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Quantum computational advantage with a 
programmable photonic processor
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Matteo Menotti1, Ish Dhand1, Zachary Vernon1, Nicolás Quesada1 ✉ & Jonathan Lavoie1 ✉

A quantum computer attains computational advantage when outperforming the best 
classical computers running the best-known algorithms on well-defined tasks. No 
photonic machine offering programmability over all its quantum gates has 
demonstrated quantum computational advantage: previous machines1,2 were largely 
restricted to static gate sequences. Earlier photonic demonstrations were also 
vulnerable to spoofing3, in which classical heuristics produce samples, without direct 
simulation, lying closer to the ideal distribution than do samples from the quantum 
hardware. Here we report quantum computational advantage using Borealis, a 
photonic processor offering dynamic programmability on all gates implemented. We 
carry out Gaussian boson sampling4 (GBS) on 216 squeezed modes entangled with 
three-dimensional connectivity5, using a time-multiplexed and photon-number- 
resolving architecture. On average, it would take more than 9,000 years for the best 
available algorithms and supercomputers to produce, using exact methods, a single 
sample from the programmed distribution, whereas Borealis requires only 36 μs. This 
runtime advantage is over 50 million times as extreme as that reported from earlier 
photonic machines. Ours constitutes a very large GBS experiment, registering events 
with up to 219 photons and a mean photon number of 125. This work is a critical 
milestone on the path to a practical quantum computer, validating key technological 
features of photonics as a platform for this goal.

Only a handful of experiments have used quantum devices to carry out 
computational tasks that are outside the reach of present-day classi-
cal computers1,2,6,7. In all of these, the computational task involved 
sampling from probability distributions that are widely believed to 
be exponentially hard to simulate using classical computation. One 
such demonstration relied on a 53-qubit programmable supercon-
ducting processor6, whereas another used a non-programmable pho-
tonic platform implementing Gaussian boson sampling (GBS) with 50 
squeezed states fed into a static random 100-mode interferometer1. 
Both were shortly followed by larger versions, respectively enjoying 
more qubits7,8 and increased control over brightness and a limited set 
of circuit parameters2. In these examples, comparison of the duration 
of the quantum sampling experiment to the estimated runtime and 
scaling of the best-known classical algorithms placed their respective 
platforms within the regime of quantum computational advantage.

The superconducting quantum supremacy demonstrations 
serve as crucial milestones on the path to full-scale quantum 
computation. On the other hand, the choice of technologies used 
in the photonic machines1,2, and their consequential lack of pro-
grammability and scalability, places them outside any current 
proposed roadmap for fault-tolerant photonic quantum comput-
ing9–11 or any GBS application12–18. A demonstration of photonic 

quantum computational advantage incorporating hardware capa-
bilities required for the platform to progress along the road to 
fault-tolerance is still lacking.

In photonics, time-domain multiplexing offers a comparatively 
hardware-efficient19 path for building fault-tolerant quantum com-
puters, but also near-term subuniversal machines showing quantum 
computational advantage. By encoding quantum information in 
sequential pulses of light—effectively multiplexing a small number of 
optical channels to process information on a large number of modes20—
large and highly entangled states can be processed with a relatively 
small number of optical components. This decouples the required 
component count and physical extent of the machine from the size 
of the quantum circuit being executed; provided device imperfec-
tions can be maintained sufficiently small, this decoupling represents 
a substantial advantage for scaling. Moreover, the relatively modest 
number of optical pathways and control components avoids many 
of the challenges of traditional, planar two-dimensional implemen-
tations of optical interferometers, which suffer from high complex-
ity and burdensome parallel control requirements, especially when 
long-range connectivity is desired. Although attractive for scaling, 
hardware efficiency must not come at the cost of unnacceptably large 
errors. Implementations of time-domain multiplexing must therefore 
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be tested in demanding contexts to validate their promise for building 
practically useful quantum computers.

Using time-domain multiplexing, large one- and two-dimensional 
cluster states have been deterministically generated21–23 with program-
mable linear operations implemented by projective measurements24,25, 
whereas similar operations have been implemented in ref. 26 using a 
single loop with reconfigurable phase. These demonstrations leverage 
low-loss optical fibre for delay lines, which allows photonic quantum 
information to be effectively buffered. Although groundbreaking, 
these demonstrations have remained well outside the domain of 
quantum computational advantage, as they lacked non-Gaussian ele-
ments and were unable to synthesize states of sufficient complexity 
to evade efficient classical simulation27. The demonstration of a set 
of hardware capabilities needed for universal fault-tolerant quantum 
computing, in the demanding context of quantum computational 
advantage, would serve as a validating signal that the corresponding 
technologies are advancing as needed. Yet no such demonstration is 
available for time-domain multiplexing.

In this work, we solve technological hurdles associated with 
time-domain multiplexing, fast electro-optical switching, high-speed 
photon-number-resolving detection technology and non-classical light 
generation, to build a scalable and programmable Gaussian boson 
sampler, which we name Borealis. These features allow us to synthesize 
a 216-mode state with a three-dimensional entanglement topology. 
This is particularly notable because three-dimensional cluster states 
are sufficient for measurement-based fault-tolerant quantum comput-
ing28,29; although the states we synthesize are themselves not cluster 
states, the device can be readily programmed to generate cluster states 
by selecting appropriate phase and beam-splitting ratios at the loops. 
Borealis uses 216 independent quantum systems to achieve quantum 
computational advantage, placing it well beyond the capabilities of 
current state-of-the-art classical simulation algorithms30. Our use of 
photon-number-resolving detectors unlocks access to sampling events 
with much larger total photon number, a regime inaccessible to earlier 
experiments that used traditional threshold detectors. In the same 
vein, our use of time-domain multiplexing allows us access to more 

squeezed modes without increasing the physical extent or complexity 
of the system. In addition, its output cannot be efficiently spoofed in 
cross-entropy benchmarks using a generalization of the most recent 
polynomial-time algorithms3. We leave as an open question to the com-
munity whether better polynomial-time algorithms for spoofing can 
be developed.

