeCarli alcohol liquid diet which contained 1,000 kcal/L

calories, 34% from alcohol, 18% from protein, 34% from fat, and

14% from carbohydrate. The control cohort was fed a modified

Lieber-DeCarli control liquid diet which also contained

1,000 kcal/L calories with replacement of the alcohol calories by

isocaloric maltose dextrin. The alcohol-fed mice were free access

to the alcohol diet, while the pair-fed mice were given the control

diet in the same amount consumed by alcohol-fed mice in the

previous day. The liquid diet feeding was conducted for 2 (time

point of two weeks) or 4 (time point of four weeks) weeks. At the

end of each feeding time point, mice were anesthetized, and liver,

eWAT and sWAT tissues were collected from each mouse for

measuring lipid components labeled by deuterium. There were 5,

5, 3 and 5, 7, 5 mice at time point 0, 2, 4 weeks for the control

cohort and the test cohort, respectively.

Tissue Sample Preparation
Liver, eWAT and sWAT samples were weighed, homoge-

nized for 2 min and stored at –80uC until use. To extract

metabolites from the homogenized tissue, 100 mL of homoge-

nized tissue sample, 20 mL of butylatedhydroxytoluene (BHT)

mixture (50 mg BHT into 1 mL methanol) and 2.0 mL

chloroform–methanol (v/v = 2:1) were mixed and vortexed for

2 min followed by adding 420 mL of water and vortexing for

2 min. The mixture was then centrifuged at room temperature

at 2,000 rpm for 8 min. 400 mL of the organic phase (bottom)

was aspirated into another glass tube and dried using a nitrogen

evaporator. The dried sample was then dissolved into 200 mL of

chloroform–methanol (v/v = 2:1).

FT-MS and LTQ-MS/MS Analysis
The direct infusion experiments were performed on a hybrid

mass spectrometer, the so-called linear trap quadrupole – Fourier

transform ion cyclotron resonance mass spectrometer (LTQ-

FTICR MS or LTQ-FT MS) (Thermo Electron Corporation,

Bremen, Germany) equipped with a chip-based nano-electrospray

ionization (nESI) ion source (TriversaNanoMate) (Advion Biosci-

ences, Ithaca, NY, USA). The mass spectrometer was operated in

the positive ion mode. Each metabolite extract was measured for

5 min covering the m/z = 10021,600 range. The mass spectra

were recorded using the FTICR in profile mode and the resolving

power (RP) was set at 400,000 @ m/z = 400. The maximum ion

accumulation time was set at 1,000 ms. The ion optics was tuned

for the sodium adduct of tricaprylin ([C27H50O6+Na+]) at m/

z = 493.25 using the linear ion trap (LIT). The two most important

nESI parameters were as follows: the spray voltage = +1.8 kV and

the nitrogen gas pressure = 0.5 psi. The MS/MS spectrum of each

metabolite ion was acquired on the LTQ. The parameters were set

as follows: precursor ion m/z isolation window = 60.3, spectrum

accumulation time = 1 min. The normalized collision energy

(NCE) is a molecule dependent parameter and ranged from 16

to 40%.

Metabolite Quantification
The experimental data were processed using software package

MetSign [15]. After peak alignment, a contrast based method was

employed for normalization [16,17]. Both the Fisher’s exact test

and the pairwise two-tail t-test were used to study the concentra-

tion change of each metabolite between the two physiological

conditions. The parameters used during the analysis are as follows:

precursor ion m/z accuracy #5 ppm and the q-value for false

discovery rate (FDR) #0.2 [18]. Temporal analysis was performed

to study the correlation between time course trajectories measured

by Pearson’s correlation coefficient and the distance measured by

Fisher’s combined probability test [19,20].

