
cellPACK: A Virtual Mesoscope to Model and Visualize 
Structural Systems Biology

Graham T. Johnson1,2,3, Ludovic Autin1, Mostafa Al-Alusi1, David S. Goodsell1, Michel F. 
Sanner1, and Arthur J. Olson1

1Molecular Graphics Lab, The Scripps Research Institute, La Jolla, California, USA

2Department of Bioengineering and Therapeutic Sciences, University of California, San 
Francisco, California, USA

3California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, 
California, USA

Abstract

cellPACK assembles computational models of the biological mesoscale, an intermediate scale 

(10−7–10−8m) between molecular and cellular biology. cellPACK’s modular architecture unites 

existing and novel packing algorithms to generate, visualize and analyze comprehensive 3D 

models of complex biological environments that integrate data from multiple experimental 

systems biology and structural biology sources. cellPACK is currently available as open source 

code, with tools for validation of models and with recipes and models for five biological systems: 

blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied 

cellPACK to model distributions of HIV envelope protein to test several hypotheses for 

consistency with experimental observations. Biologists, educators, and outreach specialists can 

interact with cellPACK models, develop new recipes and perform packing experiments through 

scripting and graphical user interfaces at http://cellPACK.org.

INTRODUCTION

The biological mesoscale lies between the cellular and molecular scales at lengths of about 

0.1 micron to 10 nanometers. Except in special cases, atomic details of the mesoscale are 

generally too small to resolve by microscopy and too large and heterogenous to determine 

with methods such as x-ray crystallography and NMR spectroscopy. Methods of cellular 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence should be addressed to: A.O and G.J. (olson@scripps.edu and graham@grahamj.com). 

AUTHOR CONTRIBUTIONS
G.T.J. conceived autoPACK and cellPACK and designed the original code, wrote the core code, designed user interfaces and edited 
interface code, conducted experiments and analyzed results. L.A. wrote core code, designed and wrote the interface code, wrote 
analysis code, designed and conducted HIV experiments and analyses. M.A. co-designed and wrote prototype autoPACK code. D.S.G. 
co-conceived and guided cellPACK design and designed HIV experiments. M.F.S. transposed the prototype autoPACK code to 
Python with G.T.J., added cellPACK packing and grid preparation features, structured and cleaned the first drafts of the current core 
code. A.J.O. guided code and experiment design and implementation.

The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
Nat Methods. 2015 January ; 12(1): 85–91. doi:10.1038/nmeth.3204.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cellPACK.org
http://www.nature.com/authors/editorial_policies/license.html#terms


tomography provide the most detailed experimental view of this level with many successes 

in the localization of larger macromolecules (such as ribosomes) within whole cells1,2. 

However, an atomic resolution view of this intermediate scale, in spite of its utility in 

hypothesis generation, science communication, and simulation, remains sparsely modeled 

and visualized compared to larger and smaller scales of study3–5.

No methods currently exist to observe the mesoscale in atomic-resolution detail, however, 

many sources of data may be used to synthesize a view of this level. For the past twenty 

years, we have taken a semi-quantitative approach to integrate these diverse data into a 

coherent model, creating artistic depictions of cellular environments (Fig. 1a) based 

ultrastructural data from light and electron microscopy, atomic structures from x-ray 

crystallography and NMR spectroscopy, and biochemical data on concentrations and 

interactions6,7. More recently, we and other groups8 have developed computational 

approaches that automate the steps of this semi-quantitative approach to extend the results 

from 2D paintings into 3D models that can be explored, animated, simulated, analyzed, and 

easily edited and updated. This process involves two conceptual steps: gathering of data to 

create a recipe(s) for the model, and use of this recipe to build a virtual model.

Since the field of structural biology is advancing so quickly, methods to automate the first 

step of the pipeline, the generation of a recipe based on available data, are essential. This is a 

challenging goal given the heterogeneous nature of the data, but we have developed 

automated methods for several key steps. For example, we have developed tools to integrate 

bioinformatics data from sources like Stanford’s WholeCellViz9 and atomic structures from 

the Protein Data Bank. Since much of the data that our approaches use require manual 

curation, we have begun projects to implement these recipes in a way that allows community 

experts to update and improve the recipes across all scales of detail, to extrapolate 

predictions where reasonable, and to vote with confidence values for all contributing 

parameters and resulting assemblies.