Experiment
The optical circuit we implement, depicted in Fig. 1, is fully program-
mable, provides long-range coupling between different modes and 
allows all such couplings to be dynamically programmed. It imple-
ments linear-optical transformations on a train of input squeezed-light 
pulses, using a sequence of three variable beamsplitters (VBSs) and 
phase-stabilized fibre loops that act as effective buffer memory for 
light, allowing interference between modes that are either temporally 
adjacent, or separated by six or 36 time bins. This system synthesizes a 
programmable multimode entangled Gaussian state in a 6 MHz pulse 
train, which is then partially demultiplexed to 16 output channels and 
sampled from using photon-number-resolving detectors.

Unlike some quantum algorithms whose correct functioning on a 
quantum computer can be readily verified using a classical computer, 
it remains an open question how to verify that a GBS device is operating 
correctly. In what follows, we present evidence that our machine is oper-
ating correctly, that is, it samples from the GBS distribution specified 
by the device transfer matrix T and vector of squeezing parameters r, 
which together define the ground truth of the experiment. In previous 
experiments1,2 the results were benchmarked against a ground truth 
obtained from tomographic measurements of a static interferometer, 
whereas for Borealis, the ground truth is obtained from the quantum 
program specified by the user, that is the squeezing parameters and 
phases sent to the VBS components in the device.

The transfer matrix is obtained by combining the three layers of VBSs 
acting over the different modes, together with common (to all modes) 
losses due to propagation and the finite escape efficiency of the source, 
as well as imperfect transmittance through the demultiplexing and 
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Fig. 1 | High-dimensional GBS from a fully programmable photonic 
processor. A periodic pulse train of single-mode squeezed states from a pulsed 
OPO enters a sequence of three dynamically programmable loop-based 
interferometers. Each loop contains a VBS, including a programmable phase 
shifter, and an optical fibre delay line. At the output of the interferometer, the 
Gaussian state is sent to a 1-to-16 binary switch tree (demux), which partially 
demultiplexes the output before readout by PNRs. The resulting detected 
sequence of 216 photon numbers, in approximately 36 μs, comprises one 
sample. The fibre delays and accompanying beamsplitters and phase shifters 
implement gates between both temporally adjacent and distant modes, 

enabling high-dimensional connectivity in the quantum circuit. Above each 
loop stage is depicted a lattice representation of the multipartite entangled 
Gaussian state being progressively synthesized. The first stage (τ) effects 
two-mode programmable gates (green edges) between nearest-neighbour 
modes in one dimension, whereas the second (6 τ) and third (36 τ) mediate 
couplings between modes separated by six and 36 time bins in the second and 
third dimensions (red and blue edges, respectively). Each run of the device 
involves the specification of 1,296 real parameters, corresponding to the 
sequence of settings for all VBS units.
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detection systems; it corresponds classically (quantum mechanically) 
to the linear transformation connecting input and output electric fields 
(annihilation operators).

As noted in refs. 5,31, if one were to target a universal and programma-
ble interferometer, with depth equal to the number of modes, that cov-
ers densely the set of unitary matrices, the exponential accumulation of 
loss would prohibit showing a quantum advantage. There are then two 
ways around this no-go result: one can either give up programmability 
and build an ultralow loss fixed static interferometer, as implemented 
in refs. 1,2, or give up universality while maintaining a high degree of 
multimode entanglement using long-ranged gates.

We first consider the regime of few modes and low photon number, 
in which it is possible to collect enough samples to estimate outcome 

probabilities, and also calculate these from the experimentally char-
acterized lossy transmission matrix T and the experimentally obtained 
squeezing parameters r programmed into the device. In Fig. 2 we show 
the probabilities inferred from the random samples collected in the 
experiment and compare them against the probabilities for different 
samples S obtained from simulations, under the ground truth assump-
tion. We cover the output pattern of all possible permutations 
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+ − 1 , in which N is the number of photons, from 3 to 6, and M = 16 

is the number of modes. To quantify the performance of Borealis we 
calculate the fidelity (F) and total variation distance (TVD) of the 3, 4, 
5 and 6 total photon-number probabilities relative to the ground truth. 
For a particular total photon number, fidelity and TVD are, respectively, 
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Fig. 2 | Experimental validation of the GBS device. Each panel compares 
experimentally obtained sample probabilities, against those calculated from 
the ground truth (r, T), for up to six-photon events in a 16-mode state. A total of 
84.1 × 106 samples were collected and divided according to their total photon 
number N and further split according to the collision pattern, from no collision 

(no more than one photon detected per PNR) to collisions of different densities 
(more than one photon per PNR). The overall fidelity (F) and TVD to simulations 
for each photon-number event is shown below. Further analysis of TVD for 
classical adversaries in the 16-mode GBS instance can be found in 
the Supplementary Information.
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defined as F p q= ∑i i i
 (also known as the Bhattacharyya coefficient) 

and p qTVD = ∑ | − |/2i i i . Parameters pi and qi represent the theoretical 
and experimental probability of the ith output pattern, respectively, 
and are normalized by the probability of the respective total photon 
number. For the total photon-number sectors considered we find 
fidelities in excess of 99% and TVDs below or equal to 6.5%, thus show-
ing that our machine is reasonably close to the ground truth in the 
low-N regime addressed by these data. Note that, because we are cal-
culating all the possible probabilities with N photons, estimating out-
come probabilities from the experimentally characterized transmission 
matrix would require us to obtain orders of magnitude more samples, 
beyond our current processing abilities. This limitation will lead to 
TVD growing as N increases and, beside the impractical computational 
cost, is the reason that data past N > 6 were left for subsequent  
benchmarks.