Metabolite Identification
Metabolite identification was achieved in two sequential steps,

database search and MS/MS characterization. Such a metabolite
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Figure 1. An example of identifying a deuterium incorporated metabolite using MS/MS information. The metabolite ion m/z value was
measured on FTICR-MS as 904.74066. (A) is the experimental MS/MS spectrum of non-deuterated metabolite. (B) is the matching result of the non-
deuterated metabolite between the experiment MS/MS spectrum and the theoretical MS/MS spectrum generated by Mass Frontier. The matched
fragment ions are highlighted in red and the not matched ions in black. (C) is the MS/MS spectrum of deuterium incorporated metabolite.
doi:10.1371/journal.pone.0055382.g001

Adipose Dysfunction in Alcoholic Steatosis

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e55382



identification process meets the requirement of Level 2 metabolite

identification, i.e., putatively annotated metabolites [21]. The

metabolite database search was accomplished by the MetSign

software using the FTICR-MS data. Each of the measured

metabolite ion m/z value and isotopic peak profile were compared

to the corresponding theoretical information of metabolites

recorded in the MetSign database, which was composed of all

metabolites recorded in the Kyoto Encyclopedia of Genes and

Genomes, LIPID MAPS, and the Human Metabolome Database,

resulting in 43,245 records. Possible positive-mode adduct ions

include H+, Na+, K+, and NH4
+.

To narrow down the metabolite candidates generated by

database searching, the MS/MS spectra of metabolite peaks with

significant concentration changes between two sample cohorts

were acquired on LTQ-MS/MS. Each experimental MS/MS

spectrum was compared to the in silico MS/MS spectra of all

metabolite candidates using Mass Frontier 6.0 (Thermo Scientific,

FL, USA). The spectral similarity between the experimental MS/

MS spectrum and the in silico MS/MS spectrum of the metabolite

of interest was evaluated using Pearson’s correlation coefficient.

The metabolite candidate(s) with the best MS/MS spectrum

match was (were) considered as the metabolite giving rise to the

experimental spectrum.

Measurements of Liver Steatosis and Routine Parameters
Neutral lipids in the liver were detected by Oil red O staining.

Liver cryostat sections were cut at 7 mM, fixed with 10% formalin

for 5 min, and stained with Oil red O in 2-propynal solution for

10 min. Plasma alanine aminotransferase (ALT) activity and

triglyceride and cholesterol concentrations were determined using

Infinity Reagents (Thermo Scientific, Middletown, VA). Plasma

free fatty acids (FFA) were quantified using a FFA Quantification

Kit (BioVision, San Francisco, CA). Statistical differences were

analyzed by one-way ANOVA followed by Bonferroni post hoc

comparison. The data are presented as mean 6 SD and p values

less than 0.05 were considered as significant.

Results

Metabolite Identification
The metabolite initial assignment via database search was

achieved using high-resolution FTICR-MS data. Figure 1 is a

sample of putative identification of triacylglycerol TG(16:0/18:2/

20:4)[iso6]. The m/z value of this metabolite was measured as

904.7407 by FTICR-MS. By searching the 43,245 database

metabolites, this metabolite ion and its isotopic peak profile match

the corresponding theoretical information of metabolites

HMDB05391, HMDB10508, and HMDB13423 with adducts of

Na+, H+ and K+, respectively. The number of deuterium atoms

incorporated in these three metabolite candidates is 3, 5, and 6,

respectively. Therefore, the m/z values of the corresponding non-

deuterium incorporated metabolites of these three metabolite

candidates should be 901.7407, 899.7407 and 898.7407, respec-

tively. In order to confirm the initial assignment, LTQ-MS/MS

experiments were performed to acquire MS/MS spectra for each

of these metabolite ions. Figure 1A is the LTQ-MS/MS spectrum

of the metabolite ion with a measured m/z = 901.57. The

molecular structures of the candidate metabolites HMDB05391,

HMDB10508, and HMDB13423 were then uploaded into Mass

Frontier with corresponding adducts Na+, H+ and K+, respectively,

to generate in silico MS/MS spectra for each of these three

candidates. Each of the in silico spectra was then matched to the

experimental LTQ-MS/MS spectrum. The in silico MS/MS

spectrum of metabolite HMDB05391+Na+ has the best match

with a Pearson’s correlation coefficient of 0.9981 and therefore,

this metabolite was considered as the metabolite present in the

sample (Figure 1B).

It should be pointed out that Mass Frontier software can only

predict the m/z values of fragment ions, but not the fragment ion

abundance. It then matches the m/z values of the predicted

fragment ions to the m/z values of experiment mass spectrum.

Therefore, a high value of Pearson’s correlation coefficient only

refers to the matching quality of fragment ion m/z values between

an in silico MS/MS and an experiment MS/MS spectrum.

