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Abstract

The tiny encryption algorithm (TEA) is widely used when performing dissipative particle

dynamics (DPD) calculations in parallel, usually on distributed memory systems. In this

research, we reduced the computational cost of the TEA hash function and investigated the

influence of the quality of the random numbers generated on the results of DPD calculations.

It has already been established that the randomness, or quality, of the random numbers

depend on the number of processes from internal functions such as SHIFT, XOR and ADD,

which are commonly referred to as “rounds”. Surprisingly, if we choose seed numbers from

high entropy sources, with a minimum number of rounds, the quality of the random numbers

generated is sufficient to successfully perform accurate DPD simulations. Although it is well

known that using a minimal number of rounds is insufficient for generating high-quality ran-

dom numbers, the combination of selecting good seed numbers and the robustness of DPD

simulations means that we can reduce the random number generation cost without reducing

the accuracy of the simulation results.

Introduction

Particle-based simulation methods are powerful tools with which to study microscopic sto-

chastic systems. In order to make valid comparisons with experimental data, large-scale simu-

lations are often required. Typically, this entails the simulation of large numbers of particles.

Although this can be costly in terms of computational resources, the rapid development of

faster and more efficient hardware such as many-core computers or graphic processing units

(GPUs), coupled with new and improved calculation methods, permits us to perform such

large-scale simulations. For Example, Ayuba et al. simulated systems composed of more than

100 million particles [1] using a many-core computer and an application called the Framework

for Developing Particle Simulator (FDPS) [2], which allows performance optimisation of parti-

cle-based simulations on such hardware.

The use of coarse-grained (CG) methods is also an effective way to perform large-scale sim-

ulations. One such method is dissipative particle dynamics (DPD) [3–5]. Due to the broad

applicability of this method, it has seen use for the simulation of polymers, [6–10] biological
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membranes, [11–14] colloids, [15–18] and other complex materials [19–22]. The future pros-

pects and potential of DPD were discussed recently by Español and Warren [23].

A parallelised version of the DPD algorithm has been incorporated into a publicly available

simulation code [24–26]. The result of this is that computationally efficient DPD simulations

are now much more accessible to researchers. On the other hand, generating random numbers

for parallel calculations is a non-trivial problem and has often been the topic of discussions in

this area [27–31]. What makes this particularly difficult for DPD calculations is that the same

pair-wise random forces are required for each pair of interacting particles. This presents a

problem when particles may be allocated to different computational nodes. Since the random

number used should be the same for both nodes, communication between nodes is required

and this can cause a significant decrease in computational efficiency. To address this issue,

Phillips et al. [32] employed a hash-based random number generator using the tiny encryption

algorithm (TEA) [33] for their DPD calculations. Further to this, the effects of different

PRNGs including TEA for parallel DPD simulations were considered by Nguyen and Plimp-

ton [34]. Based on these ideas, more efficient random number generation methods have subse-

quently been developed [24, 35]. Here, we focus on the use of the TEA method since it is easier

to adjust the calculation speed and the quality of the random numbers generated. The proper-

ties of these random numbers and the calculation cost of the TEA was evaluated by Zafar et al.

[31] and they suggested that the number of rounds, which is the number of repetitions of the

round function in the TEA, should be at least 8. This recommendation was made with consid-

eration of the balance between calculation cost and the randomness of the generated random

numbers, which we shall refer to here as their quality.

We question if it is indeed necessary to go to such lengths to ensure that the random num-

bers used in DPD simulations are of sufficiently high quality. We also suggest an easier and

more efficient source for TEA seeds, which are usually taken from the number of steps, the

particle ID, or the first 11 bits of the mantissa of the three-dimensional particle velocity com-

ponents [24]. In this paper, we use the relative distance between particle pairs as seed numbers

and investigate the usage of the TEA with fewer than 8 rounds. For DPD simulations per-

formed with the TEA, we looked at how the quality of the randomly generated numbers

changes as the number of rounds decreases. This was done by checking only the uniformity

and correlations in successive steps. By measuring these two properties we were able to evalu-

ate the randomness, or quality, of the random numbers produced. Further to this, we also

applied the NIST test sets to provide additional validation to our findings.