In an intermediate mode- and photon-number regime, we calculate 
the cross entropy of the samples generated by the experiment for each 
total photon-number sector for a high-dimensional GBS instance with 

M = 216 computational modes and total mean photon number 
N = 21.120 ± 0.006. For a set of K samples S{ }i i

K
=1

, each having a total of 
N photons, the cross-entropy benchmark under the ground truth given 
by (r, T) is
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= Pr ( )/ + − 1(0)N  is a normalization constant determined 

by the total number of ways in which N photons can be placed in M 
modes and Pr(0)(N) is the probability of obtaining a total of N photons 
under the ground truth assumption.

We then compare the average score (Fig. 3a) of the 106 samples, 
divided in 10,000 samples per total photon number N, generated by 
our machine in the cross entropy against classical adversarial spoofers 
that try to mimic the ground truth distribution (r, T). These adversar-
ies are constructed with the extra constraint that they must have the 
same first-order (mean) photon-number cumulants as the ground 
truth distribution. The five adversaries considered send (1) squashed,  
(2) thermal, (3) coherent and (4) distinguishable squeezed light into the 
interferometer specified by T, or (5) use a greedy algorithm to mimic 
the one- and two-mode marginal distributions of the ground truth, as 
was used in ref. 3 to spoof earlier large GBS experiments1,2. Squashed 
states (1) are the classical-Gaussian states with the highest fidelity to 
lossy-squeezed states31, that is they are optimal within the family of 
Gaussian states that are classical, and thus provide a more powerful 
adversary than thermal, coherent or distinguishable squeezed states, 
which were the only adversaries considered in previous photonic quan-
tum computational advantage claims1,2. In all cases, the samples from 
Borealis perform significantly better than any adversary at having a 
high cross entropy with respect to the ground truth; equivalently, 
none of the adversaries are successful spoofers in this benchmark. 
In particular, the best-performing adversary—the greedy sampler—
remains significantly below the experiment in cross-entropy, and 
shows no trend towards outperforming the experiment for larger N. 
Given the supercomputing resources and time needed to estimate 
all scores for N = 26 (22 h), we can extrapolate this time and estimate 
that it would take roughly 20 days to benchmark our data for N = 30. 
For this reason, and the lack of evidence that the scores may change 
in favour of any alternative to the ground truth, we are confident that 
the studied range of N = [10,26] is sufficient to rule out all classical 
spoofers considered, even in the regime in which it is unfeasible to 
perform these benchmarks.

Next, we consider another test—a Bayesian method similar to that 
used in other GBS demonstrations1,2. For each subset of samples gener-
ated in the experiment with a given total photon number N, we calculate 
the ratio of the probability that a sample S could have come from the 
lossy ground truth specified by T and r to the probability that S came 
from any of the alternative spoofing hypotheses (1)–(4). For a particular 
sample Si and a particular adversary I this ratio is given by
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If HΔ > 0I0|  we conclude that the samples generated by Borealis are 
more likely to have come from the ground truth than from the adver-
sarial distribution corresponding to the first four spoofers (1)–(4); the 
greedy adversary (5) can generate samples mimicking the ground truth 
but there is no known expression or algorithm to obtain the ‘greedy 
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Fig. 3 | Benchmarks against the ground truth.a, Cross-entropy benchmark 
against the ground truth. Experimental samples from a high-dimensional GBS 
instance of 216 modes, averaging N = 21.120± 0.006 photons per sample, are 
bundled according to their total photon number N, from 10 to 26. Each point 
(score) corresponds to an average (equation (1)) over 10,000 samples per N. 
Genuine samples from the quantum hardware score higher than all classical 
spoofers, validating the high device fidelity with the ground truth. Error bars 
are standard errors of the mean. b, Bayesian log average score against the 
ground truth. Experimental samples from a 72-mode GBS instance and 
N = 22.416± 0.006 photon number per sample. Each score is averaged over 
2,000 samples with N from 10 to 26. Error bars are standard errors of the mean. 
All scores are above zero, including error bar, indicating that the samples 
generated by Borealis are closer to the ground truth than from the adversarial 
distribution corresponding to squashed, thermal, coherent and 
distinguishable squeezed spoofers.
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probability distribution’, thus we cannot use it to generate a Bayesian 
score. One can see in Fig. 3b that the Bayesian log average is strictly 
above zero for all remaining adversaries.

Finally, we consider the regime of many modes and large photon 
number, in which calculating the probability of even a single event 
using a classical computer is unfeasible. In this regime we consider the 
first- and second-order cumulants of the photon-number distributions 
of 216 modes and 106 samples against the lossy ground truth and the 
different spoofer distributions. Note that these samples are generated 
from the same family of unitaries as the samples generated in the inter-
mediate regime, we only change the brightness of the squeezed input 
light. In Fig. 4a we plot the total photon-number probability distribu-
tions measured in the experiment, and calculated from the ground 
truth and different spoofers. By construction, the samples generated 
from each classical adversary have the same first-order cumulants 
(mode photon-number means) as the ground truth and thus they also 
have the same total mean photon number centred at N = 125. Deliber-
ately matching the first moments exactly to the ground truth ensures 
that we give our adversaries fair conditions to spoof our experiment. 
However, their second-order cumulants, defined between mode i and 
mode j as C n n n n= ⟨ ⟩ − ⟨ ⟩ij i j i j  with ni the photon number in mode i, are 
different. We calculate the distribution of all Cij obtained experimentally 
and compare the result with those obtained from theoretical predic-
tions and different adversaries, as shown in Fig. 4b. These cumulants 
can be calculated efficiently. Overall, it is clear that the statistics of 
experimental samples diverge from the adversarial hypotheses con-
sidered and agree with the ground truth of our device (as seen in the 
top left panel of Fig. 4b) where they cluster around the identity  
line at 45°.

