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In the late stages of an epidemic, infections are often sporadic and
geographically distributed. Spatially structured stochastic mod-
els can capture these important features of disease dynamics,
thereby allowing a broader exploration of interventions. Here
we develop a stochastic model of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) transmission among an inter-
connected group of population centers representing counties,
municipalities, and districts (collectively, “counties”). The model
is parameterized with demographic, epidemiological, testing, and
travel data from Ontario, Canada. We explore the effects of
different control strategies after the epidemic curve has been flat-
tened. We compare a local strategy of reopening (and reclosing,
as needed) schools and workplaces county by county, according
to triggers for county-specific infection prevalence, to a global
strategy of province-wide reopening and reclosing, according to
triggers for province-wide infection prevalence. For trigger lev-
els that result in the same number of COVID-19 cases between
the two strategies, the local strategy causes significantly fewer
person-days of closure, even under high intercounty travel sce-
narios. However, both cases and person-days lost to closure rise
when county triggers are not coordinated and when testing rates
vary among counties. Finally, we show that local strategies can
also do better in the early epidemic stage, but only if testing rates
are high and the trigger prevalence is low. Our results suggest
that pandemic planning for the far side of the COVID-19 epidemic
curve should consider local strategies for reopening and reclosing.
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Outbreak containment through testing, case isolation, con-
tact tracing, and quarantine is often the first line of defense

against a novel emerging infectious disease (1–3). However,
efforts to contain severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) outbreaks have failed in many jurisdictions,
including Ontario, Canada, leading decision makers to supple-
ment contact tracing with effective but socioeconomically costly
interventions such as school and workplace closure and other
means of physical distancing (4, 5).

These measures have flattened the epidemic curve: They have
reduced the effective reproduction number of SARS-CoV-2
below one, meaning that each infected case is infecting less
than one person on average (5). The epidemic curve is a com-
mon way to visualize the spread of an infectious disease and
has become ubiquitous during the COVID-19 pandemic. Data
on cases over time lend themselves naturally to analysis by
compartmental epidemic models that assume a homogeneously
mixing population. Such models can be a valid approximation
for many applications (6, 7). However, the epidemic curve can
also obscure the spatiotemporal nature of infectious diseases,
as infections jump between neighboring populations (8). In the
early stages of an outbreak, cases are few and thus subject to ran-
dom effects (stochasticity). And, in the late stages of an outbreak,
cases are both stochastic and spatially dispersed across multiple
population centers connected through travel (9).

In such early and late stages of an epidemic, a stochastic, spa-
tially structured model can capture important features of disease
dynamics (10–13). When cases are rare, the infection may go
locally extinct due to chance events—an effect referred to as
stochastic fade-out (8, 14, 15). This has nontrivial interactions
with the spatial structure of the population (16). If cases are still
high in other populations, the virus may be subsequently reintro-
duced from those other populations through travel (8, 17). But,
if the infection has also faded out in the other populations, the
virus is eradicated (18).

As cases continue to decline on the far side of the COVID-
19 epidemic curve in Ontario, decision makers will make choices
about how and when to lift restrictions. But they will face a very
different epidemiological landscape than the middle stages of the
outbreak, when infections were numerous. Complete and sudden
removal of these restrictions before a sufficient proportion of the
population is immune to SARS-CoV-2 could cause a resurgence
of cases (19). Hence a phased approach to open or close schools
and workplaces, based on “trigger” conditions such as the number
of local confirmed positive cases, might be better (4, 19).

Phased approaches might be temporal in nature, with cer-
tain types of workplaces being opened before other types, for
instance. Alternatively, a spatially phased approach is also pos-
sible, with smaller and/or less densely populated areas being
reopened before larger urban centers (20). Spatially phased
approaches are based on the hypothesis that, during the later
stages of a pandemic, the force of infection in smaller popula-
tions could be significantly less than larger populations, due to
more frequent stochastic fade-out (8, 14, 15), reduced contact
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rates on account of lower population densities (21–24), and/or
reduced case importation due to fewer travel connections
(25). Indeed, Ontario’s four largest cities have 2.5 times more
COVID-19 cases per capita than the rest of the province
(Fig. 1A) (26). Hence, school and workplace closure could be
lifted first in those populations where they provide little marginal
benefit. But, under a spatially phased approach, coordination
remains paramount (27), given that pathogens can spread rapidly
between populations during a pandemic (4, 25). Reimportation
risk may compound when local closures are poorly coordinated,
with some populations eager to lift closures and hesitant to
reenact them when needed.