We also studied, in detail, how the number of rounds effects several of the physical proper-

ties one may measure from systems simulated using DPD. As a result, it was shown that using

our method, such simulations can be performed without errors or reduced accuracy, even if

the number of rounds is set to the minimum value, i.e. 1. This implies that further speedup is

possible. In our code, to check how much greater the computational cost of the random force

is when compared to the computational cost for other conservative and dissipative forces, we

calculated interaction forces for every particle pair regardless of whether they were inside or

outside the cut-off radius. Finally, the generation of random numbers by the TEA with 8

rounds accounts for 40% of the total calculation time. Reducing the number of rounds cuts the

random number generation cost to 1/8, yielding an overall simulation speed increase factor of

1.5. In the verification simulations, we fixed the number of particles allocated to each node.

We make the assumption that by keeping the particle-to-node ratio constant we will be able to

simulate larger systems without an increase in simulation time, simply by the addition of fur-

ther nodes and the use of parallel computation. To test our method we examined whether the

random numbers produced are distributed uniformly and to verify that there are no correla-

tions between the random numbers. For the method which meets these two requirements, we
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also perform further validation checks using the NIST test sets. Next, we compared tempera-

ture, velocity distributions, mean square displacements and radial distribution functions of the

DPD system using our method to those obtained using one of the most popular random num-

ber generators, the Mersenne Twister [36]. We believe this constitutes a good benchmark for

comparison as the Mersenne Twister is renown for its high degree of randomness and compu-

tational efficiency. However, the Mersenne Twister is not always suitable for use with distrib-

uted memory systems that do not share memory between nodes, and this is where the TEA

method has an advantage.

To conclude our simulations, we also apply our method to a biomembrane system and per-

form a similar comparison. This is done in order to demonstrate the wider applicably of the

proposed random number generation method beyond that of a pure water simulation.

In the results and discussion section, we review our conjecture that the quality of the ran-

dom numbers produced via our method is sufficient and that a DPD-water system, as well as

membrane systems, can be simulated accurately using TEA calculations with only a single

round. This implies two things: the seed numbers we select for our DPD calculations already

possess a high degree of randomness; and selecting highly random seed numbers will help us

to generate random numbers which themselves have an even higher degree of randomness,

such that they produce accurate results when used in DPD simulations. In this research, we

propose an improvement to the random number generation method used in the DPD method

in a parallel computing environment. This work will, therefore, form the basis for more effi-

cient DPD simulations in the future.

Methods

Dissipative particle dynamics

In DPD simulations, groups of several molecules are represented by single-site particles. The

time evolution of the interacting coarse-grained particles is governed by Newton’s equation of

motion. In our simulations particle masses are set to 1. The force is composed of three terms,

f
i
¼
X

jð6¼iÞ

ðFC
ij þ FD

ij þ FR
ijÞ; ð1Þ

where FC
ij is the conservative force, FD

ij is the dissipative force and FR
ij is the random force. The

conservative force is expressed using a soft potential as follows,

FC
ij ¼

� aij 1 �
rij
rc

� �
eij ðrij � rcÞ

0 ðrij > rcÞ;

8
><

>:
ð2Þ

where rij = rj − ri, rij = |rij| and eij = rij/rij. Here, aij is a parameter which describes the maximum

repulsion between particle i and particle j, and rc is the cutoff distance. The dissipative and ran-

dom forces are given by

FD
ij ¼

(
� goDðrijÞðeij � vijÞeij ðrij � rcÞ

0 ðrij > rcÞ
ð3Þ

and

FR
ij ¼

(
soRðrijÞzijDt�

1
2eij ðrij � rcÞ

0 ðrij > rcÞ;
ð4Þ
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respectively, where vij = vj − vi, γ is the friction parameter, σ is the noise parameter, Δt is the

size of a time step and ωD and ωR are r-dependant weight functions which we take as

oDðrijÞ ¼ ½oRðrijÞ�
2
¼

1 �
rij
rc

� �2

ðrij � rcÞ

0 ðrij > rcÞ:

8
><

>:
ð5Þ

Here, zij is a random variable with a Gaussian distribution. However, in DPD simulations, it

has been found that uniformly distributed random variables can be also used [5]. In testing, we

also can confirm that it is the case that both distribution types give the same results when used

in DPD simulations. The dissipative force FD
ij and the random force FR

ij act as a thermostat in

DPD simulations. Therefore the friction parameter and the noise parameter are connected by

the fluctuation-dissipation theorem as follows

s2 ¼ 2gkBT; ð6Þ

where kB is the Boltzmann constant and T is the temperature.

In order to establish a baseline for comparisons for our DPD simulations, and to evaluate

the performance of the modifications we make, we selected a simple test system. The details of

which are discussed later in this paper.

Tiny encryption algorithm

The tiny encryption algorithm (TEA) was developed by David Wheeler and Roger Needham

[33]. The TEA is shown in Algorithm 1. n is the number of rounds, x0 and x1 are plain text

strings, which will be encrypted, the constant delta is a binary representation of the golden

ratio, as specified by the original TEA, and k0, k1, k2 and k3 are the encryption keys, which we

set as k0 = 3, k1 = 4, k2 = 5 and k3 = 6.

Algorithm 1 The Tiny Encryption Algorithm
function TEA(n, x0, x1)
sum = 0
for n rounds do
sum = sum + delta
x0 = x0 + XOR(SHIFTLEFT(x1, 4) + k0, SHIFTRIGHT(x1, 5) + k1, x1 +

sum)
x1 = x1 + XOR(SHIFTLEFT(x0, 4) + k2, SHIFTRIGHT(x0, 5) + k3, x0 +

sum)
endfor

endfunction
It has been reported that the TEA is superior to other hash functions for the generation of

random numbers in a parallel environment due to its low computational cost and high effi-

ciency [31]. Today, it is widely used in DPD simulations which utilise parallel computation

methods [24, 32]. The TEA is a Feistel type cipher that has a symmetric iterative structure.

Within each round of the TEA, several bit operations like XOR, ADD and SHIFT are used.

The quality of the random number produced by the algorithm depends on the number of

rounds. Zafar et al. [31] suggested that 8 round is optimal when one considers the avalanche

effect, which occurs after 6 rounds, and the results of NIST and DIEHARD tests. The TEA has

been utilised in prior DPD simulations. Phillips et al. [32] also used 8 rounds, while Tang et al.

[24] used 4 rounds, including preprocessing. In this paper, we check the accuracy of DPD sim-

ulations using two types of TEA for 1, 2, 3, 4, 5, 6, 8, 16 and 32 rounds. The first type is the

unmodified original TEA, with two 32-bit inputs and two 32-bit outputs (Algorithm 2). In our

DPD simulations, calculations are performed at 64-bit precision, so at the start of the TEA one
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64-bit seed is split into two 32-bit numbers which are the inputs for the TEA. The products of

the TEA are two new 32-bit random numbers, which are then subsequently combined to form

one 64-bit random number. The name we give this type of TEA is 32TEA(n:number of

rounds). We use the x component of relative particle-particle separation distance, which is

stored as a 64-bit number, as the 32TEA(n) seed number. The second type of TEA used in this

simulation study has two 64-bit inputs and two 64-bit outputs (Algorithm 3). No tuning was

performed for this algorithm and we use the same delta as was used in 32TEA(n). With this

type of TEA, we do not need to combine numbers together and so we obtain two random

numbers from each TEA calculation. The name we give to this type of TEA is 64TEA(n:num-

ber of rounds). We use the x and y components of relative particle-particle separation dis-

tances as the 64TEA(n) seeds numbers. It is not clear if 64TEA(n) will produce high-quality

random numbers, as it has also not been tested. The concern with 64TEA(n) is that there are

two input numbers and thus twice as many sources for possible correlation between successive

number generation iterations. So we have included it in our comparison in order to see how

DPD simulations are influenced by the input and output process of the algorithms used.