Unlike earlier experiments1,2 in which more than half of the input 
ports of the interferometer are empty, in this current work every 
input port of the time-domain interferometer is populated with a 
squeezed state. This property indicates that the third- and fourth-order 
photon-number cumulants with no modes repeated are extremely small 
(≈10−6) in our ground truth. The greedy spoofer we implemented using 
first- and second-order cumulant information automatically produces 

third-order cumulants on the order of 10−5, and thus no extra gain can 
be attained by using a greedy algorithm with third-order correlations, 
as they are well explained using only single-mode and pairwise correla-
tions. Note that the difference between the ground truth cumulants 
and the ones from the greedy samples are more than accounted for 
by finite size statistics.

For Gaussian states undergoing only common loss (including the 
special case of lossless GBS), it is straightforward to show that the 
third-order photon-number cumulants involving any three distinct 
modes are all strictly zero. Thus, the fact that significant third- and 
fourth-order cumulants are observed in refs. 1,2 is simply a reflec-
tion of the fact that most of their inputs are vacuum and that their 
experiment lacks photon-number resolution. The latter observation 
could in principle be exploited by a classical adversary to speed up 
the simulation of GBS with mostly vacuum inputs because strategies 
exist to speed up the simulation of GBS when the number of input 
squeezed states is fixed and is a small fraction of the total number 
of photons observed. These strategies used the fact that hafnians of 
low-rank matrices32,33 can be calculated faster than hafnians of full 
rank matrices of equal size. For our system, the matrices needed for 
simulation are all full rank as every input is illuminated with squeezed 
light.

Finally, note that in Fig. 4b, we do not compare against the cumu-
lants of the greedy sampler. These are, by construction, very close to 
the ground truth (see details in Supplementary Information). But for 
the brightnesses for which one calculates cross entropy, they do not 
perform as well as the samples from our machine.

In the experimental distribution of the total photon number in 
Fig. 4a, the outcome with the highest probability is N = 124.35 ± 0.02 
and the distribution has significant support past 160 photons as 
shown in the inset. The best-known algorithm to simulate GBS30,34 
scales with the total number of modes and the time it takes to calcu-
late a probability amplitude of a pure-state GBS instance. Thus we 
can estimate the time it would take to simulate a particular sample 
S = (n1, …, nm) in Fugaku, the current most powerful supercomputer 
in the world35, to be
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Fig. 4 | Quantum computational advantage. a, Measured photon statistics of 
106 samples of a high-dimensional Gaussian state compared with those 
generated numerically from different hypotheses. The inset shows the same 
distribution in a log scale having significant support past 160 photons, up to 
219. b, Scatter plot of two-mode cumulants Cij for all the pairs of modes 
comparing experimentally obtained ones versus the ones predicted by four 
different hypotheses. A perfect hypothesis fit (shown in plot) would 
correspond to the experimentally obtained cumulants lying on a straight line 
at 45° (shown in plot). Note that the ground truth is the only one that explains 
the cumulants well. Moreover, to make a fair comparison all the hypothesis 
have exactly the same first-order cumulants (mean photon in each mode).  
c, Distribution of classical simulation times for each sample from this 
experiment, shown as Borealis in red and for Jiuzhang 2.0 in blue2. For each 

sample of both experiments, we calculate the pair (Nc, G) and then construct a 
frequency histogram populating this two-dimensional space. Note that 
because the samples from Jiuzhang 2.0 are all threshold samples they have 
G = 2, whereas samples from Borealis, having collisions and being 
photon-number resolved, have G ≥ 2. Having plotted the density of samples for 
each experiment in (Nc, G) space, we indicate with a star the sample with the 
highest complexity in each experiment. For each experiment, the starred 
sample is at the very end of the distribution and occurs very rarely; for Jiuzhang 
2.0 this falls within the line G = 2. Finally, we overlay lines of equal simulation 
time as given by equation (4) as a function of Nc and G. To guide the eye we also 
show boundaries delineating two standard deviations in plotted distributions 
(dashed lines).
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where the collision parameter is G n= (∏ ( + 1))i
M

i
N

=1
1/ c, ni is the number of 

photons in the ith mode and Nc is the number of non-zero detector out-
comes. We estimate cFugaku = cNiagara/122.8 from the LINPACK benchmark 
(a measure of a computer’s floating-point rate of execution) ratio of 
floating operations per second measured on Fugaku and Niagara5 found 
cNiagara = 5.42 × 10−15 s from which we get cFugaku = 4.41 × 10−17 s. Finally, we 
take M = 216 for both our system and the experiment in ref. 2. This 
assumption slightly overestimates the time it takes a supercomputer 
to simulate the experiment of ref. 2, as it has two-thirds the number of 
modes of the largest Borealis instance we consider but simplifies the 
analysis.

Equation (4) captures the collision-free complexity of the hafnian of 
an N × N matrix of O N( 2 )c

N3 /2c   because in that case G = 2. For the purposes 
of sampling, a threshold detection event that in an experiment can be 
caused by one or many photons, can always be assumed to have been 
caused by a single photon, thus threshold samples have the same com-
plexity as in the formula above with G = 2 (ref. 30), which is quadratically 
faster than the estimates in refs. 1,2,36. One could hope that tensor net-
works techniques37 could speed up the simulation of a circuit such as 
the one we consider here, but this possibility is ruled out in ref. 5 where 
it is shown that, even when giving tensor network algorithms effectively 
infinite memory, they require significantly more time than hafnian 
based methods to calculate probability amplitudes.