These observations emphasize three things about modeling
COVID-19 interventions on the far side of a flattened curve: 1)
A stochastic transmission model might be useful for capturing
disease dynamics once cases become rare; 2) spatial structure
is important for evaluating spatially phased plans, since the
pathogen will not be present everywhere all of the time; and
3) cases can be reimported from other locations that have not
eliminated the infection, suggesting that coordination between
counties under a spatially phased approach could remain impor-
tant. Our objective is to develop a spatially structured stochastic
model of SARS-CoV-2 transmission, testing, and school and
workplace closure in Ontario in order to address three ques-
tions: 1) Are closures best lifted at the scale of an entire province
or on a county-by-county basis? 2) Does coordination of test-
ing protocols and reopening criteria between counties improve
outcomes? 3) How well can a spatially phased approach work in
the early stages of the epidemic? We use our model to deter-
mine the timing and organizational scale at which school and
workplace reopening strategies can minimize both the number
of infections and person-days lost to closures, during the late-
stage and early-stage epidemic. Our model is parameterized with
epidemiological, demographic, and travel data for the counties,
municipalities, and districts (collectively, “counties”) of Ontario,
Canada.

Results
Model Overview. We model a population distributed across
local population centers (“counties”) connected through travel.
Within each county, transmission follows a SEPAIR disease nat-
ural history: S is susceptible to infection, E is infected, but not
yet infectious (or, simply, “exposed”), P is presymptomatic infec-
tiousness (or, simply, “presymptomatic”), A is infectious without
ever developing symptoms (or, simply, “asymptomatic”), I is both
infectious and symptomatic (or, simply, “symptomatic”), and
R is removed (no longer infectious). Symptomatic individuals
are tested for SARS-CoV-2, and their status becomes ascer-

tained with some probability per day. The infection transmission
probability in a county depends on the number of contacts in
schools and workplaces—which are reduced by closures—and
on contacts in other settings not affected by closures, such as
homes. Transmission also depends on how effectively closures
reduce transmission, and the extent to which population size
drives transmission. The population behavioral response to the
presence of COVID-19 is an important feature of physical dis-
tancing (28–32). Hence, we assumed that transmission outside
of schools and workplaces is reduced by individual physical dis-
tancing efforts (restricting social contacts, washing hands, etc.)
and that more confirmed positive cases in the county cause more
individuals to practice physical distancing. Each individual trav-
els from their home county to another county for the day with
some probability (Fig. 1B) that is reduced if schools and work-
places are closed in the destination county. Additional details on
model structure, data sources, parameter values, and calibration
appear in Materials and Methods. Parameter definitions, values,
and literature sources are summarized in SI Appendix, Table 1.

System Dynamics. We ran reopening and reclosing simulations
over a time horizon of 1 y and projected the number of cases in
each county. To reflect COVID-19 mitigation in Ontario, each
simulation began with a 75-d period of province-wide closure
applied once 325 confirmed positive cases accumulated in the
province. After this period, we contrasted a “local strategy” of
reopening and reclosing counties individually, according to a trig-
ger prevalence of confirmed positive COVID-19 cases in the
county, to a “global strategy” of reopening and reclosing the entire
province, according to a trigger prevalence of confirmed posi-
tive COVID-19 cases in the province. Our model dynamics are
characterized by two distinct regimes (Fig. 2 A and C). In highly
populated counties, COVID-19 is endemic throughout the time
horizon of the simulation. However, in counties with lower popu-
lations, cases blink in and out during the year, as infections jump
between counties through travel and decline due to testing and
voluntary distancing alone. The infection patterns appear quali-
tatively similar under both strategies (Fig. 2 A and C), but closure
patterns are very different, with most counties being closed most
of the time under the global strategy (Fig. 2 B and D).