Given a molecular recipe, the construction of a quantitative 3D mesoscale model requires 

solving a non-trivial loose-packing problem. In biological systems, this includes packing 

soluble, membranous, and fibrous components with proper localizations and biologically 

relevant interactions. Packing problems are a popular topic of study in mathematics, 

engineering and biology. The non-biological methods are typically limited to simple 

components such as boxes and spheres10,11, or to providing one non-interacting packing-

type solution at a time, such as surface packing, volumetric packing, or tree branching 

algorithms12,13, which can only contribute partial solutions towards recreating the organic 

complexity of a mesoscale model like HIV (Fig 1a,c). Other common non-biological 

methods pack non-discrete components that can expand to fill space or contract to avoid 

overlaps14 or rely on macroscale gravitational forces15,16. Physicists and engineers have 

applied modified molecular dynamics methods to pack spherical and cylindrical 

granules17,18, however, molecular dynamics functions on a scale too small and 

computationally expensive to provide a solution for mesoscale packing. Biological 

constraint modelers like IMP19, procedural and analytical modeling approaches like 

Molecular Silverware20,21 and relaxation approaches like Brownian Dynamics 

modeling22,23 are currently able to build large-scale models. However, they are designed to 

Johnson et al. Page 2

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function locally and do not model ultrastructural features like organelle membranes or 

fibrous molecules like actin. To model large cellular subjects (up to and beyond tens of 

microns), a hybrid method is needed that combines local methods for populating defined 

spaces with multiscale methods that integrate ultrastructure and infrastructure while tracking 

and satisfying all input constraints. Such a framework must further recapitulate the complex 

interplay of randomness and specific interaction that lies at the heart of biology.

As the data available for biological systems at the molecular level increases in size and 

complexity, the creation of structurally integrative models of such systems has become a 

substantial bottleneck in the process of simulation and analysis. An important goal for this 

work is to automate the creation of these complex mesoscale models, so that large numbers 

of models that are statistically consistent with the known structural and compositional 

characteristics of a system can be easily generated.

To achieve this goal, we have developed two computational toolkits, autoPACK and 

cellPACK, for modeling mesoscale content (Fig. 1b–c). autoPACK is a generalized 

algorithm that provides a heuristic solution to the irregular loose-packing problem and 

simultaneously integrates regular and procedural packing solutions. autoPACK can be used, 

for example, to fill an architectural engineering model with concrete aggregate in 

preparation for earthquake simulations, or it can fill an artery with blood cells at appropriate 

densities to generate a histological model for a medical illustration. cellPACK is built on 

autoPACK, optimizing the method for biological data and generating probabilistic 3D 

models of large sections of cells that can contain dozens to millions of molecules. cellPACK 

additionally provides tools to store, visualize, analyze and interact with the results to make 

mesoscale models and mesoscale modeling accessible to a variety of audiences. This report 

describes the autoPACK and cellPACK methods, as well as several applications in 

education and research.

RESULTS

autoPACK

autoPACK is a generalized packing algorithm that defines a desired volume and 

stochastically packs it with objects, called ingredients, according to a recipe (Fig. 1b). It uses 

an “omniscient” grid to discretize and describe a volume, to enable multiple types of 

modular packing algorithms to interoperate on the same model. Ingredients of arbitrary 

shape are placed into the allowable 3D space with minimal overlap and with random 

distribution. Constraints and agent behaviors may be associated globally or with specific 

ingredients to add specific modes of interaction. A grid-based approach is used to generate 

models quickly while tracking global parameters, however, the packing algorithms explore 

continuous space within each grid voxel to prevent lattice regularities. In tests, autoPACK 

can combine several complex packing algorithms to integrate three different major 

localization modes–volumetric, surface, and procedural–into unified models.