On the basis of these assumptions we estimate that, on average, 
it would take Fugaku 9,000 years to generate one sample, or 9 bil-
lion years for the million samples we collected from Borealis. Using 
the same assumptions, we estimate that Fugaku would require 1.5 h, 
on average, to generate one sample from the experiment in ref. 2, or 
8,500 years for the 50 million generated in their experiment. In Fig. 4c, 
we plot the distribution of classical runtimes of Fukagu for each sample 
drawn in the experiment, and show the sample with the largest runtime 
as a star. For comparison, we also compare to the highest brightness 
experiment from Jiuzhang 2.0 (ref. 2). The regime we explore in our 
experiment is seven orders of magnitude harder to simulate than pre-
vious experiments and, moreover, we believe it cannot be spoofed by 
current state-of-the-art greedy algorithms or classical-Gaussian states 
in cross entropy.

Discussion and outlook
We have successfully demonstrated quantum computational advan-
tage in GBS using a photonic time-multiplexed machine. Unlike 
previous photonic devices used for such demonstrations, Borea-
lis offers dynamic programmability over all gates used, shows true 
photon-number-resolved detection and requires a much more modest 
number of optical components and paths. Among all photonic dem-
onstrations of quantum computational advantage–photonic or other-
wise–our machine uses the largest number of independent quantum 
systems: 216 squeezed modes injected into a 216-mode interferometer 
having three-dimensional connectivity, with up to 219 detected pho-
tons. Our demonstration is also more resistant to classical spoofing 
attacks than all previous photonic demonstrations, enabled by the 
high photon numbers and photon-number resolution implemented 
in the experiment.

The programmability and stability of our machine enables its deploy-
ment for remote access by users wishing to encode their own gate 
sequences in the device. Indeed, the machine can be accessed by such 
users without any knowledge of the underlying hardware, a key prop-
erty for exploring its use at addressing problems on structured, rather 
than randomized data. Furthermore, besides demonstrating variable 
beam-splitting and switching (both in the loops and demultiplexing  
system), the successful use in our machine of several phase-stabilized 

fibre loops to act as effective buffer memory for quantum modes is a 
strong statement on the viability of this technique, which is a require-
ment in many proposed architectures for fault-tolerant photonic 
quantum computers9–11,38. Our demonstration thus marks a significant 
advance in photonic technology for quantum computing.
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Methods

Optical circuit
The input of the interferometer is provided by a single optical paramet-
ric oscillator (OPO), emitting pulsed single-mode squeezed states at a 
6 MHz rate that are then sent to three concatenated, programmable, 
loop-based interferometers. Each loop contains a VBS, including a 
programmable phase shifter, and an optical fibre delay line acting as a 
buffer memory for light, and allows for the interference of modes that 
are temporally adjacent (τ = (6 MHz)−1), or separated by six or 36 time 
bins (6 τ or 36 τ) in the first, second and third loop, respectively. Optical 
delays provide a compact and elegant method to mediate short- and 
long-range couplings between modes. The high-dimensional Gauss-
ian state generated for this experiment can be visualized, as depicted 
above the three loops in Fig. 1, using a three-dimensional lattice repre-
sentation. Given a lattice of size a = 6, where a is the number of modes 
separating two interacting pulses in the second loop, one can form a 
cubic lattice by injecting M = a3 = 216 squeezed-light pulses into the 
interferometer.

Owing to the use of a single time-multiplexed squeezed-light source, 
all temporal modes are, to very good approximation, indistinguishable 
in all degrees of freedom except time signature, and passively phased 
locked with respect to each other; the squeezer is driven by pump pulses 
engineered to generate nearly single-temporal-mode squeezed-light 
pulses on a 6 MHz clock. Spatial overlap is ensured by using single-mode 
fibre coupling at the entrance and exit of each loop delay, and samples 
are collected using an array of photon-number resolving (PNR) detec-
tors based on superconducting transition-edge sensors (TES) with 
95% detection efficiency39,40. These samples consist of 216 (integer) 
photon-number measurement outcomes for as many modes. To bridge 
the gap between the 6 MHz clock, chosen to maintain manageable fibre 
loop lengths, and the slower relaxation time of the TES detectors, a 
1-to-16 binary-tree switching network was used to partially demultiplex 
the pulse train after the loops and before the detectors.

Experimental challenges
Despite the simple conceptual design of Borealis (Fig. 1), building a 
machine capable of delivering quantum computational advantage in 
a programmable fashion using photonics, in a large photon-number 
regime, required solving considerable technological hurdles that were 
previously outstanding. These include: (1) lack of PNR-compatible 
single-mode squeezed-light sources and non-invasive phase stabi-
lization techniques requiring bright laser beams, (2) slow PNR reset 
times that would necessitate unfeasibly long fibre loops and (3) lack 
of sufficiently fast and low-loss electro-optic modulators (EOMs) pre-
venting programmability. Our solutions to these challenges for this 
work are, respectively, (1) the design of a bright and tunable source 
of single-mode squeezed states and phase stabilization techniques 
(OPO and interferometer) using locking schemes compatible with 
PNR detectors, (2) active demultiplexing to increase the effective rate 
of PNR acquisition by a factor of 60, compared to previous systems40, 
by constructing a low-loss 1-to-16 binary switch tree and developing 
new photon-number extraction techniques and (3) the use of new, effi-
cient and fast customized EOMs (QUBIG GmbH) that enable arbitrary 
dynamic programming of photonic gates with low loss and high speeds. 
The success of this experiment also relies on a robust calibration rou-
tine, accurately extracting all experimental parameters contained 
in the transfer matrix T and the squeezing parameters r that define 
each GBS instance. We describe each of these advances in the follow-
ing sections. Other details pertinent to the apparatus can be found in 
the Supplementary Information.