The incorporated deuterium atoms in a metabolite do not

significantly affect the metabolite fragmentation during MS/MS

analysis, resulting in similar MS/MS spectra between the

deuterium incorporated metabolite and the corresponding non-

deuterium incorporated metabolite. The only difference between

the MS/MS spectra is m/z values of the fragment ions that carry

deuterium atoms. The difference in the m/z values between the

corresponding fragment ions in the two spectra may range from

zero to the mass of all incorporated deuterium atoms. Figure 1C is

the LTQ-MS/MS spectrum of a deuterium incorporated version

of metabolite HMDB05391 with a measured metabolite ion m/

z = 904.80. The corresponding fragment ions between the

deuterium incorporated fragment ions and the non-deuterium

incorporated fragment ions are (904.80, 901.57), (887.99, 883.62),

(648.45, 645.39), (624.40, 621.37), (622.39, 619.44), (602.45,

599.44) and (600.46, 597.47). The number of incorporated

deuterium atoms in each fragment ion is 3, 3, 3, 3, 3, 3 and 3,

respectively. The spectral similarity between the spectrum of a

deuterium incorporated metabolite (Figure 1C) and the spectrum

of the corresponding non-deuterium incorporated metabolite

(Figure 1A) was evaluated using Pearson’s correlation coefficient,

after recognizing the pairs of fragment ions between the spectrum

of a deuterium incorporated metabolite and the spectrum of a

non-deuterium incorporated metabolite. The Pearson’s correla-

tion coefficient between the top 10 abundant fragment ions in the

two spectra displayed in Figures 1A and 1C is 0.8744, showing the

high similarity between these two spectra.

Statistical Significance Tests
Figure 2 depicts peak area distribution of triacylglycerol

TG(16:0/18:2/20:4)[iso6] at time two weeks among the samples

of the test and control cohorts. It can be seen that this molecule is

significantly increased with a 2.8-fold change in the test cohort

compared to its level in the control cohort. The fold change was

defined as the ratio of the average peak area of a metabolite

measured in the test cohort divided by the average peak area of the

same metabolite in the control cohort. The p-value of the pairwise

two-tail t-test is 1.461025.

Table 1 lists all of the metabolites identified with significant

concentration changes in liver between the control cohort and the

test cohort at two and four weeks. All of these metabolites were

identified as deuterium incorporated TGs even though all the

43,245 metabolites were searched for the metabolite identification.

Secondly, the deuterium incorporated TGs, 13 at 2 weeks and 10

at 4 weeks, were all increased in the test cohort with a 1.7 to 6.3-

fold change. Tables 2 list all of the metabolites identified with

significant concentration changes between the control cohort and

the test cohort at two and four weeks in the eWAT and sWAT.

These metabolites are all deuterium labeled and identified as TGs.

The number of deuterated TGs was more in the eWAT (10 TGs)

compared to the sWAT (4 TGs). All these deuteraed TGs were

reduced by alcohol exposure at either two weeks or four weeks

with a fold-change ranged from 0.19 to 0.77.

Adipose Dysfunction in Alcoholic Steatosis
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Temporal Analysis
Even though the statistical significance tests support the

hypothesis of reverse fatty acid transport, it is still necessary to

investigate the trajectory of each metabolite in the time course.

Figure 3 shows three sample time course trajectories in liver,

eWAT and sWAT, respectively. Figure 3A displays the time

course trajectory of triacylglycerol TG(16:0/18:2/20:4)[iso6]

with one 2H label and one Na+ as adduct ion in liver samples.

While this TG molecule was not significantly increased in

control cohort, it was significantly increased in test cohort at 2

weeks and a further elevation was found at 4 weeks. Figures 3B

and 3C show the time course trajectories of TG(16:0/16:1/

16:1)[iso3] with one 2H label and an adduct ion of Na+ in

eWAT samples, TG(16:0/16:0/18:1)[iso3] with one 2H label

and an adduct ion of Na+ in sWAT samples, respectively. In

contrast to the increase in the liver of test cohort, a decrease in

deuterium-labeled TGs was observed in both the eWAT and

sWAT of test cohorts. The deuterium-labeled TG(16:0/16:1/

16:1)[iso3] in eWAT significantly declined at 2 weeks and a

further decrease was found at 4 weeks. While deuterium-labeled

TG(16:0/16:0/18:1)[iso3] in sWAT significantly declined at 2

weeks, no further decrease was found at 4 weeks. Time course

changes for other deuterium-labeled TGs in liver and WAT

were listed in Table 1 and Table 2, respectively.