Local versus Global Reopening Strategies. The local strategy tends
to outperform the global strategy for most values of the trigger
prevalence (Fig. 3). When the trigger prevalence is very high (i.e.,
an extreme scenario where decision makers reopen or reclose for
a prevalence of 1,000 confirmed positive cases per 100,000), a high
proportion of the population becomes infected, since school and
workplace closures are rarely sustained in either strategy after

Fig. 1. Concentration of COVID-19 cases in (A) urban counties and (B) travel patterns among counties. Bars in A denote infection rate (cumulative cases
per 100,000; red) and proportion of all cases in Ontario (blue) across counties by June 10, 2020 (26), and blue points denote the fit of 20 stochastic
model realizations. Counties with <1 million residents are aggregated by population density (individuals per square kilometer), with vertical lines denoting
standard error across counties. In B, boxes denoted G.T.A. represent the Greater Toronto Area, and star denotes Ottawa; data are from ref. 37.
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Fig. 2. Spatiotemporal patterns of local COVID-19 cases and
school/workplace closures. (A and C) Simulated (confirmed plus not
ascertained) number of COVID-19 cases and (B and D) time periods of
workplace closure (red) and opening (blue) in Ontario, Canada under (A
and B) local and (C and D) global strategies. Disease dynamics are sporadic
in low-population counties but endemic in high-population counties. The
local strategy generates a similar disease burden to the global strategy
but requires fewer person-days of closure. Optimal trigger prevalence is
assumed (blue dashed lines, Fig. 3). Brackets denote the Greater Toronto
Area, star denotes Ottawa, and vertical dashed lines in B and D delineate
the initial province-wide closure. All simulations were initialized with 2,500
exposed persons on day 1.

the initial 75-d province closure. At the other extreme of the
lowest trigger prevalence, both strategies minimize infections by
maintaining closures for the majority of the year. However, inter-
mediate values of the trigger prevalence represent a “sweet spot”
for the local strategy, where it outperforms the global strategy in
terms exhibiting significantly fewer person-days of closure for a
comparable number of COVID-19 cases. The local strategy can
accomplish this because it affords flexibility to enact closures only
in areas with continuing active outbreaks—primarily, more pop-
ulous counties with higher epidemic spread rates. Conversely, for
the same trigger prevalence, cases of infection in this regime are
always lower under the local strategy. We identify an optimal trig-
ger prevalence as the trigger prevalence that allows significant
reductions in person-days lost to closure, but only permits cases to
increase by 1% compared to its minimum value across all values
of the trigger prevalence (blue dashed lines, Fig. 3). At this opti-
mal trigger, the local strategy results in 22% fewer person-days of
closure across the entire province than the global strategy.

Benefits of Coordination. A local strategy could enable differ-
ent counties to adopt different triggers. Our simulation results
confirm that poor coordination can undermine the benefits of
the local strategy (Fig. 4). As between-county variation in the
trigger prevalence increases, both the mean and 85% quantile
across stochastic realizations of both the proportion infected and
person-days closed rise under a broad range of assumptions for
intercounty travel rates (Fig. 4). The rise in infections in this
scenario is somewhat counteracted by the rise in person-days
lost to closure: Renewed outbreaks in counties that lift closures
prematurely export infections to neighboring counties, which,
in turn, necessitates additional closures in those counties and
increases the number of person-days lost to closure (Fig. 4B).
This emphasizes how close coordination can be beneficial from
both public health and economic perspectives. Lack of coordi-
nation in testing is also problematic (SI Appendix, Fig. 1). As
between-county variation in the testing rate for symptomatic

individuals increases, the mean and 85% quantile of proportion
infected and person-days lost to closure increase in most of the
stochastic realizations.

Sensitivity Analysis. These results are qualitatively unchanged
under moderate changes to parameter values in univariate sen-
sitivity analyses (SI Appendix, Fig. 2). Projections are most
sensitive to variation in the transmission probability, efficacy of
physical distancing, and the removal rate. The performance of
the local versus global strategies depends relatively little on the
extent to which transmission probabilities are driven by popu-
lation size, in other words, how rapidly the probability that a
given susceptible person is infected by a given infectious per-
son declines with the population size of the county (ξ is changed
and model is refitted with new ξ values; SI Appendix, Fig. 3).
Similarly, the relative performance of the two strategies is not
strongly affected by doubling of travel rates (SI Appendix, Fig. 4):
Although cases and person-days lost to closure increase for both
strategies, the local strategy retains its relative performance lead
over the global strategy.