With further fabrication and device optimization, the raw operational 
speed of PNR detectors can be increased, eliminating the need for the 
demultiplexer (demux) and associated losses (roughly 15%). Improve-
ments to the filter stack (20% loss) would also considerably increase 

performance. Several paths thus exist to even further increase the 
robustness of our machine against hypothetical improved classical 
adversaries. In addition, in trial runs we have extended the number of 
accessible modes to 288 (see Supplementary Information) without any 
changes to the physical architecture, and expect further scalability in 
this number to be readily achievable by improving the long-time sta-
bilization of the device. Such scaling will place the device even further 
ahead of the regime of classical simulability and potential vulnerability 
to spoofing.

For applications requiring a universal interferometer, a recircula-
tion loop long enough to accommodate all 216 modes could be imple-
mented41, replacing any two of the three existing loops. The remaining 
existing loop would be nested in the larger 216-mode loop, allowing 
repeated application of the remaining VBS to all 216 modes, albeit at 
the cost of higher losses.

Pulsed squeezed-light source
The main laser is an ultralow phase noise fibre laser with a sub-100 Hz 
linewidth centred at 1,550 nm, branched out into different paths. To 
prepare the pump, in one path pulses are carved using a 4 GHz lithium 
niobate electro-optic intensity modulator. It is then amplified and 
upconverted to 775 nm using a fibre-coupled MgO:LN ridge waveguide. 
The resulting pump is a 6 MHz stream of 3-ns-duration rectangular 
pulses with an average power of 3.7 mW. Squeezed-light pulses are 
generated in a doubly resonant, phase-stabilized hemilithic cavity42 
comprising a 10-mm-long plano-convex potassium titanyl phosphate 
crystal with its temperature stabilized at 32.90 °C using a Peltier ele-
ment, for optimal Type-0 phase matching (Supplementary Informa-
tion). All spectral side bands of the OPO cavity, around the degenerate 
frequency band, are suppressed by more than 25 dB using a pair of fibre 
Bragg gratings (0.04 nm bandwidth at 0.5 dB), one in reflection and the 
other in transmission (more details in Supplementary Information).

Programmable photonic processor
A train of single-mode squeezed vacuum pulses is emitted by the OPO, 
coupled into a single-mode fibre and directed towards the program-
mable photonic processor consisting of three loop-based interferom-
eters in series, as shown in Fig. 1. Each loop = 0, 1, 2ℓ  is characterized 
by a VBS with transfer matrix
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where each phase ϕk = [−π/2, π/2] and αk = [0, π/2] can be programmed 
independently, ℓμ  is a phase offset associated with each loop and ηℓ 
is the energy transmittance coefficient associated with one complete 
circulation in loop ℓ. The time delay experienced in the first loop is 
τ = 1/(6 MHz), equals the delay between two consecutive squeezed- 
light pulses, whereas the second and third loops have 6 τ and 36 τ 
time delay, respectively. The transmittance tk of a VBS with parameter 
αk is given by tk = cos2αk. For tk = 1 all the incoming light is directed into 
the fibre delay, whereas the light entering the VBS from the fibre delay 
is fully coupled out. The output of the last loop is coupled into a 
single-mode fibre and directed towards the final sampling stage of 
the experiment.

All three loops are independently phase stabilized using a 
counter-propagating laser beam, piezo transducers and lock-in tech-
niques. To avoid stray light from reflections of this beam towards the 
detectors, we alternate between measurement (65 μs) and phase 
stabilization of the loops (35 μs), leading to a sampling rate of 10 kHz. 
The estimated phase noise (standard deviation from the mean) inside 
the interferometer is 0.02, 0.03 and 0.15 rad for the first, second 
and third loops, respectively, as measured with classical pulses.  



We carefully reduced mode mismatch throughout the entire inter-
ferometer: spatial overlap is ensured using single-mode fibres, with 
coupling efficiencies >97%, and the length of each loop delay is care-
fully adjusted to have >80% classical visibility between 250-ps-long 
classical pulses, which gives >99% temporal overlap for the squeezed 
states.

Connectivity
The programmable time-domain multiplexed architecture imple-
mented here and introduced in ref. 5 generates sufficiently connected 
transmission matrices (in which two-thirds of the entries of the  
matrix are non-zero) to furnish a high level of entanglement between 
the modes (we estimate the log negativity between modes  
0…i−1 and i…216 for the ground truth to be on average 5.96 for 
i ∈ {36, 72, 108, 144, 180}), while keeping losses sufficiently low (with 
transmission above 33%). This is not the case for other architectures 
in which one either has to give up programmability1,2 or suffer steep 
losses that, in the asymptotic limit of many modes, render the sampling 
task roughly simulable as the loss scales exponentially with the system 
size31. In a universal programmable interferometer each mode passes 
through several lossy components (with transmission ηunit) propor-
tional to the number of modes. For the interferometers considered 
here, each mode sees a fixed number (six) of beamsplitters in which 
the loss is dominated by the transmission of the largest loop. If the 
shortest loop, which accommodates only one mode, has transmission 
ηunit then the largest loss is given by ηunit

36 , which should be contrasted 
with ηunit

216  for a universal interferometer. Whereas we sacrifice some 
connectivity, the many-mode entanglement predicted in our ground 
truth (logarithmic negativity43 of 6.08 when splitting the modes of the 
ground truth between the first and last 108) is comparable to the one 
found in Gaussian state prepared using a random Haar-interferometer 
with a comparable net transmission and brightness (for which the 
logarithmic negativity across the same bipartition is 15.22). For the 
largest experiment considered below, the net transmittance is around 
33%. As discussed in the Methods, combined with the high brightness 
of our source averaging r ~ 1.1, places our experiment well beyond any 
attempt at a now-known polynomial-time approximate classical  
simulation31.

