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The regulation of cell growth and division occurs in an accurate sequential manner. It is dictated by the accumulation of cyclins
(CCNs) and cyclin-dependent kinases (CDKs) complexes and degradation of CCNs. In human tumors, instead, the cell cycle is
deregulated, causing absence of differentiation and aberrant cell growth. Oncogenic alterations of CCNs, CDKs, and CDKIs have
been reported in more than 90% of human cancers, and the most frequent are those related to the G1 phase. Several molecular
mechanisms, including gene overexpression, chromosomal translocations, point mutations, insertions and deletions, missense and
frame shift mutation, splicing, or methylation, may be responsible for these alterations. The cell cycle regulators are involved in
tumor progression given their association with cancers characterized by higher incidence of relapses and chemotherapy resistance.
In the last decade anticancer drug researches focused on new compounds, able to target molecules related to changes in genes
associated with tumor status. Recently, the studies have focused on the restoration of cell cycle control modulating molecular
targets involved in cancer-cell alterations. This paper aims to correlate alterations of cell cycle regulators with human cancers and

therapeutic responsivity.

1. Introduction

The recent progress in the field of molecular medicine has
identified several molecular markers involved in the regula-
tion of the cell cycle as a target for prognosis and cancer treat-
ment. Cell cycle is deregulated in human tumors, causing the
absence of differentiation and aberrant cell growth [1-3]. The
cell cycle includes cell division, differentiation, growth, and
programmed cell death through apoptosis. The regulation
of this process involves environmental stimuli that lead to
the activation of cyclin-dependent serine/threonine kinases
(CDKs), regulated by cyclins (CCNs) and inhibitors of cyclin-
dependent kinases (CDKIs). The main phases regulated by
CDKs are the DNA integrity control checkpoints, mediated
by the retinoblastoma susceptibility gene suppressor (Rb), the
tumor suppressor gene TP53, and transcription factors of the
E2F family [4, 5].

So far nine CDKs and at least 15 CCNs have been identi-
fied [6-8]. The CDKs, proteins of 300 amino acids in length,

are activated by a no covalent binding with specific cyclins
triggering the transition between different phases of the cell
cycle. The formation of the complex CCN/CDK is usually
transient and is regulated by ubiquitin-mediated degradation.
The CDKs are negatively regulated by endogenous inhibitors
CDKIs. So far two families of inhibitors have been identified:
the p21 and the pl6 families. The p21 family includes p21/
CDKNIA, p27/CDKNIB, and p57/CDKNIC [9, 10]. The pl6
family includes p16/CDKN2A, p15/CDKN2B, p18/CDKN2C,
and p19/CDKN2D [9]. The p21 family members interact with
both CCNs and CDKs subunit, while members of the pl6
family interact only with the CDKs [7].

2. Cell Cycle Regulators

In Figurel, an overview of the mammalian cell cycle is
reported. The regulation of cell growth and division occurs
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in a precise sequential manner. It is dictated by the accumu-
lation of CDK/CCN complexes and degradation of CCN.
Quiescent cells in GO enter the Gl phase in response to
external stimuli, such as mitogenic growth factors, or on the
basis of internal needs. Cyclin D (CCND) binds to and
activates CDK4 and/or CDK6, depending on the cell type.
The complex CCND/CDK4 or CDK6 phosphorylates Rb. The
cyclin E (CCNE) binds to and activates CDK2, resulting in
phosphorylation of a different site on Rb. The E2F transcrip-
tion factors (EF1-EF5) dissociate from the hyperphosphoryl-
ated form of Rb to activate the transcription of genes that
promote S phase including the thymidylate synthase (TS), the
dihydrofolate reductase (DHFR), and the DNA polymerase
(POL) [11, 12]. From this point on, the cell has passed the
“restriction point” and becomes committed to the progres-
sion in the cell cycle and independent of growth factors.
CCNA and CCNE bind to CDK?2 allowing the cell to pro-
ceed through the S phase. The complex CCNA/CDK?2 facil-
itates the transition from the S phase to the G2 phase. The
complexes CCNB/CDKI1 accumulate in late G2 phase, neces-
sary for the progression of the cell through the M phase [13].
Following completion of anaphase, CCNB is degraded, thus
returning the cell to GI state, which, in the presence of stim-
ulation by growth factors, proceeds by successive cycles of
cell division. CDC25 (A, B, and C) are also required for the
activation of CDK complexes that control progression
through the cell cycle. Activation of CDKs can be achieved
through dephosphorylation by members of the CDC25 phos-
phatase family (CDC25A, CDC25B, and CDC25C). CDC25A
plays an important role at the G1/S-phase transition. CDC25B
undergoes activation during S phase and plays a role in
activating the mitotic kinase CDK1/CCNB in the cytoplasm.
Active CDKI/CCNB then phosphorylates and activates
CDC25C, leading to a positive feedback mechanism and to
entry into mitosis [14]. The repair of DNA damage or apop-
tosis occurs prevalently at checkpoint Gl1, while the integrity
of the synthesized DNA is examined at G2, to ensure the fidel-
ity of the replicated genome [15, 16]. The CDKs play an impor-
tant role in the regulation of these checkpoints. For example,
in response to various stress signals, TP53, a transcription
factor, is activated and causes the transcriptional induction
of CDKNIA and the cell cycle arrest at the GI1 checkpoint
[10]. The length of the individual phases of the cell cycle can
vary depending on the cell type and the particular conditions.
The activity of CDKs during the cell cycle is controlled at
multiple levels including the association with CCN, acti-
vating transient expression and rapid degradation of CCNs,
posttranslational modifications by kinases and phosphatases,
interactions with CDKIs, and intracellular translocations [9].