The current release of autoPACK can pack ingredient objects of any size and shape into a 

unified model scene with complete randomness, up to and beyond biological concentrations, 

without requiring scene-specific adjustments (Supplementary Fig. 1 provides two examples 

Johnson et al. Page 3

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of general object packing). autoPACK accomplishes this by sorting the ingredients in order 

of packing difficulty and weighting the more difficult ingredients with higher priorities, 

favoring them to be picked and positioned first. Procedural ingredients (e.g. fibrous or 

branching growth) are seeded into the volume and typically expand early in the fill, and 

larger surface ingredients typically deposit earlier since they are more difficult to pack 

compared to globular soluble ingredients. This prioritized approach is similar to packing a 

moving truck: it is easy to pack a truck densely by stacking small boxes around previously 

loaded large furniture, but difficult to position a twelve-seat dining room table into a truck 

jumbled with fragile knickknacks.

cellPACK

cellPACK is a biology-specific extension of autoPACK that consists of a database of 

mesoscale recipes (such as cytoplasm or synaptic vesicles) and examples of models for each 

recipe. cellPACK further extends the general packing capabilities of autoPACK with 

numerous modules for cell and molecule-specific packing. cellPACK also includes optional 

protocols and links to 3rd party algorithms that provide component solutions to the global 

packing problem.

autoPACK uses a cooking metaphor, building a model scene from a recipe by placing 

ingredients into containers defined by surface meshes. cellPACK mixes the metaphor with 

biologically relevant terms, where ingredients (typically molecules) are stochastically 

packed into containers (typically organelle ultrastructure output from surface-segmented 

tomograms as 3D polygonal meshes) up to densities provided by organelle-specific recipes. 

Each ingredient comes with associated properties, including a structural representation (such 

as a molecular surface or volume occupancy shell), and behaviors such as a particular 

collision-avoidance method or a list of binding partners that will modify the ingredient’s 

global and local packing. In the resultant model, each ingredient retains a connection to 

various other forms of data to enable deeper analysis, preparation for systems integration or 

large-scale simulations, or for modifications of the ingredient representations. The algorithm 

and data structures function recursively across scales to enable organelle recipes to be 

combined into larger models at the cellular and tissue scale levels. For example, container 

ingredients, once placed, can be subsequently packed with nested recipes of ingredients 

specific to that container’s surface and interior.

cellPACK provides scripting and graphical user interfaces (GUIs) to access viewing, 

analysis, and modeling modules. An online database enables invited users to critique and 

modify recipes and ingredients while maintaining version histories. Viewing software is 

built with open-source GUI plugins using our ubiquitous Python API (uPy)24 that enable 

any uPy-enabled host to load existing models or to run cellPACK interactively. Current 

hosts include molecular viewers like the Python Molecular Viewer (PMV)25 and 

professional animation software like (Maxon’s) Cinema4D, (Autodesk’s) Maya, and 

Blender. The molecular viewer UCSF Chimera26 now includes an autoPACK result file 

reader to load and analyze cellPACK scenes. These uPy and Chimera plugins generate 

representations of ingredients positioned into model scenes and allow for interaction and 

analysis using cellPACK analysis tools coupled with functions native to each host.

Johnson et al. Page 4

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Interacting with cellPACK and cellPACK Results

cellPACK can run as a standalone Python algorithm or as a plugin to a variety of uPy-

hosting software packages. With uPy, a single uPy GUI can function across multiple 3D 

viewers with no redundant programming. The cellPACK GUI is organized in a user-friendly 

format to expose the more complex options to advanced users as needed (Fig. 2a). As 

detailed in the methods, a novice user is initially presented with a View Tab that enables 

them to load cellPACK models directly from the prototype cellPACK databank. The user 

can switch to the Pack Tab to modify and pack models using existing recipes from the 

databank or local files, and they can export their modified recipes and models. Users can 

also switch to a Build Tab to construct recipe files and ingredient components from scratch. 

In all of the tabs, a user can choose from simple, intermediate, advanced, or debug versions 

of the GUI. The more advanced options expose more parameter widgets in the GUI.

