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Abstract: Non-enzymatic glycation is an unavoidable reaction that occurs across biological taxa. The
final products of this irreversible reaction are called advanced glycation end-products (AGEs). The
endogenously formed AGEs are known to be bioactive and detrimental to human health. Additionally,
exogenous food-derived AGEs are debated to contribute to the development of aging and various
diseases. Receptor for AGEs (RAGE) is widely known to elicit biological reactions. The binding
of RAGE to other ligands (e.g., high mobility group box 1, S100 proteins, lipopolysaccharides, and
amyloid-β) can result in pathological processes via the activation of intracellular RAGE signaling
pathways, including inflammation, diabetes, aging, cancer growth, and metastasis. RAGE is now
recognized as a pattern-recognition receptor. All mammals have RAGE homologs; however, other
vertebrates, such as birds, amphibians, fish, and reptiles, do not have RAGE at the genomic level.
This evidence from an evolutionary perspective allows us to understand why mammals require
RAGE. In this review, we provide an overview of the scientific knowledge about the role of RAGE
in physiological and pathological processes. In particular, we focus on (1) RAGE biology, (2) the
role of RAGE in physiological and pathophysiological processes, (3) RAGE isoforms, including
full-length membrane-bound RAGE (mRAGE), and the soluble forms of RAGE (sRAGE), which
comprise endogenous secretory RAGE (esRAGE) and an ectodomain-shed form of RAGE, and
(4) oxytocin transporters in the brain and intestine, which are important for maternal bonding and
social behaviors.

Keywords: receptor for advanced glycation end-products (RAGE); oxytocin; blood–brain barrier;
intestinal barrier; maternal bonding; social behavior

1. Introduction

Glycation is a reaction in which biological macromolecules (proteins, lipids, and nu-
cleic acids) and the excessive reducing sugars and their metabolic derivatives are combined,
leading to alterations in their structures and functions in the body. Advanced glycation end
products (AGEs) are a broad heterogeneous group of compounds formed by non-enzymatic
reactions. The accumulation of endogenous and exogenous AGEs has been implicated in
the pathogenesis of numerous diseases in humans [1,2]. Sustained hyperglycemia under
diabetic conditions can lead to increased production of AGEs in vivo [1,2]. In addition, diet
is an important exogenous source of AGEs and contributes to an in vivo AGE pool. It has
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been reported that approximately 10% of dietary AGEs are absorbed after oral ingestion
and then assimilated into the circulation via the human gastrointestinal tract [3]. AGEs
can induce intrinsic cell signaling pathways and, in turn, contribute to the development of
various diseases via the receptor for AGEs (RAGE) on cell membranes [2,4,5].

Anti-aging treatments have attracted increasing attention in recent years, focusing
on anti-glycation to reduce morbidity, ensure healthier aging and longevity, and promote
cosmetic enhancement. Targeting RAGE could be a preventive and therapeutic strategy
against various RAGE-associated diseases, including inflammatory disorders, diabetes
mellitus and its complications, aging-related diseases, neurodegenerative disorders, and
cancer growth and metastasis [2,4–16].

RAGE is a multiligand pattern-recognition receptor belonging to the immunoglobulin
superfamily [4–6]. We recently discovered that RAGE present on brain vascular endothelial
cells can bind oxytocin (OT) and transport it from the blood to the brain, resulting in the
regulation of brain OT levels. Research on OT in the brain has attracted increasing attention,
as the molecule plays an important role in social behaviors such as recognition, trust, anti-
anxiety behavior, and mother–infant bonding [17,18]. This discovery of RAGE-mediated
OT transport will open a new avenue for the link between energy metabolism, glycation,
aging, and OT for brain function and social behaviors in mammals.

In this review, we highlight the recent progress made in understanding the role of
RAGE in physiological and pathophysiological processes, including host defense responses,
exaggerating host reactions, and social behaviors.

2. Glycation, AGEs and RAGE

Glycation is a non-enzymatic and unavoidable background reaction that occurs
in all living beings and results in the formation of AGEs. Apart from AGEs, RAGE
is known to interact with a series of different ligands, including high-mobility group
box-1 (HMGB1), Gram-negative bacterial cell wall lipopolysaccharides (LPS), S100 pro-
teins, complement component C3, phosphatidylserine (PS), and amyloid-β. The chemical
structures of AGEs include Nε-carboxy-methyl-lysine (CML), Nε-carboxy-ethyl-lysine
(CEL), glyceraldehyde-derived pyridinium (GLAP), glycolaldehyde (GA)-pyridine, pento-
sidine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1) [2,5,8,16,19,20]. The CML-
modified S100A8/A9 strongly activates intestinal inflammatory responses via RAGE, which
suggests that complex varieties of RAGE ligands are modified by glycation reactions [21].