3. Cell Cycle in Cancer

Oncogenic alterations of CCNs, CDKs, CDKIs, and other
components of Rb pathway have been reported in more than
90% of human cancers [1, 2,17-40] as summarized in Table 1.

One of the most relevant alterations is represented by
the pl6 (CDKN2A)-CCNDs/CDK-Rb pathway frequently
altered in various types of cancers [41-43]. In solid tumors,
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FIGURE 1: The mammalian cell cycle. Cyclins and cyclin-dependent
kinases are referred to their specific phase of the cell cycle. Following
mitogenic signals that promote the cell entry in the GI phase,
the progression through the cell cycle is regulated by sequential
activation of cyclins and cyclin-dependent kinases.

there is a correlation between genetic alterations within this
pathway and clinical outcome in cancer patients [44]. Anom-
alies of CDKs and CCNDs are very frequent in the Gl phase.
Several molecular mechanisms may be responsible for these
alterations, including gene overexpression, chromosomal
translocations, point mutations, insertions and deletions, mis-
sense and frame shift mutation, splicing, or methylation.
CDKs are found overexpressed in several types of tumors,
including sarcoma, colon carcinoma, and lymphoma [45-
47]. CDK overexpression can be caused by gene amplification
[48], chromosome translocation, or point mutations [49]
that impair the kinase interaction with CDK inhibitors, as
the case for CDK4 in some melanoma patients [50]. CDK
activity can also be dysregulated by overexpression of the
cyclin partner or inactivation of CDK inhibitors, both events
being quite common in tumors [51, 52]. The lack of regulation
of CDKs by its inappropriate activation is essential for main-
taining the malignant transformation. Changes of CCNDI
gene expression have been reported in several neoplasias. In
particular, CCNDI gene is induced (transactivation) by var-
ious oncogenic signals including the activating mutation
of ras genes, src, and mitogen-activated protein kinases
(MAPK) [53, 54], as well as myc [55, 56]. Moreover, chromo-
somal aberrations involving CCNDI have been reported in
B-lymphocytic malignancy and multiple myeloma [57, 58].
CCNDI overexpression played a role in the pathogenesis of
mammary cancer in transgenic mice [59, 60] and lymphoma
[61]. The dysregulation of CCNE is associated with hyperpro-
liferation and malignant transformation [26]. Overexpres-
sion of CCNEI has been linked to endometrial hyperplasia
and/or carcinoma [25]. CCNEI is overexpressed in many
human tumors, in particular, breast cancer, and also nonsmall
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TABLE 1: Alterations of regulators of cell cycle, cyclins, cyclin-dependent kinases, and cyclins-dependent kinases inhibitors, prevalent in

human cancers.