Figure 4 shows that the time course trajectory of triacylglycerol

TG(16:0/18:2/20:4)[iso6] without 2H label in liver samples of

control cohort and test cohort. This TG molecule represents

hepatic TGs which are synthesized from the dietary fats or from de

novo lipogenesis, because it did not incorporate any deuterium. In

the liver of control cohort, this TG molecule did not change at 2

weeks but increased at 4 weeks. Surprisingly, the test cohort

showed a remarkable increase at 2 weeks compared to time 0, and

a further increase at 4 weeks. The abundance of this TG molecule

in the test cohort was significantly higher than that in the control

cohort at both 2 and 4 weeks.

Alternations of Hepatic Neutral Lipid and WAT Mass
To determine an overall change in lipid homeostasis at the

liver-WAT axis, neutral lipid in the liver and WAT mass were

measured. As shown in Figure 5, oil red O staining of neutral

lipid on cryostat liver sections clearly demonstrated accumula-

tion of lipid droplets in the hepatocytes of alcohol-fed mice at 2

weeks. Further increases in number and size of the lipid

droplets were observed at 4 weeks. In contrast to neutral lipid

accumulation in the liver, WAT mass was significantly lower in

the alcohol-fed mice compared to the controls (Figure 6). The

weights of both eWAT and sWAT from control mice were

increased at 2 weeks and a further increase was found at 4

weeks. However, the weights of both eWAT and sWAT from

alcohol-fed mice did not change at either 2 weeks or 4 weeks,

leading to an increased difference between the control and

alcohol mice along the 4 weeks of experiment. The time course

changes in WAT to body weight ratio showed similar trends to

that of WAT mass.

Routine Parameters
Table 3 listed the results of routine parameters including body

weight, liver weight, liver to body weight ratio, and plasma ALT

activity and FFA concentration. The test cohort showed a lower

body weight but a higher liver weight, leading to a significant

increase in liver/body weight ratio at both 2- and 4-week time

points. The plasma ALT activity level, an indicator of liver injury,

was elevated in the test cohort at both time points. The plasma

triacylglycerol level was also increased in the test cohort at 4-week.

However, plasma cholesterol and FFAs was not affected by alcohol

exposure.

Discussion

TGs are the group of most abundant lipids in liver, eWAT and

sWAT. Analysis of the abundance changes of TGs is enough for us

to test our hypothesis. Therefore, the methanol/water phase of

metabolite extract from mouse tissues was discarded during the

process of metabolite extraction, while the organic phase was used

for analysis. It is possible that the regulations of other types of

metabolites are also changed besides TGs during the mouse

feeding period. However, the changes of these metabolites are not

in the scope of this study.

Biological Experiment Design
A two-stage animal feeding experiment was performed in this

study to differentiate the hepatic lipids synthesized from the

fatty acids transported back from adipose tissue from that

synthesized using fatty acids from de novo lipogenesis. It is

expected that majority of the lipids synthesized in the stage-one

experiment were incorporated with a certain number of

deuterium atoms, and most of them were transported and

stored in WAT. The purpose of the stage-two experiment was

to induce fatty liver in the test cohort and to use the mice in

the control cohort as reference to monitor the lipid concentra-

tion change in the mice of the test cohort.

During the stage-two experiment, lipids were continuously

synthesized in the mouse livers in both the test and the control

cohorts. The lipids synthesized from the uptake of dietary fats

should not incorporate any deuterium atoms, except a very small

fraction of naturally occurring deuterium in the dietary fats.

