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Background: The efficacy of treatment of dogs with cervical spondylomyelopathy (CSM) is com-

monly based on the owner’s and clinician’s perception of the gait, which is highly subjective and

suffers from observer bias.

Hypothesis/Objectives: To compare selected kinetic and kinematic parameters before and after

treatments and to correlate the findings of gait analysis to clinical outcome.

Animals: Eight Doberman Pinschers with CSM confirmed by magnetic resonsance imaging.

Methods: Patients were prospectively studied and treated with either medical management

(n55) or surgery (n53). Force plate analysis and 3-D kinematic motion capture were performed

at initial presentation and approximately 8 weeks later. Force plate parameters evaluated included

peak vertical force (PVF). Kinematic parameters measured included number of pelvic limb strides,

stifle flexion and extension, maximum and minimum thoracic limb distance, truncal sway, and tho-

racic limb stride duration.

Results: Kinematic analysis showed that deviation of the spine to the right (truncal sway) was sig-

nificantly smaller (P< .001) and the degree of right stifle flexion was significantly larger (P5 .029)

after treatment. Force plate analysis indicated that PVF was significantly different after treatment

(P5 .049) and the difference of the PVF also was significantly larger (P5 .027). However, no corre-

lation was found with either method of gait analysis and clinical recovery.

Conclusions and Clinical Importance: Kinetic and kinematic gait analysis were able to detect dif-

ferences in dogs with CSM before and after treatment. A correlation of gait analysis to clinical

improvement could not be determined.
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1 | INTRODUCTION

Cervical spondylomyelopathy (CSM) a common disease of the cer-

vical vertebral column in large and giant breed dogs, particularly

Doberman Pinschers and Great Danes.1,2 Gait abnormalities often

are 1 of the first signs noted in dogs with CSM and are observed

as a slowly progressive pelvic limb ataxia or “wobbling” of the pel-

vic limbs.1,3 Thoracic limb abnormalities may manifest themselves

as variable degrees of ataxia in combination with a short, stilted

gait.1,3,4 The disease is secondary to a collection of disorders

affecting primarily the caudal cervical vertebrae and intervertebral

discs resulting in clinical signs of spinal cord or nerve root com-

pression or both including neurologic deficits, cervical hyperesthe-

sia, or both.3,5 The cause of the spinal cord compression often is

multifactorial and can be caused by vertebral canal stenosis (rela-

tive or absolute), intervertebral disc protrusion, or hypertrophy of

the ligamentum flavum.1 Based on the multifactorial pathogenesis

of this disease process, treatment recommendations are highly

variable. Thus, the standard method for evaluating response to

treatment is based on subjective interpretation of both the clini-

cian and client’s perception. For this reason, objective parameters

are needed that can be correlated to clinical findings.

Kinematic and kinetic gait analyses are being used more frequently

in veterinary medicine. Specifically, gait analysis has been used for eval-

uation of orthopedic diseases including cranial cruciate ligament dis-

ease, hip dysplasia, and treatment outcomes after surgical repair of

these conditions.6–16 Gait analysis also has been used in the evaluation

of neurologic diseases in animal models, including dogs, horses, and

rodents.17–29 More recently, these techniques were applied in evaluat-

ing dogs with CSM.21,22,30

In human medicine, gait analysis has been used routinely in the

evaluation of neurologic conditions, including cervical spondylotic

myelopathy, the equivalent of CSM in humans.31–37 These techniques

have been used to correlate findings on magnetic resonance imaging

(MRI) with clinical signs and to determine outcomes after surgery.32,34

A recent study evaluated both kinetic and kinematic parameters in

the pelvic limbs in a group of control dogs and dogs that underwent

a thoracolumbar hemilaminectomy for disc disease.26 Although this

study found significant changes between the groups, it did not corre-

late the abnormalities in these gait parameters with clinical neurologic

status.