Audiences of all levels and interests can interact with cellPACK software or with cellPACK 

results through the project website. The site offers visual representations of models as static 

images, animated movies, and interactive 2D and 3D multiscale viewers (Fig. 2b), and 

visitors may add comments to critique models and suggest improvements. To create the 

types of online representations shown on the website, users can download and install the 

cellPACK software to visualize and modify cellPACK ingredients and recipes, perform 

analysis, and generate visual output. As an open-source project, we provide both the source 

code and an API for easy scripting, and encourage users to modify and upload all software 

components to participate in development.

cellPACK Analysis Tools

Our early prototypes of autoPACK underscored the need for effective analysis tools to 

quantify the success of different packing algorithms. autoPACK currently offers several 

basic analysis tools for assessing the positional and orientational randomness of placement 

in packing (Fig. 3). Position and orientation histograms are used to highlight variations 

about a mean uniform distribution (frequency) line for randomly distributed objects or about 

a target frequency curve for gradient affected objects. Box and whisker plots can reveal any 

global skewing across orthogonal selections from within a fill volume. Size-dependent 

available volume graphs quantify the distribution of negative spaces to reveal pore networks 

accessible to objects of different sizes.

We used these tools, for instance, to quantify edge effects in the packing algorithm when 

applied to large, homogenous fields of molecules of diverse shape, as in Fig. 3a, or to 

validate the construction of a scene with an artificial gradient of concentration and several 

ingredients with challenging shapes, as in Fig. 3b. Nearest neighbor, distance to center, and 

point of closest contact data can be exported to analyze mixing or interaction biases, but we 

have not yet implemented formal tools to output these graphs for interactive quantification 

of molecular interactions within cellPACK scenes. Decoupling the goals and constraints of 

packing from the packing algorithms will further ease recipe analysis, algorithm verification, 

and algorithm comparison–these are important topics for future work.

Johnson et al. Page 5

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Biological Applications

We chose blood plasma (Fig 4.) as a simple initial test case. The molecular composition of 

blood plasma is structurally and biochemically well described and it has a relatively low 

protein density (~6% occupancy by volume), about 1/5th that of prokaryotic cytoplasm27. 

Plasma is largely homogenous, but still has numerous fibrous components, so it is an 

effective biological test for the combination of rigid body and procedural filling. Most of the 

ingredients were treated as rigid bodies based on atomic structures, and von Willebrand’s 

factor is modeled with a procedural snake-growth algorithm. The user can adjust the 

“waviness” and kinking of this structure, guided by low-resolution structures from electron 

microscopy.

A large multidisciplinary collaboration determined the recipe for an average synaptic 

vesicle28. These authors kindly provided the modeled protein structures used to generate 

their mesoscale model. Building on this information, we used cellPACK to synthesize 

stochastic variations of the vesicle at a variety of sizes (Fig 5.). In addition, we used the 

same recipe to create a molecular model of a larger volume of closely packed vesicle 

surfaces segmented from an electron tomogram29. Despite the complexity of this task, even 

the massive surface proteins like the vesicular ATPase (vATPase) are able to interdigitate 

with neighboring vesicles and pack together at the high observed per-vesicle concentrations. 

The 100nm cube of interdigitating synaptic vesicles (Fig. 5c) was created in less than an 

hour on a standard laptop computer, with most of that time spent packing the lipids into the 

bilayers. Simpler models, for example that include only the surface proteins of one synaptic 

vesicle (as in Fig. 5a–b), typically require ~25 seconds to fully pack.

The modular nature of cellPACK is designed to promote the easy combination of recipes to 

generate unified, hierarchical models. Fig. 6 shows two hybrid models generated from 

integrated recipes. The model of HIV in blood plasma combines seven different recipes into 

a single model, ranging from the outermost recipe for blood plasma, as described in Fig. 4, 

to a recipe for the distribution of envelope glycoprotein30 (Env), to recipes for host proteins 

and two model options for the cone-shaped capsid31,32. The Mycoplasma mycoides model 

packs DNA into a surface container using a fibrous-extension packing mode that is 

constrained by probabilistic placement of DNA-binding proteins that stochastically generate 

particular bend angles. The cytoplasm and surface recipes pack simultaneously, but have 

lower priorities. Lipopolysaccharides grow from the surface with a fibrous packing mode.

cellPACK as a Research Tool

We have used cellPACK to simulate experimental results from fluorescence microscopy, 

similar to the approach described by Gardner et al33, to test six competing hypotheses for 

distribution of the Env glycoprotein in immature HIV-1 virions (Fig. 7). The models were 

compared with super resolution STED fluorescence microscopy results34, which interpreted 

the experimental results to support a random distribution of Env on the surface of the virion, 

in spite of the known asymmetric distribution of matrix protein inside the membrane and 

possible interaction of matrix and Env. Based on our simulated results, a model of a 

completely random distribution of Env gives substantially fewer single foci than is observed 

by fluorescence microscopy in immature virions, indicating that the asymmetric distribution 