Regulators of cell cycle Cycle phase or activity

Tumors

CCND1 Gl

CCND2 Gl

CCND3 Late GI, early S
CCNE Gl1/S

CCNBI1 G2/M

CCNA S/IG2

CDK2 Gl1/S

CDK4 Gl1/S

CDK6 Gl1/S

CDKN2B Inhibition of CDK4/CDK6
CDKN2A Inhibition of CDK4/CDK6
CDKNIA Inhibition of all CDKs
CDKNI1B Inhibition of all CDKs

Lymphoma (90%), breast (50%) and lung carcinoma (15%),
sarcoma (30%), hepatocellular carcinoma (20%), urothelial
carcinoma (14%), cervical carcinoma (24%)

CLL, colorectal carcinoma, lung carcinoma (20%)
Lymphoma (50%), retinoblastoma, urothelial carcinoma (11%)

Gastric and colorectal carcinoma, breast carcinoma, pancreatic
carcinoma, bladder carcinoma (50%)

Colorectal carcinoma, breast carcinoma, thyroid carcinoma (19%)
Breast carcinoma, hepatocellular carcinoma
Colorectal carcinoma

Melanoma, colorectal carcinoma, breast carcinoma, oral squamous
carcinoma (50%), cervical carcinoma (26%)

Glioma, melanoma, oral squamous carcinoma (40%)

ALL (35%), lung carcinoma (35%), melanoma, urothelial
carcinoma (23%)

Melanoma, glioma, breast carcinoma, nasopharyngeal carcinoma,
urothelial carcinoma (23%)

Melanoma, leukemia, colorectal carcinoma

Melanoma, breast carcinoma, colon carcinoma

cell lung cancer, leukemia, and others [62]. CCNE has been
found to be amplified, overexpressed, or both in some cases
of breast and colon cancer and in acute lymphoblastic and
myeloid leukaemia [63-65].

4. Clinical Implication of Cell
Cycle Dysregulation

4.1. Cell Cycle and Cancer Prognosis. The cell cycle regulators,
as CCNs and CDKIs, are involved in the mechanisms of
tumor progression. CCND is associated with higher inci-
dence of relapses in tumors of the head and neck [66] and
in chemotherapy resistance [67]. Tumors that overexpress
CCNDI generally have a poor prognosis [68-70]. Also over-
expression of CCNE has been reported to be a poor prog-
nostic factor in cancers of various organs [71-73]. Transgenic
mice overexpressing human CCNE spontaneously developed
mammary carcinoma [74]. CCNE overexpression correlates
well with the aggressiveness of breast cancer [75], with gastric
cancer progression [76], and is predictive of the risk of dis-
tant recurrence in the abdomen [77]. The inactivation of
endogenous inhibitors of p16 or p21 family, due to their muta-
tion/deletion or TP53-mediated changes, causes aberrant
activity of CDK and inactivation of Rb. The loss of CDKN2A,
CDKNIB, and CDKNIA is a predictor of poor prognosis
in several types of cancer [78-83]. The loss of CDKN2A
appears to be closely related to the functional inactivation of
CDKNIB, and assessment of CDKNIA status may be useful
for a precise prognostic prediction of individuals with HCC

expressing high levels of CDKNIB [84]. Hypermethylation of
CDKNIA promoter suppresses CDKN2A expression with a
subsequent poor prognosis in patients with esophageal squa-
mous cell carcinomas [85]. Loss of CDKNIB was associated
with poor prognosis in patients with Dukes’ B tumor or those
with proximal tumor [80] and in patients with pancreatic
cancer [81]. Tenjo et al. [82] observed that altered CDKNIB
expression was a predictor of poor prognosis for patients
with stage III colorectal cancers. Codeletion of CDKN2B/
CDKN2A genes is significantly related to the prognosis of
NSCLC patients, whereby detecting codeletion of both genes
might be used as a potential marker for NSCLC prognosis
[83]. The CDKN2A/CDKNZ2B deletion correlates with a high
risk of relapse or death in patients with ALL [86, 87]. Myelo-
dysplastic syndromes patients with CDKN2B gene methyla-
tion at diagnosis or in subsequent studies had a significantly
higher chance of disease progression to AML than those with-
out the gene methylation [88]. The CDKNIB protein nega-
tively regulates Gl progression by binding to G1 CCN/CDK
complexes and inhibits their activity, resulting in inhibition
of entry to the cell cycle. Reduced levels of CDKNIB occur in
several cancer types and are generally associated with poor
prognoses. For example, loss of CDKNIB has been revealed to
be an independent prognostic factor in breast, colon, and gas-
tric carcinomas [89, 90]. Gastric tumors with high CDKNI1B
were well differentiated, with low levels of invasion and lymph
node metastasis. CDKNIB-negative cases demonstrated a
poor prognosis [91]. Expression of CDKNIB is significantly
decreased in renal cell carcinoma (RCC) as compared with



TABLE 2: Cell cycle modulators and their molecular target optimal
therapeutic inhibitors.