The purpose of our study was to compare selected force

plate kinetic and digital video motion capture kinematic parame-

ters before and after medical or surgical treatment and to corre-

late these parameters with clinical signs to use as markers of

outcome. We hypothesized that certain kinetic and kinematic

parameters such as peak vertical force (PVF), thoracic and pelvic

limb distances, truncal sway (ie, spinal angles), and thoracic limb

stride duration would be significantly different between the initial

and post-treatment follow-up gait analyses. We also hypothe-

sized that these parameters would be correlated with clinical

outcome.

2 | MATERIALS AND METHODS

2.1 | Animals

Eight client-owned mature Doberman Pinscher dogs were prospec-

tively enrolled. The dogs were part of a previous study for which base-

line data was presented in 2 previous studies.21,22 The study was

conducted in accordance with the guidelines and approval of the Clini-

cal Research Advisory Committee and the Institutional Animal Care

and Use Committee of the Ohio State University. Written owner con-

sent was obtained before study enrollment. Dogs were considered

affected and eligible for study enrollment if they had neurologic exami-

nation findings consistent with a cervical myelopathy and were skele-

tally mature (�1 year of age). All affected dogs underwent physical and

neurologic examinations performed by 2 of the authors (K. Foss and R.

da Costa), CBC, serum biochemistry profile, cervical spinal radiographs,

and MRI examination of the cervical vertebral spine. Additionally, tho-

racic radiographs were performed in all affected dogs>7 years of age

(n55). Neurologic status at the time of initial examination was graded

on a scale from 1 to 5 on the basis of a previously published grading

scale.5,8 Patients with cervical hyperesthesia only were classified as

Grade 1. These patients were excluded from participation. Grade 2

patients were those with mild pelvic limb ataxia or paresis with mild

thoracic limb involvement. Thoracic limb involvement was defined as

either a short-strided or spastic gait with a floating appearance. Grade

3 patients were defined as having moderate pelvic limb ataxia or pare-

sis with thoracic limb involvement as described in Grade 2. Grade 4

was defined as marked pelvic limb ataxia or paresis with thoracic limb

involvement, and Grade 5 was defined as nonambulatory tetraparesis.

Any patient with Grade 5 neurologic status also was excluded from the

study. All patients were confirmed to have CSM by MRI, which con-

firmed evidence of spinal cord compression with or without spinal cord

signal change.

2.2 | Gait analysis

All dogs underwent kinetic (force plate) and kinematic (3-D motion cap-

ture) gait analysis before beginning treatment and 8–16 weeks after

initiation of treatment. Force plate gait analysis was performed in all 4

limbs of all dogs using a stationary force plate (Kistler Model 9687A

force platform, Kistler Instrumente AG, Winterthur, Switzerland) and

computer analysis system (Acquire 7.35, Sharon Software, Inc, Dewitt,

Michigan) as previously described.22 At least 4 runs of ipsilateral limbs

were collected from all dogs. Peak vertical force was the sole kinetic

parameter evaluated based on results of a previous study that showed

PVF to have a significant amount of variability between normal and

affected dogs with CSM.22 Force peaks and impulses were expressed

as percentage of body weight and percentage of body weight per sec-

ond by normalizing the dogs’ weights and multiplying by time,

respectively.

Three-dimensional motion capture also was performed as previ-

ously described.21 All dogs were fitted with a Lycra (Invista, Wichita,

Kansas) bodysuit and 32 reflective markers were applied representing
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specific anatomic landmarks of the head, trunk, and limbs. Three-

dimensional motion capture was performed with 15 infrared cameras

in a designated capture space using the Vicon8i (Vicon, Los Angeles,

California) motion capture system. Kinematic parameters evaluated

included number of pelvic limb strides, stifle flexion and extension,

maximum and minimum thoracic limb distance, thoracic limb stride

duration, truncal sway (lateral spinal deviation), and hip drop difference

(pelvic limb height deviation).21 Processing of the recorded images was

carried out using Vicon iQ 2.0 (Vicon) software. The sagittal

plane (viewing the dog from the side) was defined as the x-plane, the

vertical plane as the y-plane, and movement toward/forward and

away/backward, as the z-plane. Limb angles were determined in the

x-plane, spine angle from the y-plane, limb distance in the z-plane, step

cycle duration and stride length in the x-plane, and hip drop difference

in the x-plane. The number of strides was recorded from each pelvic

limb of every dog and counted as successive maximal x-plane positions.