RAGE has an extracellular (V, C1, and C2 domains) region, a transmembrane region,
and a short cytoplasmic tail (ctRAGE) of 43 amino acids with a high charge [2,5]. For signal
transduction, ctRAGE required an adaptor protein, diaphanous-related formin 1 (Diaph1),
which led to the phosphorylation of its downstream effector protein Rac1, an essential
factor for cell movement in rat C6 glioma cells [22]. The ctRAGE/Diaph1 interaction could
be a potential therapeutic target for RAGE-associated diseases [23,24]. Furthermore, the
extracellular RAGE antagonists such as low molecular weight heparin (LMWH), azeliragon
(TTP488), papaverine, N-Benzyl-4-chloro-N-cyclohexylbenzamide (FPS-ZM1), and RAGE-
antagonist peptide (RAP) are also known to inhibit disease development [25–30].

3. Role of RAGE in Physiological and Pathological Processes

A growing body of evidence suggests that RAGE plays a significant role in pathologi-
cal processes of disease development and progression, as well as in physiological functions,
including host defense, tissue regeneration, clearance of apoptotic cells, and nurturing
the mother–infant bond (Table 1). RAGE has been reported to contribute to inflammation
and fibrosis in the lungs and livers of experimental animal models [12,19,31–33]. Vascu-
lar injury, inflammatory reactions, and delayed neuronal cell death were attenuated in
RAGE-deficient mice after transient brain ischemia via bilateral common carotid artery
occlusion (BCCAO) [34]. Traumatic brain injury was also found to be ameliorated in RAGE-
deficient mice [35]. Furthermore, RAGE mediated the progression of Alzheimer’s disease
via amyloid β-induced neurotoxicity [36]. With regard to lifestyle-related diseases, RAGE
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has been reported to accelerate chronic inflammation and foam cell formation during the
pathogenesis of atherosclerosis, diabetic kidney dysfunction and glomerulosclerosis, and
obesity and pancreatic β-cell damage in diabetes [6,7,9,10,25,37,38]. In the context of tumor
malignancy, RAGE is associated with chronic inflammation-mediated carcinogenesis in the
skin and tumor progression driven by non-tumor cells in the microenvironment [11,39,40].
The role of RAGE in bacterial infection, sepsis, and septic shock is still unclear; how-
ever, factors such as the species and number of bacteria, route of infection, and genetic
background of the animal have been shown to affect host defense reactions [19,41–45].
Nonetheless, exaggerated host immune reactions can cause severe tissue damage and
reduce life expectancy; adequate host defense responses would prevent the dissemination
of the bacteria and enhance clearance of the bacteria and endotoxin. In terms of physiologi-
cal function, RAGE was shown to attenuate adaptive inflammation in limb ischemia and
kidney ischemia-reperfusion injury using aseptic experimental models [46,47]. In addition,
it has been reported that HMGB1-dependent lung epithelial regeneration and repair occur
through RAGE [48]. Furthermore, RAGE contributes to the clearance of apoptotic cells via
the recognition of PS, that is, the “eat me signal” [8,49], and is involved in nurturing the
mother–infant bond and behaviors. The details of the aforementioned effects are outlined
in Table 1.

Table 1. Role of RAGE in physiological and pathological processes.

Role of RAGE in Exaggerating Host Reaction

Experimental Model Relevant Findings Ref

Pa
th

ol
og

ic
al

Pr
oc

es
se

s

Lung injury and fibrosis
[LPS, HDM, bleomycin, elastase] Proinflammatory and fibrotic [12,13,19,31,32]

Liver fibrosis
[CCl4] Fibrotic [33]

Brain injury
[ischemia, trauma] Enhanced injury [34,35]

Alzheimer’s disease
[Ab] Ab-induced perturbation of neuronal function [36]

Atherosclerosis
[Ldlr−/−, Apoe−/−] Chronic inflammation and foam cell formation [37,38]

Kidney injury and fibrosis
[diabetes] Accerelated kidney injury and glomerulosclerosis [6,7,25]

Obesity and diabetes
[HFD, db/db] Adipocyte heypertropgy, obesity and pancreatic b cell failure [9,10]

Carcinogenesis
[DMBA/TPA] Chronic inflammation and carcinogenesis [39]

Tumor microenviornment
[glioma, breast cancer] Non-tumor cells of the microenviornment drive tumor progression [11,40]

Infection
[S. pneumoniae,

L. monocytogenes]

Deleterious during bacterial inefection,
but still unclear [41,42]

Sepsis and septic shock
[LPS, CLP] Severe inflammation [19,43,44]
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Table 1. Cont.