Therefore, two forms of lipids should be present in mouse liver:

deuterium incorporated lipids and non-deuterium incorporated

lipids. In case of the control cohort, the deuterium incorporated

lipids were synthesized during the stage-one experiment while the

Figure 2. Sample concentration changes of metabolite in two
different physiological conditions. The abundance test (pair-wise
two-tail t-test) shows that the concentration of this metabolite in the
test cohort is increased with a fold change of 2.8 and a p-value of
1.461025. This metabolite was further identified as TG(16:0/18:2/
20:4)[iso6] by MS/MS analysis.
doi:10.1371/journal.pone.0055382.g002

Adipose Dysfunction in Alcoholic Steatosis

PLOS ONE | www.plosone.org 5 February 2013 | Volume 8 | Issue 2 | e55382



Table 1. List of triacylglycerols in liver identified with significant concentration changes between the control cohort and the test
cohort at two and four weeks.

Time (Week) m/z p-value Fold change (T/C)a Metabolite common name Adduct ion No. 2H

2 878.7338 7.861023 2.1 TG(16:1/18:2/20:4)[iso6] H+ 1

2 902.7352 1.061024 8.1 TG(16:0/18:2/20:4)[iso6] Na+ 1

2 904.7407 1.461025 2.8 TG(16:0/18:2/20:4)[iso6] Na+ 3

2 907.7698 2.861023 2.8 TG(16:0/18:0/20:4)[iso6] Na+ 4

TG(16:0/20:4/20:4)[iso3] H+ 4

2 926.7360 6.961023 4.2 TG(16:0/20:4/20:4)[iso3] Na+ 1

TG(18:3/18:2/22:6)[iso6] H+ 1

2 927.7376 2.361023 1.9 TG(16:0/20:4/20:4)[iso3] Na+ 2

2 928.7407 5.761023 1.9 TG(16:0/20:4/20:4)[iso3] Na+ 3

2 929.7534 1.661022 1.7 TG(16:0/20:4/20:4)[iso3] Na+ 4

TG(18:3/18:2/22:6)[iso6] H+ 4

2 930.7666 3.161022 3.1 TG(18:3/18:3/20:0)[iso3] Na+ 1

2 952.7521 8.661023 6.3 TG(18:1/20:4/20:4)[iso3] Na+ 1

TG(18:3/20:4/22:6)[iso6] H+ 3

2 954.7666 9.161023 3.0 TG(20:4/18:1/22:6)[iso6] H+ 1

2 903.7797 7.261023 na b TG(16:0/18:0/18:0)[iso3] K+ 2

2 905.7533 4.861023 nab TG(16:0/18:2/20:4)[iso6] Na+ 4

TG(16:0/20:4/20:4)[iso3] H+ 2

4 902.7352 2.161023 3.8 TG(16:0/18:2/20:4)[iso6] Na+ 1

4 904.7407 4.461022 1.7 TG(16:0/18:2/20:4)[iso6] Na+ 3

4 926.7360 1.861023 2.7 TG(16:0/20:4/20:4)[iso3] Na+ 1

TG(18:3/18:2/22:6)[iso6] H+ 1

4 927.7376 3.861023 2.5 TG(16:0/20:4/20:4)[iso3] Na+ 2

4 928.7407 3.661022 1.7 TG(16:0/20:4/20:4)[iso3] Na+ 3

4 929.7534 2.261022 1.9 TG(16:0/20:4/20:4)[iso3] Na+ 4

TG(18:3/18:2/22:6)[iso6] H+ 4

4 930.7666 3.261022 2.8 TG(18:3/18:3/20:0)[iso3] Na+ 1

4 952.7521 2.861022 3.6 TG(18:1/20:4/20:4)[iso3] Na+ 1

TG(18:3/20:4/22:6)[iso6] H+ 3

4 953.7545 2.561022 2.7 TG(18:3/20:4/22:6)[iso6] H+ 4

4 954.7666 5.361023 3.3 TG(20:4/18:1/22:6)[iso6] H+ 1

aFold-change is the ratio of average peak area of a metabolite in the test cohort (T) to that in the control cohort (C).
bna refers to a metabolite that was detected only in the test cohort. Therefore, the values of fold change for these metabolites are not available.
doi:10.1371/journal.pone.0055382.t001

Figure 3. Sample time course trajectories of deuterium labeled triacylglycerols detected in liver, eWAT and sWAT samples. (A)
TG(16:0/18:2/20:4)[iso6] with one 2H label and one Na+ as adduct ion in liver samples. (B) TG(16:0/16:1/16:1)[iso3] with one 2H label and an adduct ion
of Na+ eWAT samples. (C) TG(16:0/16:0/18:1)[iso3] with one 2H label and an adduct ion of Na+ in sWAT samples.
doi:10.1371/journal.pone.0055382.g003
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non-deuterium incorporated lipids were synthesized in the stage-

two experiment.