The angle of the stifle joints was determined by the maximum joint

angle positions in both flexion and extension and measuring the maxi-

mum and minimum values for each angle during the step cycle. Stifle

angles were defined as the maximum and minimum angles formed by

the greater trochanter, the stifle joint, and the tarsal joint. Maximum

and minimum distance between the thoracic limbs was the maximum

and minimum distance recorded between the contralateral limbs in the

z-plane. Thoracic limb stride duration was calculated by measuring

the time elapsed between 1 maximal x-plane position and the next in

the front paws. Truncal sway was calculated based on the maximum

and minimum lateral deviation of the vertebral column at any given

time during the walking phase. It was determined by measuring the

maximum and minimum angles made from the Spine 1 marker to the

greater trochanter in the y-plane. The maximum and minimal angles

were the angles made between these 2 vectors in the y-plane. Lastly,

hip drop, or pelvic limb height difference was calculated using the dif-

ference between maximum and minimum distance from the marker on

the greater trochanter and the hind paw in the x-plane.

2.3 | Statistical analysis

All data for the 3-D motion capture were cleaned and exported using

Microsoft Visual Studio 2009 (Microsoft, Redmond, Washington). All

data acquired in Vicon iQ 2.0 then was transferred as numerical data

into MATLAB (MathWorks, Natick, Massachusetts). A custom-written

script was used to extract the data points of interest. The resulting

data then was analyzed by Stata 12.0 (Stata Corporation, College

Station, Texas). Differences in the means for both the kinetic and kine-

matic data were tested using a random effects linear regression model

with significance level set at P< .05. Regression analyses were per-

formed because multiple observations were nested within each dog.

For the kinetic gait analysis, PVF was evaluated by regression analysis

using the mean values from each limb in all dogs and using the mean

values from all 4 limbs in all dogs. Significance levels again were set at

P < .05.

The clinical assessment for each dog was correlated to the gait

analysis parameters to determine if any measurement could predict

improvement. For each dog at each visit, the mean of the technical rep-

licates was calculated for each of the 17 paremeters, and the difference

of the means was calculated. A logistic regression model was fitted for

each of the 17 possible predictor parameters (using the difference of

the means), with the outcome being clinical improvement.

3 | RESULTS

3.1 | Clinical findings

Eight dogs were enrolled, 6 males and 2 females between the ages of 3

and 12 years (mean, 6.7 years; standard deviation [SD], 2.87 years;

median, 7 years). Initial clinical signs included mild pelvic limb ataxia or

paresis with thoracic limb involvement (Grade 2; n54), moderate pel-

vic limb ataxia or paresis with thoracic limb involvement (Grade 3;

n52), and marked pelvic limb ataxia or paresis with thoracic limb

involvement (Grade 4; n52). Four of the 8 dogs were more affected

on the right side based on neurologic examination, 3 were slightly

worse on the left, and 1 did not show lateralization on the neurologic

examination. The body weight of the dogs ranged from 27.2 to 55.7 kg

(mean, 32.6 kg; SD, 8.33; median, 34.5 kg). All CSM-affected dogs had

spinal cord compression located in the caudal cervical vertebral column

as identified by MRI. The main compression was located at C5-6 in 3

dogs, and at C6-7 in 5 dogs. The degree of compression was consid-

ered to be mild in 6 dogs (2 with compression at C5-C6 and 4 at

C6-C7), moderate in 1 one dog with compression at C5-C6, and severe

in 1 dog with compression at C6-C7. Four dogs had lateralized com-

pression based on the MRI with 3 having more compression on the

right, and 1 with more compression on the left. The compression was

considered to be mild in all dogs with lateralization based on MRI. The

main cause of spinal cord compression was disc-associated in all dogs,

with or without ligamentous compression. Five of the 8 dogs were

treated medically using either a combination of nonsteroidal

anti-inflammatory and pain medications or a tapering course of cortico-

steroids and additional pain control. The remaining 3 dogs underwent

cervical disc arthroplasty at C6-C7.