Local Closures in the Early Epidemic. We also compared a modified
local strategy of omitting the initial 75-d province-wide closure
and closing counties one at a time from the very beginning (fol-
lowed by reopening and reclosing counties as needed) to our
baseline local strategy of following a 75-d province-wide closure
with reopening and reclosing counties one at a time. We found
that the modified local strategy could outperform the baseline
local strategy under specific conditions for trigger prevalence and
testing rates (Fig. 5). In particular, the trigger prevalence must
be reduced compared to our baseline analysis (Fig. 5A), such that
counties are closed as soon as a few cases are detected (Fig. 5C).
The optimal trigger prevalence for the modified local strategy
increases exponentially with the testing probability (from 17 to
120 positive active cases in a city the size of Ottawa), meaning
that counties can apply less stringent triggers only if their test-
ing rates are very high and find more cases (Fig. 5C). Testing of
asymptomatic individuals is not included in our baseline analysis,
but might occur under high testing capacity and effective contact
tracing, and would permit a higher trigger prevalence and reduced
person-days closed under the modified local strategy (Fig. 5B),
by limiting epidemic growth to the most populous counties.

Fig. 3. The local strategy greatly reduces person-days of school and work-
place closure while only causing a small increase in the number of COVID-19
cases, relative to the global strategy. Effect of trigger prevalence on pro-
portion infected (red) and proportion of person-days under closure (black)
for the (A) global and (B) local strategy. Vertical blue lines denote optimal
trigger prevalence that maintains proportion infected within 1% of its min-
imum value while minimizing person days closed. Shading represents ±2
standard deviations across 30 model realizations.
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Fig. 4. Decreasing coordination in trigger prevalence across counties increases (A) cases and (B) person-days closed under the local strategy. γl,j follows
uncorrelated variation among counties according to a uniform distribution with mean γl = 15 cases/100,000 at the optimal trigger prevalence in Fig. 3B.

However, given the initial short supply of test kits and long test-
ing turnaround times that characterized Ontario and many other
jurisdictions, the testing rate for symptomatic individuals proba-
bly remained below the required 0.1/d during the early epidemic in
Ontario. Sensitivity analysis in the early epidemic (Fig. 5B) addi-
tionally shows that the benefit of fewer person-days closed under
the local strategy declines when closures begin after many thou-
sands of people are already infected, when travel is high, or if
initial infections are concentrated in cities. Taken together, these
results suggest that the modified local strategy of omitting the 75-d
province-wide closure could significantly outperform the base-
line local strategy early in the initial epidemic only with prompt
mitigation, moderate-to-high testing rates, and very low trigger
prevalence (a scenario resembling the South Korean control strat-
egy). This finding reiterates public health consensus that early and
aggressive action in the early stages of a pandemic, and also poten-
tially during second waves, could minimize both infections and
total person-days of closure.

Discussion
Plans for reopening and reclosing schools and workplaces in
the later stages of COVID-19 epidemics are diverse and unco-
ordinated. Some reopening guidelines include epidemiological
triggers such as case incidence or contact tracing capacity (33),
while others include guidelines for reopening on a county-by-
county basis (20). Our results suggest that plans for reopening

economies on the far side of the COVID-19 epidemic curve
should consider preceding larger-scale reopenings with local
reopenings. However, for this to work, the trigger conditions
need to be coordinated by the province: Individual counties
cannot draw up guidelines independently.

Our model was parameterized for the province of Ontario,
Canada. Sensitivity analysis showed our results were robust to
assumptions regarding transmission processes and travel pat-
terns. The robustness of these results stems from being able
to reopen more-sparsely populated counties that have a lower
case burden and can benefit from stochastic fade-out more often
than densely populated urban centers (Fig. 2). In turn, this sug-
gests that the results may apply more broadly to other Canadian
provinces and US states with similarly low population density
and dispersed spatial structure. However, this would need to
be confirmed with model extensions that are tailored to these
other jurisdictions. Additionally, not all US states began their
control efforts with a period of closure that was effective enough
to flatten their epidemic curves, which is a crucial difference.