Statistical Significance Tests
Compared to the levels of deuterium incorporated TGs in the

control cohort, the significant increase of the deuterium incorpo-

rated TGs in the test cohort of liver samples (Table 1) indicates

that extra deuterium incorporated fatty acids were used for the

synthesis of TGs in alcoholic fatty liver at 2 and 4 weeks. The only

source of the extra deuterium incorporated fatty acids is the

WATs, where the deuterium incorporated fatty acids were stored

in the form of TGs during the stage-one experiment. Therefore, a

reasonable explanation to the increase of deuterium incorporated

TGs in alcoholic fatty liver in the test cohort is that the deuterium

incorporated fatty acids were transported back from the WAT

after lipolysis due to alcohol consumption. Indeed, such an

explanation is further substantiated by the decrease of deuterated

TGs in eWAT and sWAT, respectively (Table 2). This supports

our hypothesis, i.e., alcohol consumption stimulates lipolysis in the

WAT of mice, leading to significant release of fatty acids, which

are transported back and deposited in the liver for the synthesis of

TGs.

Temporal Analysis
Figures 3A demonstrates that portions of the accumulated TGs

in fatty liver were synthesized using deuterium incorporated fatty

acids that were transported back from the WAT due to lipolysis,

while Figure 3B and 3C demonstrate a significant abundance

decrease of the deuterated TGs in eWAT and sWAT, respectively.

These results reveal a direct link between WAT fatty acid release

and hepatic TG deposition in the development of alcoholic fatty

liver. A previous study also demonstrated that diminishing lipid

storage function in WAT by over-expressing leptin-receptor b (lpr-

b) on the aP2-lpr-b promoter (aP2lepr-b transgene) in db/db mice

attenuated obesity after high fat feeding [22]. However, the

aP2lepr-b transgene significantly increased liver weight and

triglyceride concentrations, and accelerated the development of

diabetes. Therefore, WAT dysfunction in lipid storage could be an

important determinant in the pathogenesis alcoholic or nonalco-

holic fatty liver.

Figure 4 displays the time course trajectory of triacylglycerol

TG(16:0/18:2/20:4)[iso6] without any deuterium labeling in liver

samples. This TG molecule is synthesized by using fatty acids from

dietary source and/or hepatic de novo lipogenesis rather than by

using fatty acids transported back from the WAT. The time

dependent abundance of this metabolite in the test sample is

always higher than its abundance in the control sample at both 2

weeks and 4 weeks. These data indicate that fatty acids from the

WAT are not the sole source of TG synthesis, and fatty acids from

diet and/or de novo synthesis also contribute to the development of

alcoholic fatty liver.

Table 2. List of triacylglycerols in sWAT and eWAT identified with significant concentration changes between the control cohort
and the test cohort at two and four weeks.

WAT Time (Week) m/z p-value Fold change (T/C)a Metabolite common name Adduct ion No. 2H