Mean time between initial and follow-up kinetic and kinematic gait

analysis was 2.3 months (range 2–4 months). On re-evaluation, 2 dogs

were considered to be improved based on gait assessment. One dog

had improved to normal gait from grade 2 on initial examination; the

other dog improved from grade of 3 to grade of 2. Five dogs remained

the same (2 remained grade 4; 1 remained grade 3 and 1 grade 2) and

1 dog decreased a neurologic grade (grade 2 to grade 3).

3.2 | Gait analysis

The mean number of valid passes collected during kinetic gait analysis

was 4.5 (range, 3–6). Observations for each dog from the kinematic

gait analysis ranged from 13 to 20 (mean, 22.75) in the affected dogs.

Detailed results of the kinetic and kinematic gait analysis are presented

in Tables 1 and 2. Maximum and minimum thoracic limb distance was

found to be larger after treatment with the maximum thoracic distance

increasing from 190.1 to 203.1 mm and the minimum increasing from
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130.2 to 140.6 mm. However, the differences were not found to be

statistically significant (P5 .08; P5 .110, respectively). Maximum trun-

cal sway to the right was found to be significantly smaller after treat-

ment (P< .001) but no other changes in truncal sway were significantly

different (Table 1). When comparing the means from each limb of all

dogs with force plate analysis, PVF was significantly different in

all dogs after treatment (P5 .049). When using the mean values from

all limbs combined for all dogs before and after treatment the differ-

ence between PVF was significantly larger (P5 .027; Table 2). The

other parameters analyzed were nonsignificant. When correlating

clinical outcome to gait analysis parameters, no predictor variable

approached statistically significant correlation with recovery.

4 | DISCUSSION

Our study was designed to use specific kinetic and kinematic gait

parameters to detect consistent differences in Doberman Pinchers

with CSM after medical or surgical treatment and to correlate these

findings with clinical status. The results supported our hypothesis that

PVF would be significantly different from initial presentation to follow-

up. We found PVF to be significantly larger after treatment and it

remained higher in the thoracic limbs. In patients suffering from ortho-

pedic disease, a lower PVF indicates lameness or impaired function.

Therefore, an increase in PVF in our patients after treatment would be

indicative of improvement.38 This finding could indicate potential

improvement in strength in our patient population. It was also noted

that PVF in the thoracic limbs remained higher than in the pelvic limbs,

even after treatment. This finding is not surprising because it is gener-

ally assumed that dogs carry approximately 60% of their body weight

in the thoracic limbs and approximately 40% in the pelvic limbs.39

We also found our hypothesis was partially correct in regard to

truncal sway because this parameter was noted to be smaller after

treatment. It is interesting that truncal sway to the right was improved

but the truncal sway to the left was not significantly different. This

finding may be a consequence of the fact that in our patient popula-

tion, 50% (4/8) of dogs were neurologically more affected on the right

side, whereas in the remaining dogs, 3 were worse on the left and 1

did not show lateralization. Additionally, in those dogs that had lateral-

ized compression on MRI, 75% (3/4) had more severe compression on

the right. This finding may not be unusual because mild asymmetric

signs are seen in approximately 50% of dogs with CSM.1,40 In 1 study,

it was observed that Dachshunds suffering from thoracolumbar disc

disease had more pronounced asymmetric changes on the affected

side of the body and it was theorized that patients with uncoordinated

gait may be falling to the more affected side or limb because of lack of

control on that side.26 Another study also showed greater thoracolum-

bar lateral angulation in the direction of the affected limb in dogs with-

out visually detectable lameness.41 A finding we did not expect was

the increased flexion of the right stifle at follow-up. The decreased flex-

ion on presentation is likely explained by spastic paresis, but we would

expect an improvement in both pelvic limbs. The explanation again

may be associated with the fact that half of the dogs were affected on

the right side and also may be explained by another study in which

dogs affected with myelopathic disease tend to fall towards 1 side

more than the other.26 Therefore, reduction in truncal sway actually

may indicate an improvement in mild, asymmetric ataxia, and the

increased stifle flexion may indicate mild improvement in weakness.