Agent Target
Staurosporine CDK1, CDK2, CDK4
Flavopiridol CDKl, CDK2, CDK4, CCND
Butyrolactone CDKI, CDK2
Paullones CDK1, CDK2, CDK5
Indirubin CDK1, CDK2, CDK4, CDK5
Rapamycin CCND, CCNA
Olomoucine CDK1, CDK2, CDK5
Isopentenyladenine CDKI, CDK2

normal kidney tissue. Loss of CDKNIB expression is a risk
factor for disease recurrence and the strongest predictor of
cancer-specific survival [92].

The expression of CDKNIA gene acts as an inhibitor of
the cell cycle during G1 phase and is tightly controlled by the
tumor suppressor protein TP53. Normal cells generally dis-
play a rather intense nuclear CDKNIA expression. Loss of
CDKNIA expression has been associated with poor prognosis
in several carcinomas [93].

Recently, it has been demonstrated that microRNAs
(miRNAs), a class of small noncoding RNAs, control the reg-
ulators of cell cycle, modulating their gene expression. miR-
24 directly targets CDKNIB and CDKN2A in keratinocytes
and in different cancer-cell lines promoting their prolifera-
tion. It is involved in posttranscriptional regulation of CDKIs,
and its upregulation may play a role in carcinogenesis [94].
Several studies showed that CDKNIA could be regulated at
the translational level by miRNA such as miR-93, miR-20a/b,
miR-17, and miR-106a/b [95, 96]. Wu et al. have demonstrated
that CDNKIA can be directly targeted and modulated by
multiple miRNA molecules [97].