Province- and state-wide lockdowns have generated resistance
from populations that feel the restrictions should not apply to
them. This outcome is tied up with the phenomenon of pol-
icy resistance, where the nonlinear behavioral response to an
intervention partly undermines the intervention (34). Nonlin-
ear interaction between human and natural systems is pervasive
(35), and epidemiological systems are no exception (31, 36).

Fig. 5. Using county-by-county closures from the beginning and omitting the initial 75-d province-wide closure at the start of an epidemic can minimize
infections and person-days of closure under moderate-to-high testing rates and low trigger prevalence. (A) Across all combinations of control parameters
(specified in B), not enacting an initial 75-d province closure at the start of the epidemic reduces person-days closed but requires a lower trigger prevalence
in county-level closure decisions (vertical lines denote means). (B) Sensitivity analysis of how each control parameter affects person-days of closure avoided
by omitting the initial 75-d province-wide closure. (C) Moderate-to-high testing levels allow less stringent county closure criteria (trigger prevalence, red)
and result in fewer person-days closed (black) compared to 75-d province-wide closure. Person-days lost, infections, and trigger prevalence were calculated
over the first 120 d of the epidemic. Throughout this analysis, we use a baseline τI = 0.16. In A and B, τI and n0 were varied over ±75% of their baseline
values, low coordination is either absent or present (in which case, γl,j among counties follows a uniform distribution with coefficient of variation 0.27),
asymptomatic testing τA = 0 or τA = τI/2 = 0.08, and initial infections are either distributed evenly among the population or concentrated in two randomly
selected counties which have a population of > 500, 000.

24578 | www.pnas.org/cgi/doi/10.1073/pnas.2014385117 Karatayev et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.2014385117


PO
PU

LA
TI

O
N

BI
O

LO
G

Y

Behavioral feedback during the COVID-19 pandemic has man-
ifested through 1) physical distancing to minimize individual
infection risk in response to rising case reports (29) and 2)
pushback against lockdowns on account of economic impacts or
perceived restrictions on civil liberties. An evidence-informed
and coordinated approach to lifting lockdowns in less densely
populated areas first, such as the one we propose, might have
the added benefit of improving compliance to measures in popu-
lations that perceive province-wide closure to cover a needlessly
large section of the population. In a related vein, local closures
may be more effective if local decision makers can enact clo-
sures more promptly than what is possible under a province-wide
decision-making process.

Our model did not include several features that could influ-
ence predictions. A key assumption was that individual counties
enact closures as soon as positive cases exceed a trigger preva-
lence. In practice, a delay could allow case notifications to surge.
Hesitation to reclose counties as needed can be especially prob-
lematic because 1) an increase in deaths follows weeks behind
an increase in cases and 2) the optimal trigger prevalence found
here translates to closing counties when only a few active cases
are detected (Fig. 3B). Future iterations of this model could
include other important features such as age structure (19) or
intensive care unit (ICU) capacity. These features could enable
projecting the effect of reopening only primary and elementary
schools, or using local ICU occupancy as a trigger. Future work
could also explore the role of extraprovincial case importations
in the late stage of the pandemic, which could become important
once local cases become rare (8).

Data on SARS-CoV-2 epidemiology, interventions, and treat-
ments will become both increasingly available and increas-
ingly reliable as the COVID-19 pandemic unfolds. There is a
corresponding urgent need to develop more-detailed models
that can address a broader range of policy questions, so that
evidence-based policy-making has more information upon which
to base decisions. Stochastic, spatially structured models may
become increasingly useful for informing reopening and reclos-
ing strategies in the COVID-19 pandemic, by allowing deci-
sion makers to explore the potential advantages of coordinated
county-by-county strategies.

Materials and Methods
The following subsections describe the details of the model structure and
parameterization. A table of parameter definitions, baseline values, and
literature sources appears in SI Appendix, Table S1.