sWAT 2 879.7446 2.161022 0.74 TG(16:1/18:2/20:4)[iso6] H+ 2

2 880.7507 3.961022 0.69 TG(16:0/18:1/18:2)[iso6] Na+ 1

4 826.7013 1.761023 0.28 TG(16:0/16:1/16:1)[iso3] Na+ 1

4 879.7446 1.561022 0.74 TG(16:1/18:2/20:4)[iso6] H+ 2

eWAT 2 826.7017 4.161024 0.38 TG(16:0/16:1/16:1)[iso3] Na+ 1

2 850.7013 1.361022 0.68 TG(16:1/16:1/18:2)[iso3] Na+ 1

2 854.7334 2.761023 0.58 TG(16:0/16:1/20:4)[iso6] H+ 1

2 855.7378 1.961022 0.70 TG(16:0/16:0/18:2)[iso3] Na+ 2

4 828.7174 1.661022 0.19 TG(16:0/16:1/16:1)[iso3] Na+ 3

4 854.7334 1.561022 0.54 TG(16:0/16:1/20:4)[iso6] H+ 1

4 855.7378 4.461022 0.48 TG(16:0/16:0/18:2)[iso3] Na+ 2

4 856.7482 2.261023 0.49 TG(16:0/16:0/18:1)[iso3] Na+ 1

4 879.7445 1.561022 0.73 TG(16:1/18:2/20:4)[iso6] H+ 2

4 880.7498 7.761023 0.77 TG(16:0/18:1/18:2)[iso6] Na+ 1

aFold-change is the ratio of average peak area of a metabolite in the test cohort (T) to that in the control cohort (C).
doi:10.1371/journal.pone.0055382.t002

Figure 4. Time course trajectory of triacylglycerol TG(16:0/
18:2/20:4)[iso6] without any deuterium labeling in liver
samples.
doi:10.1371/journal.pone.0055382.g004
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Figure 5. Time course changes of hepatic lipid content. (A) Hepatic neutral lipid detected by Oil red O staining of cryostat liver sections.
Alcohol exposure increased hepatic neutral lipid (lipid droplets) gradually along the 4 weeks of experiment. (B) Hepatic TG concentrations were
quantitatively measured. Data are expressed as mean 6 SD (n = 628). Statistical differences were analyzed by ANOVA followed by Bonferroni post hoc
comparison, and means without a common letter differ at p,0.05.
doi:10.1371/journal.pone.0055382.g005

Figure 6. Time course changes of WAT tissues. (A) WAT mass. The weights of both eWAT and sWAT in control mice increased gradually during
the 4 weeks of experiment. However, the alcohol-fed mice did not show weight change in both eWAT and sWAT at either 2 weeks or 4 weeks. (B)
WAT to body weight ratio (%). Data are expressed as mean 6 SD (n = 628). Statistical differences were analyzed by ANOVA followed by Bonferroni
post hoc comparison, and means without a common letter differ at p,0.05.
doi:10.1371/journal.pone.0055382.g006
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WAT Dysfunction and Fatty Liver
Time course changes in WAT weight (Figure 5) demonstrated

that WAT mass in control mice significantly increased along the 4

weeks of feeding. Surprisingly, the WAT mass of alcohol fed mice

did not changed at either 2 weeks or 4 weeks compared to time 0,

indicating a loss of the lipid storage function. A previous study has

reported that alcohol feeding to rats reduced total body fat content

due to an increase of TG turnover in rats, as indicated by a 2.3-

fold increase in TG degradation with no significant change in TG

synthesis [9]. Our previous report also showed that alcohol

exposure activates lipolysis pathways in WAT, thereby accelerat-

ing fatty acid release [12]. Adipose lipolysis is regulated positively

by catecholamine and negatively by insulin [23]. Previous studies

suggested that alcohol-increased lipolysis is most likely through

disturbing insulin signaling rather than enhancing catecholamine-

mediated lipolysis [9,12,24]. Insulin negatively regulates lipolysis,

and hosphodiesterase 4 (PDE4) and activating protein phosphatase

1 (PP1) mediate insulin signaling via reducing cellular cAMP level

and dephosphorylating hormone sensitive lipase (HSL), respec-

tively [23]. Although the adipose PDE4 was not affected in the

WAT of alcohol-fed rats [9], our previous study showed that PP1

protein level was reduced in the WAT of alcohol-fed mice [12].

We also found that chronic alcohol exposure up-regulated

negative regulators of insulin signaling, including phosphatase

and tensin homolog (PTEN) and suppressor of cytokine signaling 3

(SOC3). In addition to lipid storage dysfunction, alcohol exposure

also inhibited expression and secretion of adipokines including

adiponectin and leptin in WAT [25–27]. Both adiponectin and

leptin critically modulate hepatic lipid metabolism toward

reduction of lipid content in the liver. Normalizing plasma

adiponectin or leptin level was associated with attenuation of

alcoholic fatty liver [28–30]. Therefore, adipose tissue dysfunction

may contribute to the development of alcoholic fatty liver by

directly supplying fatty acids for hepatic TG synthesis or indirectly

disturbing adipokine regulation of hepatic lipid metabolism.