Role of RAGE in Host Defense

Ph
ys

io
lo

gy

Experimental Model Relevant Findings Ref

Infection
[K. pneumoniae] Prevention of the dissemination [45]

Limb ischemia
[femoral artery ligation] Attenuation of adaptive inflammation [46]

Kidney reperfusion injury
[ischemia reperfusion] Protection by endogenous soluble RAGE [47]

Lung regeneration
[HDM] HMGB1-dependent epethelial repair [48]

Efferocytosis Recognition of phosphatidylserine on apoptotic cells [8,49]

Role of RAGE in Nurturing the Mother-Infant Bond

Ph
ys

io
lo

gy

Experimental Model Relevant Findings Ref

Parenting and affection
[stress]

Oxytocin transfer from the blood to the brain via BBB and
baby survival [17]

Oxytocin absorption RAGE-dependent oxytocin transport in the small intestine [50]

Apoe, apolipoprotein E; BBB, blood-brain barrier; BMBA/TPA, 7,12-dimetylbenz[a]anthracene/12-O-
tetradecanoylphorbol-13-acetate; CCl4, carbon tetrachloride; CLP, cecal ligation and puncture; HDM, house
dust mite; HFD, high fat diet; HMGB1, high mobility group box 1; Ldlr, low density lipoprotein receptor; LPS,
lipopolysaccharides.

4. RAGE Isoforms

It is well known that RAGE has several isoforms (Figure 1). Membrane-bound full-
length RAGE (mRAGE) is the active signal transduction form expressed on cell surfaces.
Furthermore, the soluble forms of RAGE (sRAGE) include endogenous secretory RAGE
(esRAGE), a product of an alternatively spliced mRNA, and an ectodomain-shed form of
mRAGE [2,5,51–54]. sRAGE contains an extracellular domain that can bind to circulating
pro-inflammatory ligands, preventing their binding to mRAGE, which, in turn, prevents
RAGE activation as a decoy (Figure 1). Therefore, the balance between sRAGE and mRAGE
is important for assessing morbidity risk and the development of pathophysiological con-
ditions. It has been previously reported that RAGE deficiency (i.e., absence of mRAGE
and sRAGE) and treatment with purified recombinant sRAGE in mice lead to a protective
effect in organs under various pathological conditions, such as acute lung injury, diabetic
atherosclerosis, kidney diseases, Alzheimer’s disease, and septic shock [2,5,19,55]. In con-
trast, we have recently shown that acute kidney disease in a renal ischemia reperfusion
injury model is exacerbated under RAGE-deficient conditions, and hypoxic stress down-
regulates the expression of both mRAGE and sRAGE/esRAGE in renal tubular cells [47].
Furthermore, recombinant sRAGE administration has been reported to have a renoprotec-
tive effect against tubular injury in a renal ischemia reperfusion injury model [47].
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Figure 1. Schematic diagram of RAGE variants. Membrane-bound full-length RAGE (mRAGE) is
the signal transduction form expressed on the cell surfaces. The soluble forms of RAGE (sRAGE)
include endogenous secretory RAGE (esRAGE), a product of an alternatively spliced mRNA, and an
ectodomain-shed form of mRAGE.