Population Structure and Travel. The model contains 49 local populations
(“counties”) that represent each of 49 Ontario census divisions and have the
same corresponding population sizes (37). At the start of each day, each indi-
vidual in county j travels to county k for the day with probability mjk, in which
case they experience any transmission events that occur there. At the end of
the day, they return back to county j. The values of the travel matrix M = [mjk]

were obtained from survey data (37) spanning 39% of Ontario inhabitants,
of whom 25% worked outside their census division, arriving at an aggregate
daily travel probability of 10% per day. This likely overestimates the impact
of travel, since we are treating each individual in the population as equally
likely to travel to another county each day, whereas, in real populations, the
same individuals tend to travel each day and tend to repeat their contacts
with the same individuals. Infected individuals are less likely to travel by a
factor r = 0.19 (i.e., 19% less likely to travel), since 81% of reported COVID-
19 cases are mild (38). Individuals who test positive are less likely to travel
by a factor η= 0.8 (39, 40), with travel by individuals sick and confirmed
positive reduced by (1− η)(1− r). Additionally, each individual’s travel prob-
ability to a closed county is reduced by a factor ε, since fewer individuals
travel to a county when its schools and workplaces are closed.

Transmission and Testing. The state {Di , Ti} of individual i reflects both their
epidemiological status Di ∈{S, E, A, P, I, R} and their testing status, where
Ti ∈{N, K} for not known/known infection status, respectively; {·, Ti}
denotes an individual with testing status Ti and any of the five epidemiolog-

ical states, with similar interpretation for {Di , ·}. Pj denotes the population
size of county j, and PDT

j denotes the number of individuals of state {D, T} in
county j. Each time step lasts 1 d. During each day, each individual’s epidemi-
ological status in county j is updated as follows: 1) Individuals in the {S, ·}
state become exposed with probability λj , entering the {E, ·} state; 2) indi-
viduals in the {E, ·} state become presymptomatic with probability (1−π)α
and enter the {P, ·} state, or become asymptomatic with probability πα and
enter the {A, ·} state; 3) individuals in the {P, ·} state become symptomatic
with probability σ, entering the {I, ·} state; 4) individuals in the {I, N} state
are tested with probability τI,j , entering the {I, K} states; and 5) individ-
uals in the {I, ·} and {A, ·} states are removed (are no longer infectious)
with probability ρ, entering the {R, ·} state. Infection history parameter val-
ues are obtained from epidemiological literature (41, 42). We assign each
newly infected individual to be a superspreader with probability s = 0.2 (43)
and denote superspreading (nonsuperspreading ) individuals with the sub-
script s (e.g., As, Is) (ns, respectively). Superspreaders infect others with a
probability that is (1− s)/s times higher than nonsuperspreaders. Daily test-
ing rates improved over the first 40 d of province-wide closure as testing
increased 13-fold (44). Hence we assumed the daily testing probability in

the model increased from τ
t0
I to τ

tf
I by day 40 after the 325th positive case

was detected, in direct proportion to the smoothed increase in the daily
number of tests from Ontario testing data. Physical distancing through clo-
sures or behavioral changes can reduce the probability of transmission by
preventing up to a fraction ε of all contacts. Closure Cj(t) (see below) of
schools and workplaces in county j can be applied and lifted over time and
affect a fraction w of all contacts. We take w = 0.45 based on time use data
for time spent at schools, workplaces, and other institutions that can be
mandated to close (45). The remaining time spent, 1−w, is in settings such
as homes and social gatherings. We assumed that individuals reduce their
contacts in linear proportion to the number of confirmed cases reported in
their county by a factor 1− exp(−ωP+

j /Pj), where P+
j = PAK

j + PIK
j . Hence,

the fraction of contacts Fj(t) remaining after physical distancing in county j
at time t is therefore

Fj(t) = w(1− εCj(t)) + (1−w)(1− ε(1− exp(−ωP+
j /Pj))).