Alcohol-induced Hepatic Lipid Dyshomeostasis
Alcoholic exposure may disturb hepatic lipid metabolism in

multiple pathways, including fatty acid uptake, fatty acid

oxidation, de novo lipogenesis and lipid export [25,31]. The present

study demonstrated that alcohol exposure causes a reverse

transport of TGs from WAT to the liver. Liver plays a central

role in lipid metabolism, but it does not store lipid at physiological

condition. Balance between TG synthesis and export is a key

determent of hepatic lipid homeostasis [32,33]. While fatty acids

from either blood or de novo synthesis are converted to TGs which

are exported to the blood in the form of very low density

lipoproteins (VLDL) for use or storage by the peripheral organs.

Even though alcohol induces hepatic influx of fatty acids, fatty

liver should not be developed as long as the liver can efficiently

secrete TGs into the blood. Therefore, impaired VLDL secretion

should co-exist with hepatic fatty acid influx in the development of

alcoholic fatty liver. The present study shows that the liver of

alcohol-fed mice accumulated TGs synthesized by using fatty acids

of both deuterium labeled from WAT source and non-deuterium

labeled from dietary fats or de novo lipogenesis. These data suggest

that alcohol blunted lipid export. The authors believe that the

increased blood TG levels in the test cohort at 4 weeks may

indicate an impaired TG uptake from VLDL in WATs, rather

than an increased hepatic TG secretion. Indeed, our previous

study demonstrated that alcohol exposure significantly reduced the

rate of VLDL-TG secretion from the liver to the blood [11,13].

Disruption of VLDL secretion is likely an important mechanism

underlying alcoholic fatty liver, because improvement of VLDL

secretion was associated with attenuation of alcoholic fatty liver by

zinc, betaine or hepatocyte growth factor [11,34,35]. Further

investigations are required to determine the mechanisms of how

alcohol exposure suppresses lipid export function of the liver.

Conclusions
We used an analytical method of employing high-resolution

mass spectrometry in combination with metabolite deuterium

labeling for the analysis of triacylglycerol. A two-stage mouse

feeding schema was designed, where all mice were first fed with

deuterated water to label WAT TGs (stage one), followed by pair-

feeding an alcohol or isocaloric maltose dextrin control liquid diet

for two or four weeks. Hepatic lipids extracted from the livers,

eWAT and sWAT tissues were detected by FTICR–MS and

LTQ-MS/MS. All observations in this study, including the

increase of TGs in the test cohort of liver, the simultaneous

decrease of TGs in the test cohort of eWAT and sWAT, and the

agreement between the metabolomics data and the histological

data demonstrate that chronic alcohol exposure disturbs lipid

homeostasis at the adipose tissue-liver axis and therefore, support

our hypothesis, that is, alcohol consumption stimulates lipolysis of

the WAT and leads to an excess release of fatty acids which are

transported to the liver and deposited as TGs. Furthermore,

accumulation of TGs synthesized from fatty acids from dietary

source or de novo lipogenesis also contributes to the pathogenesis of

fatty liver.
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Table 3. Body weight, liver weight and plasma parameters of
the control cohort and the test cohort at two and four weeks.

2 weeks 4 weeks

Control Test Control Test

Body weight
(BW, g)

28.660.9 a 26.961.3 a 32.462.7 b 27.961.2 a

Liver weight (g) 1.0660.04 a 1.1660.05 b 1.1060.04 ab 1.3260.08 c

Liver/BW ratio (%) 3.6960.22 a 4.3360.30 b 3.4160.16 a 4.7760.21 c

ALT (U/L) 20.469.1 a 48.269.1 b 25.663.1 a 58.6612.6 b

Triacylglycerol
(mg/dL)

93.2610.4 a 130.5624.7 ab 110.4611.3 a 171.9647.7 b

Cholesterol
(mg/dL)

121.7619.6 107.1614.8 110.7610.3 101.4610.3

FFA (mg/dL) 0.3660.02 0.3160.05 0.3460.05 0.3360.07

Data are expressed as mean 6 SD (n = 628). Statistical differences were
analyzed by ANOVA followed by Bonferroni post hoc comparison, and means
without a common letter differ at p,0.05.
doi:10.1371/journal.pone.0055382.t003
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