5. RAGE and OT Nurtures the Mother–Infant Bonding

Genomic data indicate the existence of RAGE homologs in all mammals [56]. However,
there are no RAGE homologs in other vertebrates, such as birds, amphibians, fish, and
reptiles [56]. This evidence from an evolutionary perspective allows us to understand why
mammals require RAGE and what its physiological roles are. One characteristic of all
mammals is lactation, and all mammals secrete OT to stimulate nursing-associated milk
letdown. OT is a neuropeptide synthesized primarily in the magnocellular neurons of
the paraventricular and supraoptic nuclei of the hypothalamus. OT plays a prominent
hormonal role in female reproduction, and its two primary peripheral effects are uterine
contractions during childbirth and lactation during breastfeeding. The effects of OT range
from the modulation of neuroendocrine reflexes to the fundamental roles of complex
bonding and social behaviors related to the reproduction and care of offspring [5,18,57,58].
It is well known that OT produces a wide spectrum of central and peripheral effects.
Practical nasal administration of large doses of OT has been attempted in humans with
and without social deficit-related psychiatric disorders, such as autism spectrum disorders
and schizophrenia [57,58]. Intranasal administration of OT is believed to be effective in
the central delivery of OT across the blood–brain barrier (BBB) [57,58]. However, there
is a dearth of direct evidence for this transport process. Our group demonstrated that
mRAGE on endothelial cells of the BBB can bind OT and transport the neuropeptide from
the blood into the brain, resulting in the regulation of brain OT levels [6,7]. OT cannot
compete with the interaction of mRAGE with other ligands or induce mRAGE intracellular
signaling [17,18]. In addition, we reported that OT transfer by mRAGE is unidirectional
from the blood to the brain [17,18]. The expression of mRAGE was upregulated in the
cerebrovascular endothelium after transient brain ischemia was induced via BCCAO in
mice [17,34]. Using this BCCAO model, it was found that OT transport into the brain was
enhanced [17].

Breast milk contains OT, which is also concentrated in the mother’s circulation. Al-
though OT in breast milk can be absorbed into the blood of newborn babies without any
damage or impairment to the digestive tract, it remains unclear whether OT is permeable
after the onset of gut closure, whether it is indeed permeable, and whether OT absorption
is a receptor-mediated process. Immediately after birth and before the formation of the
intestinal barrier, OT permeates the intestinal epithelial cells relatively freely; however,
after the formation of the intestinal barrier, mRAGE plays a role in transporting OT across
the small intestine [50].

We found that exogenously injected OT was not transported into the brain via the BBB
in RAGE-deficient mice, and the mice showed impaired mother–infant bonding [6,7]. In
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other words, RAGE-deficient mother mice (dams) exhibited impaired parental care for their
pups when exposed to environmental stress conditions, such as cage switching one day
before delivery [17,18,59]. Anxiety-related behavior, parenting behavior of dams during
pup retrieval, and ultrasonic vocalization (USV) measurement of mother-offspring pairing
conditions were also examined. RAGE-deficient dams displayed anxiety-like behavior
and hyperactivity during the early postpartum period [59] (Figure 2). In addition, we
found that RAGE-deficient pups at postnatal day 3 exhibited insufficient and impaired USV
as an early communicative behavior toward their mother [59] (Figure 2). These findings
indicate that mRAGE-dependent OT recruitment to the brain is essential during the early
postpartum period in dams, pups, and presumably, the puerperium in humans.

Figure 2. Schematic diagram of mRAGE as an oxytocin (OT) transporter in the intestinal barrier
and the blood–brain barrier (BBB) for nurturing mother–infant bonding. The ultrasonic vocalization
(USV) is an early communicative behavior between pup and mother.

We wondered whether sRAGE affects the mRAGE-dependent transfer of OT from
the blood into the brain. Interestingly, sRAGE did not inhibit OT transport, and sRAGE
itself was transported into the brain through the BBB by endothelial mRAGE [60,61]. We
assume that mRAGE may form an oligomer complex with sRAGE on endothelial cells and
transcytose sRAGE from the blood to the brain [62]. As previously alluded, the expression
of endothelial mRAGE could be upregulated in brain ischemia [17,34]. It is conceivable
that endothelial mRAGE is a double-edged sword; mRAGE activation and its signal
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transduction can induce vascular inflammation, whereas mRAGE can transport sRAGE, a
decoy receptor, and OT into the brain, possibly preventing neuronal damage [60,61].

6. Conclusions

The current understanding of the essence of glycation, AGEs, and RAGE variants in
physiological and pathological processes is summarized herein. mRAGE is recognized as
an OT transporter that nurtures the mother–infant bonding, as well as a pattern-recognition
receptor for mediating host defense reactions, leading to inflammatory diseases under
excessive and unchecked conditions. This discovery of mRAGE-mediated OT transport
would lead to the development of new therapeutic strategies for mental disorders such as
schizophrenia and reactive attachment conditions such as autism spectrum disorder. This
might also contribute to solving growing social problems, such as child neglect and abuse.
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