Algorithm 2 Encryption Algorithm by 32TEA(n)
union Uni
double SEED-NUMBER
unsigned int seed-number[2]
unsigned long long encrypted-number

end union
uni.SEED-NUMBER = distance
32TEAn(uni.seed-number[0], uni.seed-number[1])
rand = (double)uni.encrypted-number

Algorithm 3 Encryption Algorithm by 64TEA(n)
union Uni
double SEED-NUMBER[2]
unsigned long long encrypted-number[2]

end union
uni.SEED-NUMBER[0] = distanceX
uni.SEED-NUMBER[1] = distanceY
64TEAn(uni.SEED-NUMBER[0], uni.SEED-NUMBER[1])
rand0 = (double)uni.encrypted-number[0]
rand1 = (double)uni.encrypted-number[1]

Simulation conditions

Water system. To increase computational efficiency when performing large-scale simula-

tions, the system may be divided into multiple cells, using domain decomposition methods. If

the shortest length of a cell is set to be slightly larger than that of the cutoff distance, then each

node will perform calculations for a cell size of 1.5 × 1.5 × 1.5 and it will be responsible for

about 270 particles at a density of ρ = 3. Based on such considerations, we created systems con-

taining 256 particles of coarse-grained water and performed DPD calculations with a single

node. This also allows us to make a straightforward comparison with results obtained from

DPD simulations which use the Mersenne Twister for random number generation. For the

DPD parameters used in the current work, we referred to the paper by Groot and Warren [5].

Time evolution is calculated using a modified version of the velocity-Verlet algorithm with a

DPD algorithm parameter λ = 0.5 and a time step Δt = 0.04. The γ parameter, which is related

to dissipative forces, was set to 6.75. The cut-off radius rc = 1.0 and kB T = 1.0. The random

number generators used were 32TEA(1), 32TEA(2), 32TEA(3), 32TEA(4), 32TEA(6), 32TEA

(8), 32TEA(16), 32TEA(32), 64TEA(1), 64TEA(2), 64TEA(3), 64TEA(4), 64TEA(6), 64TEA

(8), 64TEA(16) and 64TEA(32). These generators were used together with the Box-Muller
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method [37] to produce random numbers with a Gaussian distribution. For comparison, we

also performed a series of separate simulations with uniformly distributed random numbers,

for which we did not use the Box-Muller method. Our motivation for doing this was because

Groot and Warren [5] reported that the results obtained from using uniformly distributed ran-

dom numbers are not appreciably different from those which use Gaussian random numbers.

Since the computational cost of uniform random number generation is lower, it should be

seen as the better method of the two, if the results are the same.

The time required for random number generation was compared for each of the random

number generation methods described above. Although the TEA method requires over 8

rounds to generate high-quality random numbers, we briefly checked two properties of these

random numbers. First, we examined whether the random numbers were uniformly distrib-

uted in the set interval. Second, we performed t-tests [38] to investigate whether there were

any correlations between successively generated random numbers. This check is necessary

since we know that there are correlations between the seed numbers, i.e. distances of particle

pairs in consecutive steps. We then performed additional checks to measure the randomness

of the generated numbers using the NIST test sets. Also, in order to confirm whether the ran-

dom force and the dissipation force work well as a thermostat, the velocity distribution of the

particles and temperature were investigated. Furthermore, the mean square displacement and

the radial distribution function were examined to confirm the dynamic and static properties of

the system.