The contacts of an infected person decline from fT=N = 1 to a fraction
fT=K = 1− η if they test positive for COVID-19, where η= 0.8 (39, 40).
The transmission probability also depends on the individual’s epidemiolog-
ical state D, with βDns ,j = βD0,j for nonsuperspreaders {Ans, ·}, {Ins, ·} and
βDs ,j = βD0,j(1− s)/s for superspreaders {As, ·}, {Is, ·}, as well as local dif-
ferences in transmission. Hence the probability per day that a susceptible
person in county j is infected by an infectious person is

λj(t) = 1−
∏
D,T

[
1− Fj(t)fTβD,j(ξ/(1 + cP∗

j,t) + (1− ξ)/P∗
j,t)

]
P∗DT
j,t ,

since this is 1 minus the probability of not being infected by any class of
the infectious individuals in county j. The starred notation, P∗

j,t (respectively

P∗DT
j,t ) denotes the population size (respective number of individuals of dis-

ease status D and testing status T) on day t after adjusting for travel. ξ and c
control how the transmission probability depends on population size: Stan-
dard incidence is recovered for ξ= 0, while ξ= 1 recovers a scenario where
contacts increase with population size to an extent controlled by c (22).

School and Workplace Closure. In Ontario, an emergency was declared on
the day the cumulative number of reported positive cases tn reached 325
(March 17), leading to closures of workplaces (schools were already closed
for March Break). Hence, closure strategies in our model were enacted only
after an initial tstart = 75-d province-wide closure expires. Reopenings (and
reclosures) are subsequently enacted under the local and global strategy
when the percentage of confirmed cases falls below (or exceeds), a trigger
prevalence γG at the province level or γl,j within a county j. Under limited
coordination, γl,j may be greater in counties eager to lift or hesitant to enact
closures. Any closures last for δC = 50 d, with tG (tl,j) denoting the last time
a closure was enacted in the province (in county j), after which period the
closure decision is reevaluated. The closure function Cj(t) is then

Cj(t) =


1 tn=325 < t< tstart

1 t> tstart + tn=325, (P+
G /PG >γG or t< tG + δC )

1 t> tstart + tn=325, (P+
j /Pj >γl,j or t< tl,j + δC )

0 otherwise,

where P+
G is the total number of known, active cases in the province and PG

is province population size.
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Calibration. We set βA
0 = βP

0 = 0.5βI
0 (46), based on data showing 44% of

SARS-CoV-2 shedding occurs before symptoms develop and our assumed
duration of infectious periods. Given that contact rates can depend on pop-
ulation size, we determined βI

0 for each value of ξ and c by calibrating
the model in the absence of distancing, closure, and testing such that 65%
of the population is infected, based on the assumption that R0 = 2.3 and
using final size projections from compartmental epidemic models (19, 47).
We allowed for the county-specific baseline transmission probability βI

0 j to

vary within ±15% of the province-level value βI
0 and ensured the province-

wide average of fitted βI
0 j values (weighted by population size) equaled βI

0.

To avoid overfitting, we constrained βI
0 = 1 for Toronto (which depends on

c) and assumed βI
0 is the same among counties within each county group.

We calibrated distancing parameters (ε, ω), testing (τ
t0
I , τ

tf
I ), the depen-

dence of transmission probability on population size (ξ, c), and location j by
fitting model outputs of 1) time series of incident confirmed cases (the num-
ber of individuals entering the {I, K} state each day) to empirical data on
daily confirmed cases by reporting date in each county or county group (26)
(SI Appendix, Fig. 5); 2) the modeled ratio of actual cases to confirmed
positive cases province-wide (i.e., number of individuals not in {S, ·} to
the cumulative number of individuals tested positive), to an empirical esti-

mate of this ratio of 8.76 for underascertainment in the United States (32)

(10.2± 4.9 in our model, mean±2 SD); and 3) the modeled discretionary
distancing 1− exp(−ωP+

j /Pj) by day t− tn=325 = 21 in our simulation to
an empirical estimate of ∼ 50% adherence to physical distancing by day
21 of the outbreak (April 6, 2020) from a public survey (48) (0.57± 0.3 in
our model). To visualize the spatial case distribution, we calculated the pro-
portion of all confirmed positive tests found in the four most populous
Ontario cities and in three sets of counties grouped by population density. We
adjusted the proportion of total cases and total cases per 100,000 (Fig. 1A)
in each county/county group j for spatial differences in number of tests Tj

per capita by multiplying the observed number of cases in each location
by the fraction (Pj

∑
Tj)/(Tj

∑
Pj) (with values ranging from 0.72 to 1.16).

Data Availability. All data used in this paper are publicly available (see ref-
erences). Code and data for model simulation and fitting is available in
GitHub (49).
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