The other explanation for the finding of asymmetrical truncal sway

(right versus the left) could be that of soft tissue artifact (STA). Soft tis-

sue artifact is a common source of error in gait analysis of humans and

horses by and is caused by movement of the skin being recorded

instead of the underlying skeletal structures when using skin markers.

TABLE 1 Initial and follow-up data for Doberman Pinchers with
CSM before and after treatment

Parameter Initial Follow-up Difference P value

Number of strides/10 s LH 3.34 3.17 20.17 .649

Number of strides/10 s RH 2.58 3.17 20.22 .554

Right stifle flexion (degrees) 102.2 107.1 4.94 *.029

Right stifle extension
(degrees)

138.5 142.6 4.07 .036

Left stifle flexion (degrees) 106.0 101.9 24.16 .499

Left stifle extension
(degrees)

138.9 136.9 22.00 .480

Max thoracic limb distance
(mm)

190.1 203.1 12.95a .080

Min thoracic limb distance 130.2 140.6 10.41a .110

Stride duration LF (seconds) 0.75 0.76 0.01 .675

Stride duration RF (seconds) 0.74 0.75 0.01 .748

Max right spinal deviation
(degrees)

10.8 10.4 0.4 *<.001

Min right spinal deviation
(degrees)

8.9 9.05 0.15 .158

Max left spinal deviation
(degrees)

9.82 9.83 0.01 .176

Left pelvic limb hip
drop (mm)

14.6 16.9 2.3 .071

Right pelvic limb hip
drop (mm)

17.8 17.3 0.5 .786

*P< .05 while not found to statistically different, there still is a large increase
in the maximum and minimum thoracic limb distance after treatment.a

TABLE 2 Regression analysis of PVF using the means from each
limb and means from all limbs of all dogs at the initial and follow-
up visit

Parameter Limb Initial Follow-up Difference 95% CI P value

PVF LF 69.82 73.71 3.89 0.02 7.75 .049

LH 47.44 51.33 3.89 0.02 7.75
RF 67.40 71.29 3.89 0.02 7.75
RH 48.89 52.77 3.88 0.02 7.75

PVF ALL 58.36 63.32 3.96 0.44 7.48 .027

Abbreviations: LF, left front limb; LH, left hind limb; RF, right front limb;
RH, right hind limb.
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Algorithms have been proposed to correct for STA in horses but none

exist yet for dogs.42

We were not able to show a correlation in clinical outcome with

the gait analysis parameters. Despite the fact that a correlation was not

identified, all 3 dogs in which clinical improvement was noted showed

corresponding changes in the kinetic and kinematic parameters. All 3

dogs experienced a decrease in truncal sway and an increase in right

stifle flexion. Because of small sample size, we cannot draw a conclu-

sion from these results, but they do suggest further investigation, espe-

cially into using truncal sway and spine angles as outcome measures.

This finding also is similar to that of another study in which pelvic sway

range of motion was found to be a more sensitive indicator of myelop-

athy as compared to pelvic limb joint range of motion.26

The reliability of 3-D gait analysis is evaluated in multiple ways, 1

of which is performing multiple walking trials within a single session.

The variability among these trials is classified as “intrinsic” and reflects

the inherent variation within either unimpaired individuals or those

with underlying pathology. Intrinsic variations reflect intraindividual

variations that arise naturally, either from trial-to-trial or subject-to-

subject variability. Usually, these variations can be overcome by collec-

tion of data from many walking trials during the same session.43–45 In

our study, multiple trials and observations were performed for each

patient for both the kinetic and kinematic gait analysis with an average

of 4.5 valid trials and 22.75 observations, respectively. Extrinsic factors

also account for variability and typically are from procedural errors,

with marker placement being a key factor.43 A main issue with the use

of skin markers is accurate and repeatable placement of the markers.

One study found that accurate and reproducible marker placement was

difficult in dogs because it required the dogs in the study to stand com-

pletely still in a neutral position.26 In our study, Lycra body suits were

used on the patients as an attempt to provided repeatable marker

placement.