Membrane system. To further demonstrate the validity of our approach, we tested the

applicability of this method to a more complicated system. The system consists of 108,000 par-

ticles, 17% of which are POPC lipids and the rest are water particles. Each parameter was cho-

sen to match those of a previous study [39]. These simulations were performed using parallel

computing with 32TEA(1) and 32TEA(32). A comparison between the results obtained using

these two algorithms is presented in the next section, along with our results from the previ-

ously described pure water simulations.

Results and discussion

Water system

To know the time required for the random number generation process, we generated many

random numbers (1.0 × 1011) and measured the time as shown in Fig 1. As expected, it was

found that the calculation cost is lower for a lower number of rounds for both 32TEA and

64TEA. In the paper of Zafar et al., [31] it was observed that as the number of rounds decreases

in 32TEA, the quality of the generated random numbers also becomes worse. Although We

already know that the properties of the generated random numbers are not as good as they

could be, we have evaluated the properties we expect to be the minimum necessary for use in

DPD simulation as follows.

First, we confirmed whether or not the generated random numbers are uniformly distrib-

uted. In one time-step, there will be close to (256 × 256 − 256)/2 = 32640 pairs in the cell, and

so, for the purposes of this test, we generated this many random numbers. We defined a null

hypothesis as “the 32640 randomly generated numbers be distributed uniformly within in the

section [0, 1]”. Then, we performed a χ2-test [40] for these random numbers to determine

whether the hypothesis is valid or not. In this case, we divided the section [0, 1] into 16 subsec-

tions and counted the number of random numbers which appeared in each subsection. If the

random numbers are indeed uniformly distributed, then approximately 2040 random num-

bers will appear in each subsection. A measure of uniformity can then be estimated by
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calculating A:

A ¼
Xn

i¼1

ðni � NÞ2

N
; ð7Þ

where n is the number of subsections which follows Sturges’ rule [41] i.e. 16, ni is the number

of random numbers generated in the ith subsection, and N is the theoretical expected fre-

quency i.e. 2040, as is explained above. It is known that A follows a χ2 distribution with n − 1

degrees of freedom. In order to test the null hypothesis, we may, therefore, compare A with the

value corresponding to a significance level of 1%.

Second, the relative particle-particle separation distances, which are used for TEA seeds, are

correlated because DPD particle positions are strongly dependent on the positions in the pre-

vious time-step, so, in our t-tests we observed a correlation between the random numbers gen-

erated in consecutive calculation steps, for specific particle-pairs. For this test, we used 9500

random numbers which were taken from a total of 10000 steps, excluding the first 500, and

defined a null hypothesis for the t-test as “the 9500 random numbers generated in consecutive

calculation steps are not correlated”. In our case, to check for sequential correlations in the

Fig 1. The required time to generate 1.0 × 1011 random numbers.

https://doi.org/10.1371/journal.pone.0250593.g001
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series of 9500 numbers (xi: 1� i� 9500), we calculated the correlation coefficient r:

r ¼

1

n

Xn

i¼1
xixiþ1 � �x

1

n

Xn

i¼1
ðxi � �xÞ2

; ð8Þ

where n is the number of random numbers, i.e. 9500, �x ¼ 1

n

Pn
i¼1

xi. We then derived B using r
from the following expression:

B ¼
ffiffiffiffiffiffiffiffiffiffiffi
n � 2
p r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p : ð9Þ

It is known that B follows a t distribution with n − 2 degrees of freedom. As before, to consider

the null hypothesis, we compared the calculated B values with the value corresponding to a sig-

nificance level of 1%.

In Fig 2 we present results of the χ2-test and t-test, respectively. The red lines in these plots

indicate a significance level of 1%. The 64TEA method generates two random numbers per

use, the second of which is expected to be of slightly higher quality, so these were plotted sepa-

rately as 64TEA(n)a and 64TEA(n)b. As can be seen from Fig 2(a), for 64TEA(n), three, or

more than three, rounds of 64TEA can generate random numbers that are sufficiently uniform

in their distribution. For 32TEA only one round is required to meet this standard. In the t-test,

unlike with the χ2-test, only one of the two random numbers of 64TEA with two rounds can

pass this test. In the case of 32TEA, it was again seen that a single round is sufficient to ensure

that the correlations are below a 1% significance level. In Fig 2, only the minimum number of

rounds required to pass each test is shown because we have confirmed that the same require-

ments are satisfied when using a higher number of rounds.