Sampling of high-dimensional GBS instances
All temporal modes of our synthesized high-dimensional Gaussian 
states are sampled using superconducting TES allowing photon-number 
resolution up to 13 photons per detector in our data. Relaxation time 
of our TES, back to baseline following illumination, is of the order of 
10 to 20 μs corresponding to 50–100 kHz (ref. 40), and depends on the 
expected photon number. At this speed, the length of the shortest loop 
delay would be 2 km, leading to excessive losses and more challenging 
phase stabilization in our system. Thus our pulse train and thus process-
ing speed of 6 MHz, chosen to maintain manageable loop lengths, is too 
fast for a reliable photon-number extraction. To bridge the gap between 
the typical PNR speed and our processing speed, we use a demultiplex-
ing device allowing to speed up by effectively 16×, and to develop a 
postprocessing scheme, described below, for ‘tail-subtraction’ enabling 
operation of each PNR at 375 kHz.

The role of the demux, depicted as a binary tree in Fig. 1, is to reroute 
squeezed-light pulse modes from the incoming train into 16 separate 
and independent spatial modes, each containing a fibre-coupled 
PNR-TES detector. There are 15 low-loss resonant EOMs grouped in 
four different layers. EOMs in each layer have a preset frequency: 
one at 3 MHz, two at 1.5 MHz, four at 750 kHz and eight at 375 kHz. 
Each EOM is sandwiched between two polarizing beamsplitter and 
a quarter-waveplate at 45° in front. The modulators are driven by a 
standalone unit, generating several phase-locked sine wave signals 
temporally synchronized with the input train. The switching extinction 
ratio is measured to be above 200:1 for all modulators.

Several methods have been demonstrated to extract photon  
numbers from a PNR’s output voltage waveform, each with their own 
advantages44–47. Here we use a modified version of the method pre-
sented in ref. 47. First, each detector is calibrated using well separated 
pulses of squeezed light with a high mean photon number around n⟨ ⟩ ≈ 1 
and 500 × 103 repetitions. This gives enough high photon-number 
events to ensure that at least the 0 to 11 photon clusters can be identi-
fied using the area method. From each cluster, the mean shape of the 
waveforms is defined. To extract the photon-number arrays from 
experiment, the mean square distance between each waveform and 
the mean shape is estimated. The photon number is then assigned to 
the closest cluster. Because we operate the individual PNRs at 375 kHz, 
faster than the relaxation time (back to baseline following illumination), 
the tail of each pulse still persists when the next pulse arrives at the 
same PNR. To avoid these tails reducing photon-number extraction 
fidelity in a pulse, the mean shape for the identified previous photon 
number is subtracted. See Supplementary Information for details.

Estimation of the ground truth parameters
Given that all the squeezed states come from the same squeezer and 
the programmability of our system, we can parametrize and character-
ize the loss budget of our system using a very small set of parameters. 
The first set of parameters correspond to the relative efficiencies of 
the 16 different demux-detector channels, ηdemux,i for i ∈ {0, 1, …, 15}. 
The second parameter is simply the common transmittance ηC. Finally, 
we have the transmittance associated with a round-trip through each 
loop ηk for k ∈ {0, 1, 2}.

To characterize the first two parameter sets, namely the demux and 
common loss, we set all the loops to a ‘bar’ state (αk = π/2), preventing 
any light from entering the delays. As the input energy is the same, we 
can simply estimate the ratio of the transmittance of the different 
demux-detector channels as η η n n/ = /i j i jdemux, demux,

  where nj is the 
mean photon number measured in the detector j. Without loss of gen-
erality, we can take the largest of the ηdemux,i to be equal to one and assign 
any absolute loss from this and any other channel into the common 
loss ηC. To determine the common loss, we use the noise reduction 
factor (NRF), defined as48,49

n n

n n
NRF =

Δ ( − )

⟨ + ⟩
, (6)i j

i j

2

where ni and nj are the photon-number random variables measured in 
mode i and j, and we write variances as X X XΔ = ⟨ ⟩ − ⟨ ⟩2 2 2.

If losses can be considered as uniform, which is an excellent approx-
imation if we use only the loop with the shortest delay, it is straightfor-
ward to show that the NRF of a two-mode squeezed vacuum gives 
directly the loss seen by the two modes as NRFTMSV = 1−η. To prepare 
the two-mode squeezed vacuum we set our VBS matrix to be propor-

tional to 
i

i
1

1






 when the two single-mode squeezed pulses meet at the 

beamsplitter. To this end, we use the following sequence [t0 = 0, t1 = 1/2, 
t2 = 0], where, recall, we write ti = cos2αi to indicate the transmittance 
of a particular loop time bin i. We can now scan the controllable phase 
of the VBS, ϕk, and determine where the minimum occurs 
ϕ μ π( = mod )k

min
0 , and at the same time provide the relative offset in 

the first loop and the net transmittance of the setup. This observation 
can be used to obtain the phase offset of any other loop round-trip. 
Although in the current version of our system these are set by the lock-
ing system, they can in principle also be made programmable. The 
transmittance η = 1 − NRFTMSV = ηC × η0 × ηdemux is the product of the com-
mon transmittance ηC, the round-trip in the first loop η0 and the aver-
age transmittance associated with two demux-detector channels used 
to detect the two halves of the two-mode squeezed vacuum 
η η η= { + }i jdemux

1
2 demux, demux,

. From this relation, we can find
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η
η η

=
1 − NRF

×
. (7)C

TMSV

0 demux

This calibration depends on knowing the value of the round-trip 
transmittance factor associated with the first loop. To estimate the 
round-trip transmittance of a particular loop ℓ, we bypass the other 
loop delays and compare the amount of light detected when light 
undergoes a round-trip through a particular loop, relative to when all 
the round-trip channels are closed, that is, all loops in a ‘bar’ state. We 
obtain ηℓ, which we can then plug in equation (7) to complete the cali-
bration sequence.