Johnson et al. Page 6

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of Gag in immature virions may be causing at least some measure of asymmetry in Env 

distribution. As expected, models with clustered Env are clearly not consistent with 

observations. The results, however, are not sensitive enough to distinguish between several 

models of interaction between Env and Gag, although three models of specific interaction 

(R-InMa, closeMa and closeMa-Env) show better fit to data than the model of passive 

incorporation (R-offMa). Within the observed ranges of Env quantification, the number of 

Env packed into a virion does not affect the foci count in any of the models (Supplementary 

Fig. 2), which agrees with the original observations. However, as described in the online 

methods, the distribution statistics are dependent on the technique used to distinguish the 

number of foci (Supplementary Fig. 3) in each STED image, and we chose a method 

designed to match the manual counting method used for the published experimental work.

DISCUSSION

The goal of cellPACK is to create a framework that integrates multiple types of data, across 

multiple scales into comprehensive spatial models for analysis, communication and 

simulation. On one level, cellPACK models integrate data and theory to produce editable 

community models, allowing an iterative crowd-sourcing process to refine the current 

understanding and to impel hypothesis-driven research and collaboration. The models can 

now be used as starting points for mesoscale algorithms like Brownian Dynamics35 and 

could provide foundations for whole-cell dynamics projects such as the 3D Virtual Cell 

http://3dvcell.org. On another level, cellPACK offers immediate applications for peer 

communication, education, and outreach where the concurrent development of our uPy and 

embedded Python Molecular Viewer software (ePMV)36 provides easy access to these tools 

for users from diverse backgrounds. The modular open-source architecture allows cellPACK 

to grow and adapt as new computational approaches and theories of mesoscale biology 

emerge.

We have applied cellPACK to generate a diverse collection of models based on published 

recipes, and we have begun to solicit community input and expert opinion on the resultant 

models. Thousands of researchers, scientific illustrators and digital artists have already 

begun using cellPACK to enhance communication, education and outreach (Battle et al.37 

and http://biochem.web.utah.edu/iwasa/projects/HIV.html). As exemplified by the winners 

of our first annual autoPACK Visualization Challenge: Present HIV in Blood Plasma using 

cellPACK at http://autopack.cgsociety.org38 (Fig. 6b), accessibility to mesoscale structure 

has provided new mechanisms to reach broad audiences.

To view models, install the software, learn from tutorials or participate in evaluating, 

editing, or initiating models, please visit http://cellPACK.org. The open-source code and 

custom scripts used for this study are available at https://github.com/gj210/autoPACK.

METHODS

Overview

cellPACK is a toolkit that generates probabilistic 3D models based on a list of ingredients 

and a set of constraints, which may include 3D structures of biomolecules, three dimensional 

Johnson et al. Page 7

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://3dvcell.org
http://biochem.web.utah.edu/iwasa/projects/HIV.html
http://autopack.cgsociety.org
http://cellPACK.org
https://github.com/gj210/autoPACK


representation of membranes and compartments, and procedural description of fibrous 

components such as DNA or polysaccharides. The graphic user interfaces to cellPACK 

facilitate end-user interactions and public project software repositories facilitate open-source 

development.

Data Structure

cellPACK operates as a standalone Python algorithm that takes inputs from recipe files to 

produce result files, but most end-users currently access cellPACK through several GUIs. 

End-users may work with cellPACK on many levels: to view the resulting model of a 

previous packing; to load and modify an existing recipe in order to produce a new packing 

result; or to construct recipes, ingredients, and their components from scratch. In each case, 

the user interacts with a consistent cellPACK data structure, allowing easy transition to work 

at different skill levels throughout any nested recipe hierarchy and allowing cellPACK to 

operate across all data scales.