As shown in Figs 1 and 2, when we compare the computational cost and the quality of

random numbers produced, it appears that 32TEA(1) is the optimal algorithm at this stage

of our analysis. To confirm that this is indeed that case, we also tested the randomness of the

generated numbers using the NIST test sets for 32TEA. The NIST random number test sets

consist of 15 different test methods. Each test method is performed for each series of

1048576 bits, and the results of the 1000 series are used to make a comprehensive judgment.

Since these are statistical tests of a random stream, the result is provided in the form of a p-

value for each test or subtest, indicating the probability that the result is due to random

chance. We use a significance level of 0.01 and were able to confirm that 32TEA(1) passed all

tests. We were also able to confirm that 32TEA(2), 32TEA(3), 32TEA(4), 282 32TEA(5),

32TEA(6), 32TEA(7), 32TEA(8) and 32TEA(32) pass every NIST test. In a previous study, it

was shown that the conventional implementation of the 32TEA(1) was not sufficient to pass

NIST tests [31]. However, by using the relative positions of particle pairs as seed numbers,

we can generate random numbers with sufficiently high randomness when using only one

round.

For the water system simulated using Gaussian random numbers, the temperature was

measured from the kinetic energy of the system in order to confirm whether the temperature

was correctly controlled or not (Fig 3(a)). To further verify this, we also calculated the mean

temperature and its fluctuations from the final 9500 steps out of a total of 10000 steps (Fig

3(b)). From our results, we can confirm that the temperature was accurately controlled when

the system was simulated with a TEA which passes the χ2-test and t-test detailed above. This

is the case even when not using conventional TEAs. Furthermore, in Fig 4, we show a
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comparison of the velocity distribution with theoretically predicted values and error rates. The

error rate was calculated as follows,

PðverrorÞ ¼
jPðviÞ � PðvtheoreticalÞj

PðvtheoreticalÞ
; ð10Þ

where P(vi) is the probability distribution function of vi(i = x, y, z), and P(vtheoretical) is its theo-

retically calculated counterpart. From this figure, it seems that the simulated distribution is a

close match to the theoretical one. The median value (v = 0) has an error of about 2%, which is

the same error rate as found with the Mersenne Twister. (Fig 4(c)) On the other hand, for

the TEA versions which did not pass the above tests, such as 64TEA(2), we may see from

Fig 2. The results of (a) χ2-test, (b) t-test. The red line indicates a significance level of 1%.

https://doi.org/10.1371/journal.pone.0250593.g002
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Fig 3. (a) Temperature of the water system, (b) mean temperature and its fluctuations.

https://doi.org/10.1371/journal.pone.0250593.g003
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Fig 4(b) and 4(d) that there are discrepancies with the theoretical values, and that there are

inconsistencies in the different cartesian directions for the velocities. In some cases, we found

differences in the location of the center of these histograms, and in other cases, we found dif-

ferences in the height of the highest point of the histograms.

Next, we investigated the dynamic properties of the DPD method for each type of TEA.

The mean square distribution (MSD) is shown in Fig 5(a). We also calculated the error rate of

the diffusion coefficient (Fig 5(b)) from the following expression,

Derror ¼
jDðTEAÞ � DðMTÞj

DðMTÞ
ð11Þ

where D(TEA) is the diffusion coefficient of the water system when using a given TEA, and D
(MT) is the diffusion coefficient of the water system obtained through use of the Mersenne

twister. From these figures, we observe that the difference between the water system simulated

with 32TEA(1) and those with Mersenne twister is lower than it is for 32TEA(8), which is the

more commonly used method. The same is true of static properties. The radial distribution

function (RDF) is shown in Fig 6. From this picture, it is clear that the RDF of the system with

64TEA(1) is considerably different from those with other algorithms, especially around r = 0.