Finally, having characterized the loss budget in the experiment, we 
can obtain the brightness and squeezing parameters at the source by 
measuring photon numbers when all the loops are closed and then 
dividing by the net transmittance. For any of the three regimes consid-
ered in the main text the standard deviation of the estimated squeezing 
parameters and mean photon numbers is below 1% of the respective 
means.

From the same data acquired above for a pair of modes, we calculate 
the unheralded second-order correlation

g
n n

n
=

⟨ ⟩ − ⟨ ⟩
⟨ ⟩

(8)i i

i

(2)
2

2

for each pair of temporal modes. When we attain the minimum NRF 
at ϕk = μ0, that is, when we prepare two-mode squeezed vacuum, it is 
easy to see that50

g
K

= 1 +
1

, (9)(2)

where K is the so-called Schmidt number of the source. This quan-
tifies the amount of spectral mixedness in the generated squeezed 
light. An ideal squeezed vacuum light source would yield g(2) = 2. We 
report K = 1.12 for g(2) = 1.89 for the dataset used in the large mode and 
photon-number regime.

Theory sections
Transfer matrix, T. The loop-based interferometer, as well as any other 
interferometer, can be described by a transfer matrix T that uniquely 
specifies the transformation effected on the input light. For our GBS 
implementation, this interferometer is obtained by combining three 
layers of phase gates and beamsplitters (two-mode gates), interfering 
modes that are contiguous, or separated by six or 36 time bins, which 
we write as

T η T B α ϕ= ⊗ ⊗ (VBS ( , )) (10)C d

D

i

M a

i i a
d

i idemux
=0

−1

=0

−

, +

d

d













where in our case D = 3 gives the number of loops, while a | =d
d∈{0,1,2}   

{1, 6, 36} with a = 6 gives the number of modes that each loop can hold. 
Bi i a, + d(VBS) is an M × M transfer matrix that acts like the VBS in the subspace 
of modes i and j = i + ad and like the identity elsewhere.

In the last equation, ηC is the common transmittance throughout 
the interferometer associated with the escape efficiency of the squeezer 
cavity and the propagation loss in common elements. Tdemux is a diago-
nal matrix that contains the square roots of the energy transmittance 
into which any of the modes are rerouted for measurement using the 
demux. Because the demux has 16 channels, it holds that 
T T η( ) = ( ) =i i i i idemux , demux +16, +16 demux,

. Finally, we set the phases of the 
VBS to be uniformly distributed in the range [−π/2, π/2] and the trans-
mittances to be uniformly in the range [0.45, 0.55]. This range highlights 

the programmability of the device while also generating high degrees 
of entanglement that are typically achieved when the transmittance 
is half.

In the idealized limit of a lossless interferometer, the matrix repre-
senting it is unitary, otherwise the matrix T is subunitary (meaning its 
singular values are bounded by 1). The matrix T together with the input 
squeezing parameters r defines a GBS instance. Squeezed states inter-
fered in an interferometer (lossy or lossless) always lead to a Gaussian 
state, that is, one that has a Gaussian Wigner function. Moreover, loss 
is never able to map a non-classical state (having noise in a quadrature 
below the vacuum level) to a classical state. Thus there exists a finite 
separation in Hilbert space between lossy-squeezed states and classical 
states. To gauge this separation, and how it influences sampling, we use 
the results from ref. 31 to show in the section ‘Regimes of classical simu-
lability’ that the probability distribution associated with the ground 
truth programmed into the device cannot be well-approximated by 
any classical-Gaussian state.

Similar to previous GBS experiments in which the ground truth 
to which a quantum computer is compared contains imperfections 
due to loss, we also benchmark our machine against the operation 
of a lossy unitary. In this more realistic scenario in which losses are 
included, the state generated at the output cannot be described by a 
state vector and thus one cannot assign probability amplitudes to an 
event. In this case, probabilities are calculated from the density matrix  
of the Gaussian state using the standard Born rule and then the  
probability of an N photon event is proportional to the hafnian of  
a 2N × 2N matrix.

Regimes of classical simulability. As a necessary but not sufficient 
test for beyond-classical capabilities of our machine, we consider the 
GBS test introduced in ref. 31. This test states that a noisy GBS device 
can be classically efficiently simulated up to error ϵ if the following 
condition is satisfied:

q

ηe η
esech

1
2

max 0, ln
1 − 2

+ 1 −
> . (11)D
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Here qD is the dark count probability of the detectors, η is the over-
all transmittance of the interferometer, r is the squeezing parameter 
of the M input squeezed states (assumed to be identical) and ϵ is a 
bound in the TVD of the photon-number probability distributions of 
GBS instance and the classical adversary. For our experiment, we esti-
mate an average transmittance of η = Tr(TT†)/M = 0.32, qD = 10−3, an 
average squeezing parameter of r = 1.10 and M is the total number of 
modes. With these parameters we find that the inequality above has 
no solution for ϵ ∈ [0, 1], meaning that our machine passes this 
non-classicality test.

Greedy adversarial spoofer. The greedy adversarial spoofer tries to 
mimic the low order correlations of the distribution and takes as input 
the k order, k ∈ {1, 2}, marginal distributions and optimizes a set of 
samples (represented as an array of size M × K) so as to minimize the 
distance between the marginals associated with this array and the ones 
associated with the ground truth. In a recent preprint Villalonga et al.3 
argue that, using a greedy algorithm such as the one just described, 
they can obtain a better score at the cross-entropy benchmark against 
the ground truth of the experiment in refs. 1,2 than the samples gener-
ated in the same experiment. We generalized the greedy algorithm 
introduced by Villalonga et al.3 to work with photon-number-resolved 
samples and find that it is unable to spoof the samples generated by 
our machine at the cross-entropy benchmark that we use for scoring 
the different adversaries. Details of the algorithm are provided in 
the Supplementary Information.
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