We have defined a generalized referential Hybrid Model Format (HMF) file type that is used 

throughout cellPACK’s prototype database to store recipe and ingredient data. cellPACK 

generates and reads the generalized hybrid model file (HMF), as a flexible referential file 

type that can adapt to handle multiple (and future) data types while minimizing data 

redundancy. cellPACK generates and reads XML, and Json versions of HMF. The 

cellPACK algorithm uses recipe scripts, HMF files, or recipe GUI parameters to assemble 

input data from a variety of formats and produces a collection of HMF output files into a 

directory that includes a primary recipe file with pointers to any nested recipe or ingredient 

files, an autoPACK Result File (.apr) for each container, intermediate construction files and 

analysis files. An ingredient file (actually a specific variation of the more general recipe file 

type) contains data or reference pointers to data in public databanks that allow the hosting 

software to reconstruct meshes (such as ultrastructural organelles or protein representations) 

for use in modeling, viewing, or analysis. Nested interactions and general HMF flexibility 

allows a recipe to become an ingredient in a higher-level recipe to minimize redundancy 

when working across multi-scale data. We described autoPACK with “recipes” and 

“ingredients” for semantic clarification and convenience, but from a programming 

perspective, autoPACK uses only the concept of “recipe” as its single universal data 

structure. An ingredient is a more specific recipe type, defined as a recipe that includes an 

associated structure (or for procedural ingredients, a potential structure) and in the simplest 

terms can be considered “an object to pack”. An .apr file contains a list of ingredient IDs 

with positions and orientations as described in the online documentation (http://

www.autopack.org/documentation/-apr-autopack-result-file-anatomy) as well as a pointer 

back to the recipe that created the .apr. By default, the structural and other data files that the 

HMF files ultimately reference get downloaded into a cache directory system that 

reconstructs the needed portion of the online database on the fly during an interactive 

modeling or viewing session. The software can also access the ingredients directly from 

local or cloud storage via browser loading or via custom file paths to known sources.

As described in Fig. 2, the following levels of data structure interaction are visually 

separated into separate “tab” panels of the default cellPACK GUI.

Johnson et al. Page 8

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.autopack.org/documentation/-apr-autopack-result-file-anatomy
http://www.autopack.org/documentation/-apr-autopack-result-file-anatomy


Interaction Level 1: View the resulting model of a previous packing—At the top 

(and simplest) level of interaction with the data structure, a user can visualize a model that 

resulted from any stored previous packing via the autoPACK result file (.apr). The .apr file 

points to the main recipe that produced the result, followed by a list of component IDs and 

matrices (organized by any sub-recipes) needed to rebuild the scene (for details see http://

www.autopack.org/documentation/-apr-autopack-result-file-anatomy). To visualize this 

model, cellPACK pre-constructs the scene components (container and ingredient 

representations and packing surfaces) as described in the “cellPACK Host Scene 

Preparation…” section of the Methods below. It then generates, organizes, positions and 

orients one instance (a computationally efficient copy) for every ingredient-ID per matrix 

line listed in the .apr file. Lastly, cellPACK produces a corresponding graphic user interface 

as shown in Fig. 2, all in one step. The user may additionally load analysis files associated 

with the .apr, such as arrays that describe the distance relationships within the volume. The 

“bottom level” ingredient recipes do not typically point to a default .apr file, but a properly 

constructed primary or midlevel recipe file includes a pointer to a default .apr file that any 

user can exactly recreate by packing the default recipe.

The input and output HMF files can be accessed directly for visualization and analysis, or 

for other uses such as Brownian Dynamic simulation. For example, we provide uPy plugins 

that construct cellPACK scenes into a host’s native GUI, where 3D models (coarse 

molecular surfaces by default) represent each ingredient. To enable standard laptop 

computers to handle the bulky data of a typical cellPACK model, uPy constructs cellPACK 

scenes into hosts with efficient sensible organizations that are native to each system, taking 

advantage of hardware instancing and other host optimizations that reduce data redundancy 

and other computational bottlenecks where available.

Displaying cellPACK results in uPy-enabled hosts provides access to the capabilities of each 

host for interacting with and analyzing the model. With the View Tab, entire organelles or 

individual ingredients can be hidden, deleted, added, colored, etc. Representations of 

molecular ingredients can be swapped and altered. In conjunction with native host functions, 

distances can be calculated or more sophisticated energetic potentials can be displayed as 3D 

heat maps. Points of closest contact can be illuminated, and simulations can be initiated or 

animations generated with a variety of techniques such as those described in our embedded 

Python Molecular Viewer (ePMV) paper.