This demonstrates the effect of strong correlations between seeds numbers, which in this case

are relative particle-particle separation distances. The random number algorithms cannot

Fig 4. Probability distribution function (PDF) of the velocity for the water system using (a) 32TEA(1) and (b) 64TEA(2) and the error rate of the

velocity distributions using (c) 32TEA(1) and (d) 64TEA(2).

https://doi.org/10.1371/journal.pone.0250593.g004
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Fig 5. (a) Mean square displacement for the water system, (b) error rate of the diffusion coefficient.

https://doi.org/10.1371/journal.pone.0250593.g005
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Fig 6. (a) Radial distribution function, (b) error rate of radial distribution function.

https://doi.org/10.1371/journal.pone.0250593.g006
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completely remove these correlations. In this case, for small seed numbers, which correspond

to two particles that are in close proximity, some specific values are generated, which eventu-

ally result in negative random forces, and the particle pairs may overlap. This point serves to

highlight the importance of ensuring minimal correlation between successively generated ran-

dom numbers. The error rate of the RDF (Fig 6(b)) is calculated as below,

RDFerror ¼
jRDFðrÞTEA � RDFðrÞMTj

RDFðrÞMT
ð12Þ

We find that only 64TEA(1) and 64TEA(2) has a periodic error in its RDF.

Moreover, we also compared the water system which used uniform random numbers gen-

erated from 32TEA(1) and the water system with uniform random numbers generated using

the Mersenne twister. Using the same analysis described above, we find that using 32TEA(1)

gives an acceptable level of accuracy, which is in agreement with the findings of prior work in

this area [5] (See S1 File).

For the 32TEA presented here, our evaluation using the NIST test sets confirms that it

passes these tests. Therefore, we can conclude that the 32TEA(1) can be used to generate ran-

dom numbers with a high degree of randomness.

Membrane system

In this section, we describe the reconstruction of a biomembrane structure using POPC lip-

ids. This type of biomembrane has been studied in detail in previous studies and we follow

the same approach here [39]. The temperature (Fig 7), pressure in each direction (Fig 8), and

thickness of the biomembrane were determined from the density profiles of each particle

(Fig 9). No difference was found between the simulation results for 32TEA(1) and 32TEA

Fig 7. Temperature of the membrane system.

https://doi.org/10.1371/journal.pone.0250593.g007
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(32). We can therefore say that, when using the distance between particles is used as the

seed number, only one round function of TEA is sufficient to produce accurate simulation

results.

Conclusion

In this research, we tried to reduce the calculation cost of random number generation when

using TEA algorithms and to check whether the properties of these random numbers will

impact the results of DPD simulations. From these results, it has been shown that when using

64-bit particle-particle separation distances as 32TEA(1) seeds, random numbers of sufficient

quality can be generated for use in DPD simulations. Usually, the TEA does not perform well

enough with only one round, which includes only a few bit operations. However, these results

suggest the possibility that simple bit processing is sufficient for DPD simulations, which bene-

fit from the randomness in seed derived from DPD calculation itself. A good example of such

seed numbers may be found in the form of relative particle-particle separation distances in

molecular simulations. Taking these findings into consideration, the cost of random number

generation via this new method is one-eighth that of the most commonly used alternative,

where 8 rounds are required, and our DPD code achieved a speed-up factor of 1.5. Further to

this, as reported by Groot and Warren, [5], the same statistical results may be achieved without

Gaussian random numbers, using instead uniform random numbers generated by 32TEA(1).

This paper presents the possibility of accelerating DPD calculations on distributed memory

Fig 8. Pressure of the membrane system for each direction.

https://doi.org/10.1371/journal.pone.0250593.g008
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systems and gives a detailed review of the use of various hash functions as random number

generators.
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