4.2. Cell Cycle and Therapeutics. Although chemotherapeutic
drugs save many lives, they are very toxic, nonselective,
and less effective than desired. In the last decade anticancer
drug researches focused on new compounds, able to target
molecules related to changes in genes associated with tumor
status. Recently, the studies have focused on the restoration
of cell cycle control modulating molecular targets involved
in cancer-cell alterations. Several potential strategies have
been proposed such as inhibition of CDKs, downregulation
of cyclins, overexpression of endogenous CDKIs, disruption
of the interactions CCN/CDK, altered proteolysis, degra-
dation of CCNs, and specific inhibition of tyrosine kinase
leading to activation of the cell cycle. In Table 2, several
compounds have been reported according to their molecular
targets. The response of the tumors to modulators of cell
cycle varies from simple cytostasis to cell death depending on
the concentrations used and the downstream result of the cell
cycle arrest. 7-Hydroxystaurosporine (UCN-01) has shown
antitumor activity against several human cancer-cell lines.
UCN-01 inhibits the cell cycle progression from the Gl to the
S phase and is associated with inhibition of cyclin-dependent
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kinase (CDK) activity and induction of CDKNIA. The combi-
nation of UCN-01 and tamoxifen results in augmented cyto-
toxicity and may have a potential clinical application in the
treatment of breast cancer [98]. Butyrolactone 1, inhibitor of
CDKI, accelerates CCNBI accumulation in G2/M of renal
cells which shifted to Gl phase without cell division [99].
Indirubin-3'-oxime (I3M), an indigo alkaloid, was found to
display potent antitumor activities on various types of cancer
cells. I3M increased the level of CDKNIB and reduced the
levels of CDK2 and CCNE in neuroblastoma cells, arresting
the cells at GO/GI phase [100]. Many indirubin derivatives
have been studied for their potential antisolid tumor activity
[101]. Despite years of research and attempts directed at inhib-
iting cell cycle kinases or cell cycle regulating transcription
factors, most of these approaches have not been successfully
translated to the clinic as cancer therapeutics [102].
However, the inhibition of CDKs is particularly attractive
from the standpoint of cancer given their key role in the cell
cycle. High throughput screening and drug design based on
the structure have produced several new compounds that
inhibit the activity of CDKs in very specific manner. Cyclin-
dependent kinases (CDKs) control cell cycle progression,
RNA transcription, and apoptosis, making them interesting
targets for anticancer drug development. A promising pyra-
zolo[1, 5-a] pyrimidine compound, devoid of ABC trans-
porter interaction, has been identified as a highly suitable
drug for further preclinical and clinical evaluation in cancer
treatment [103]. Tanshinone ITA (Tan-IIA) is one of the major
lipophilic components isolated from the root of Salviae Mil-
tiorrhizae radix. Chiu et al. [104] have explored the mecha-
nisms of cell death induced by Tan-IIA treatment in prostate
cancer cells in vitro and in vivo. The GO/G1 phase arrest corre-
lated with increase of CDK inhibitors (CDKN2A, CDKNIA,
and CDKNIB) and decrease of the checkpoint proteins
[104]. The effects of euphol, a tetracyclic triterpene alcohol
isolated from the sap of Euphorbia tirucalli, were examined in
T47D human breast cancer cells. Treatment of the cells
with euphol resulted in decreased cell viability, which was
accompanied by an accumulation of cells in the GI phase.
Euphol treatment downregulated CCNDI expression and the
hypophosphorylation of Rb. Furthermore, this effect was cor-
elated with the downregulation of CDK2 expression and the
upregulation of the CDKIs (CDKNIA and CDKNIB), as well
as reduced expression levels of CCNA and CCNBI [105].
Treatment options for hepatocellular carcinoma (HCC) using
chemotherapeutics at intermediate and advanced stages of
disease are limited as frequently HCC escape from therapy
and patients succumb to disease progression. The effective-
ness of the novel compounds BA-12 and BP-14 that antagonize
CDK1/2/5/7 and CDK9 has been studied in HCC patients,
since CDKs aberrant activation is frequently observed in
such patients. Inhibition of those CDKs in human HCC cell
lines reduced the clonogenicity, arresting the cells in S/G2 and
G2/M boundaries and inducing their apoptosis. In vivo, in
mouse xenograft, this treatment also inhibited tumor devel-
opment [106]. On the contrary, dysregulation of CDKNI1B,
due to proteolysis, frequently results in tumorigenesis. Novel
compounds that inhibited CDKNIB degradation have been
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identified. These compounds inhibit CDKN1B ubiquitination
in vitro as well as its degradation in cell cultures [107]. A
novel series of 2-substituted-6-biarylmethylamino-9-cyclo-
pentylpurine derivatives has been synthesized and screened
for improved CDK inhibitory activity and antiproliferative
effects. One of the most potent compounds, 6b, exhibited
strong cytotoxicity in the human melanoma cell line G361
that correlated with robust CDK1 and CDK2 inhibition and
caspase activation [108]. Decorin, a component of extracel-
lular matrix, has been involved in the inhibition of cell pro-
liferation upregulating CDKNIA and reactivating CDKNIC
expression in HepG2 tumor cells [109]. CDK inhibition
may be particularly successful in hematologic malignancies,
which are more sensitive to cell cycling inhibition and apop-
tosis induction. In general, the antitumor efficacy of CDK
inhibitor as monotherapy is modest, and rational combi-
nations are being explored, including those involving other
targeted agents. While selective CDK4/6 inhibition might be
effective against certain malignancies, broad-spectrum CDK
inhibition will likely be required for most cancers [110]. A
specific inhibitor of CDK4/6 has been developed recently.
PD-0332991 proved to be effective in the treatment of breast
cancer [111]. dEMGEN, a novel genistein derivative, is a can-
didate for cancer therapy, arresting the cell cycle at Gl phase
with significant reduction of CDK4 and CCND1 protein
levels. This reduction is caused by CDKN2B, CDKNIA, and
CDKNIB level increase and the subsequent decrease of pro-
tein levels directly suppressed Rb phosphorylation and E2F1
activity [112]. Studies of drug combination showed that
flavopiridol potentiated the cytotoxicity induced by the
Raf inhibitor sorafenib. This potentiation correlated with
enhanced apoptosis and suppression of Rb signaling [113].
Recently the research of new targets for cancer therapy
focused on long noncoding RNAs (IncRNAs) that are involved
in the regulation of critical regulators of cell cycle, as CDKs,
CCNs, and CDKIs [114]. Human tumors generally exhibit
altered expression of miRNAs with oncogenic or tumor-
suppressive activity. miRNA-based cancer gene therapy offers
the theoretical possibility of targeting gene networks that are
controlled by a single, aberrantly expressed miRNA. In
experimental models, the restoration of tumor-suppressive
miRNA, or sequence-specific knockdown of oncogenic miR-
NAs by “antagomirs,” has produced promising antitumor out-
comes [115, 116].