Limitations of our study include small sample size, which may lead

to Type II error. A post-hoc power analysis was performed, and to cor-

relate clinical recovery with PVF (with 80% power and 95% confidence)

a sample size of 226 would be needed. For the other measures, sample

sizes from 12 to 1193 would be needed. Therefore, it would take a

substantial amount of time to obtain enough cases, especially when

looking at a specific disease process in a specific breed of dog. There

also is the potential for STA as well as inconsistent marker placement,

as discussed above. We attempted to avoid STA by using the Lycra

body suits. However, doing so still requires the marker to be on the

skin and not the targeted osseous structure. In regard to any variability

that may have occurred secondary to marker placement, we attempted

to keep marker placement constant by using the same size Lycra suit

for both gait trials but there is always the potential for some shifting of

the body suit, and thus even a small change in the marker location.

Unfortunately, the best way to minimize STA and ensure repeatable

marker placement would be to place the markers into the bony land-

marks, which is unethical in the living patient.

One concern with gait analysis is how body size may affect the

results. In our study, we were evaluating only 1 breed with similar body

conformation. Although body weight was variable, we did not

anticipate this variation to affect our results because gait data are

rescaled to dimension-less values such that inertial and gravitational

forces scale in proportion, and the direction of the resultant force vec-

tor does not change with body size.46 A study assessing whether

kinetic data, in particular ground reaction forces and stance time, were

dependent on dog breed and body confirmation did find significant dif-

ferences in force plate data among different breeds and indeed recom-

mended that group comparisons should be made only when breeds of

similar body confirmation are used.46 In regard to the kinematic param-

eters, larger dogs may have had a longer stride length and duration

than smaller dogs. However, for our study, the dogs were grouped

together and the data averaged when comparing pre- and post-

treatment and, when assessing clinical response, dogs were compared

with themselves. The other parameters (eg, flexion, extension, and

truncal sway) should not be affected because they were expressed in

degrees. Additionally, hip drop was the difference from the maximum

hip height to the minimum and therefore size should not be a factor.

During the kinematic gait analysis, we did not have any way to monitor

each patient’s speed, which could contribute to variability within the

parameters. One way to control speed is to use a treadmill, as has been

reported previously.28 However, we chose to walk the dogs in a large,

open space as it is more representative of a typical gait assessment and

we felt doing so may show more gait differences. For the kinetic gait

analysis, the speed could be monitored and any trial with a speed>1.5

or<0.5 m/s was excluded.

The type of surface also can affect a patient’s gait, in particular a

surface with less traction may make it more difficult for a weak or

ataxic patient to walk.47 The motion capture space consisted of rubber

mats making it easy for the patients to walk. The force plate walkway

was made of linoleum but the speed at which the dogs were walked

did not cause any problems with ambulation. Lastly, the data collection

time varied substantially in duration but did not seem to be correlated

with neurologic status. Overall, the collection time for the kinetic gait

analysis took 1–2 hours and the collection time for the kinematic data

ranged from 45 minutes to 3 hours. We found that some dogs took

longer based on their behavior when walked on a leash. In particular

for the kinematic gait analysis, data collection had to be stopped and

the process restarted any time a marker was dislodged, which also

added a substantial amount of time to the process. Overall, the time

and technique for both methods were not ideal given they took a sub-

stantial amount of time and required equipment that is not readily

available and can be very expensive. More recently, a study using a

pressure-sensitive walkway also found significant differences in the

thoracic limbs and PVF of Doberman Pinchers with and without

CSM.30 This method of gait assessment also may be beneficial for eval-

uating the response of a patient with CSM to treatment because it is

more commercially available than options for 3-D motion capture and

less time-consuming compared to digital motion capture and force

plate analysis.

In conclusion, kinetic and kinematic gait analysis detected differen-

ces in dogs with CSM before and after treatment. Unfortunately, corre-

lation of gait analysis to clinical improvement could not be determined.

Future, larger scale studies are warranted using these and other
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computerized gait analysis techniques to determine if these methods

can be used to evaluate response to treatment in dogs with CSM.
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