All such data clearly show the relevance of such an
approach for cancer treatment and the need to identify the
appropriate combination with conventional anticancer ther-

apy.

5. Nonsteroidal Anti-Inflammatory Drugs as
Modulators of the Cell Cycle in Cancers

Nonsteroidal anti-inflammatory drugs (NSAIDs) are prima-
rily used as analgesics for the relief of pain and to control
inflammation [117]. NSAIDs inhibit cyclooxygenase (COX)
activity and the synthesis of prostaglandins, which are medi-
ators of inflammation. Numerous epidemiological, clinical,

and laboratory studies have also suggested that NSAIDs
inhibit the promotion and proliferation of some tumors [118-
120]. However, the antiproliferative activity of NSAIDs
requires concentrations that are 100- to 1000-fold higher
than the concentrations necessary to inhibit COX activity
[121]. Induction of COX-2-independent apoptosis has been
described in HT29 colon cancer cells. Apoptosis was induced
in these cells by the inhibition of 3-phosphoinositidedepend-
ent kinase 1 (PDK1) [122]. Moreover, apoptosis and a cell cycle
blockade were observed in HCT-15 colon carcinoma cells that
expressed only COX-1 (and not COX-2) [123]. NO-aspirin-
induced cell cycle arrest and apoptosis of pancreatic cancer
cells have been shown to occur via ROS-mediated mod-
ulation of all three MAP kinase signaling pathways and
their downstream effector molecules such as CDKNIA and
CCNDI [124]. Celecoxib has been shown to inhibit cancer
growth independently of COX-2 expression levels with a GO/
Gl cell cycle arrest and decreased levels of CCNA and CCNB1
or CCNDI depending on tumor type [125, 126]. NSAIDs
increased CDKNI1B by inhibiting protein degradation to sup-
press the proliferation of human lung cancer cells [127].
Salicylates inhibit the proliferation through upregulation of
the CDKNIB and CDKNIA. This was associated with a
decrease in CDK2 and to alesser extent in CDKG6 activity, thus
preventing hyperphosphorylation of Rb and cell cycle pro-
gression. Similar to salicylates, however, sulindac reduced the
proliferation rate of HT-29 colon carcinoma cells and caused
them to accumulate in the GO/G1 phase. This was associated
with reduced expression and reduced catalytic activity of
cyclin-dependent kinases (CDK1, CDK2, and CDK4) [128].
These data strongly suggest the need to use such molecules
as complementary therapeutic drugs besides their relevant
chemopreventive role.

5.1. Changes of the Cell Cycle Gene Expression Profile of Gastric
Cancer Cells in Response to Ibuprofen: An Anticancer Model.
The primary purpose of the studies performed in our labo-
ratory was to verify the antitumor effects of ibuprofen, a com-
monly used NSAID, on the MKN-45 human gastric cancer-
cell line [129], where an inhibitory effect of the ibuprofen on
cell proliferation was observed. These results were in agree-
ment with data obtained in vitro, using other tumor cell lines
[130, 131], as well as in vivo on xenografts of MKN-45 cells
[132]. Ibuprofen was used at concentrations ranging between
400 and 800 uM, and the cell proliferation rate was signifi-
cantly reduced in a time- and concentration-dependent man-
ner. Previous studies showed that concentrations of ibuprofen
comparable to those used in our studies targeted a wide
variety of cellular processes [122, 133-135]. Moreover, they
suggested the existence of other targets or COX-independent
mechanisms that could be responsible for the antiprolifera-
tive effects of ibuprofen. Our data have shown that ibuprofen
is involved in the cell cycle, arresting the cells in active rep-
lication at the GO/G1 phase. Ibuprofen treatment, in fact,
caused MKN-45 cells to shift from the S and G2/M phases
to the GO/GI phase, resulting in a significant accumulation of
cells at the resting phase, as previously reported on different
cell lines [133, 136-138]. The cell cycle changes caused in
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MKN-45 cells by ibuprofen correlated with alterations in cell
cycle regulatory genes. The subsequent microarray analysis
revealed that ibuprofen treatment for 24h affected genes
belonging to “cell cycle” pathways (Table 3). At 24 h, most of
the altered genes were G1/S transition genes, such as CDC25,
CDKNIA, and TP53. CDC25, one of the key regulators of cell
cycle transition [139], with protooncogenic properties and
carefully regulated at multiple levels [140, 141], is downregu-
lated at all time points (since the 24 h testing) in presence of all
ibuprofen concentrations, including the lower 400 M dose.
CDKNIA gene, instead, is upregulated by more than 2-fold at
24 h, followed by downregulation at 72h. Its upregulation,
tightly controlled by TP53, is necessary to block cells in the G1
phase and allow the repair of damaged DNA before their
entry into the subsequent S phase. For such role CDKNIA
represents the key effector of p53-dependent GO/G1 phase
arrest in response to different stress stimuli [142]. TP53 levels
show a similar significant upregulation for the whole ibupro-
fen treatment period and to all tested doses, with a late upreg-
ulation likely associated with activation of apoptotic-related
genes. The upregulation of TP53 signaling pathways in the
first 24 h following ibuprofen treatment has been also shown
by a previous study [133]. TP53 signaling was activated early
(24h) as a result of intracellular modifications, likely asso-
ciated with oxidative stress, which would justify the ROS
increase, we observed. In parallel to TP53 upregulation and
cell cycle GO/GI arrest, several S-related genes are downreg-
ulated, particularly those expressing proteins and enzymes
involved in DNA replication. Regulation of S-phase-critical
genes is, therefore, an important component of GI1 progres-
sion to S. This coordinated regulation of S-phase genes is prin-
cipally controlled by the E2F family of transcription factors
[143]. Treatment with ibuprofen for 48 h at all concentrations
downmodulated S-phase-critical genes, including E2F1 as
well as the E2Fl-regulated genes, and treatment for 72h
showed a marked modulation of apoptosis-related transcripts
(Table 3). Moreover, the TP53-dependent GO/G1 arrest was
paralleled with an increase in the expression of the cell cycle
inhibitory protein CDKNI1A, whose induction is reported to
be transcriptionally upregulated by a TP53-dependent mech-
anism. Also the GADD45 gene was induced by activation of
the TP53-dependent pathway and likely contributed to elicit
growth arrest for an effective DNA repair, or alternatively to
induce apoptosis. The ineffective repair of cell damage, in fact,
prevalently triggered, in our model, an apoptotic program,
characterized by upregulation of caspase transcripts in the
latter stages of the ibuprofen treatment.

In conclusion, this study showed that the early alterations
of cell cycle regulatory genes and the later induction of apop-
tosis are the major mechanisms that account for the antipro-
liferative effects of ibuprofen on the MKN-45 human gastric
cancer-cell line. Treatment with ibuprofen altered the cell
cycle phase distribution by inhibiting the G1/S transition. The
GO/Gl arrest was associated with a decrease in the expression
of cyclins and cyclin-dependent kinases and an increase of
TP53 and CDKNIA, along with downregulation of transcripts
encoding enzymes involved in DNA precursor synthesis and
the DNA replication system. The prolonged ibuprofen treat-
ment and the ineffective repair of damaged cells resulted in

BioMed Research International

the late upregulation of caspase transcripts with the conse-
quent activation of an apoptotic program.

Despite the high doses of ibuprofen required to elicit the
apoptotic effects reported in our studies, the implicated
molecular mechanisms suggest that NSAIDs, such as ibupro-
fen, may be of benefit in the treatment of cancers, particularly
as local treatment.

6. Conclusions

Several molecules and their pathways involved in the regu-
lation of the cell cycle are currently considered as promising
prognostic biomarkers and target for cancer treatment. This
has been made possible by recent advances in molecular
genomic and proteomic technologies. Characterization of the
cell cycle pathways present in specific cancers will contrib-
ute to improving diagnosis and cancer staging, prognostic
evaluation of cancer patients, and optimal combinational
approaches for innovative, personalized treatment strategies.
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