Interaction Level 2: Modify an existing recipe to produce a new packing result
—At this deeper interaction level, a user can work directly with the recipe file (i.e., the same 

“primary recipe” file and all nested recipe files that the resulting .apr file will point back to 

when produced), to reproduce a packing result, or modify parameters in the collected 

recipe(s) to produce a new packing result. When this recipe is run, it will produce only 

an .apr file by default, but the user may also select to write out a collection of grid arrays and 

other files useful in analysis. Depending on the host software used to perform the packing, 

cellPACK can also store a representative image or movie of the packing result (useful for 

automated packing while exploring parameter space). The primary recipe file can be a 

bottom-level recipe that sets parameters directly upon container and ingredient Python 

objects, or it can refer to more complex nested recipes that it unites (as in the HIV model in 

Johnson et al. Page 9

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.autopack.org/documentation/-apr-autopack-result-file-anatomy
http://www.autopack.org/documentation/-apr-autopack-result-file-anatomy


Fig. 6a), with the option to override particular sub-recipe ingredients or parameters 

(Supplementary Fig. 5). HMF flexibility allows a primary recipe to combine sub-recipe 

pointers with container and ingredient Python objects. The result of a new packing run can 

be written to an .apr and visualized from the View tab or visualized immediately from 

memory using the same process described in Data Structure Level 1 above.

As demonstrated in Fig. 3, randomness and biases from different packing methods can be 

quantified with built in analysis tools such as the planar distribution histograms (generated 

with mathplotlib, http://matplotlib.org) and box and whisker plots. Position and orientation 

histograms are used to highlight variations about a mean uniform distribution (frequency) 

line for randomly distributed objects or about a target frequency curve for gradient affected 

objects. When packing with the default benchmark goal of a uniform random distribution, 

spikes in the planar distribution histogram averaged over multiple runs can indicate 

problems in the algorithm or recipe data that warrant further manual investigation. Box and 

whisker plots can reveal at a glance any global skewing across orthogonal selections from 

within a fill volume.

Size-dependent available volume graphs mathematically track the distribution of negative 

spaces, to reveal what scales of protein-sized molecules could diffuse through these pore 

networks. Variations of these void-pore networks can be used to calculate permeability or as 

a starting point to simulate microscale flow (especially useful in macroscale engineering 

applications i.e. via the more generalized autoPACK software (http://etd.lsu.edu/docs/

available/etd-08022006-140010/unrestricted/Zhang_dis.pdf).

Interaction Level 3: Construct recipes, ingredients, and components from 
scratch—Whether nested in other recipes or a single flat (bottom-level) recipe, a recipe 

structure eventually points to containers and ingredients that it assembles and can optionally 

modify or override with parameters. Containers and ingredients become Python objects 

when cellPACK operates upon them as inputs and a user can choose to generate them 

directly as recipe lists using HMF keywords in either XML, or Json formats (inline or with 

file pointers to subrecipes) or parametrically with a Python script. The uPy cellPACK GUI 

provides a Build tab to assist with recipe production. The current version enables a user to 

load a variety of data representations (e.g., the surface model of a Protein Databank File 

(PDB) generated with ePMV or any molecular viewer) in order to produce an ingredient-

level recipe file, e.g., a container with an associated recipe of ingredients to pack, or an 

ingredient with associated structure and collisionTree files.

The cellPACK GUI working in uPy supported hosts also allows users to create recipes (that 

use only cellPACK defaults) on the fly by dragging and dropping ingredient and container 

geometries into provided scene groups (see a demonstration at http://www.youtube.com/

watch?v=S94GUmFQ7yM). cellPACK recognizes the new ingredients placed and generates 

the default ingredient parameters by type. cellPACK then allows the user to modify these 

parameters through the standard Pack tab GUI. Recipes can be exported from the GUI 

or .apr files created by clicking a “pack” button.

Johnson et al. Page 10

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://matplotlib.org
http://etd.lsu.edu/docs/available/etd-08022006-140010/unrestricted/Zhang_dis.pdf
http://etd.lsu.edu/docs/available/etd-08022006-140010/unrestricted/Zhang_dis.pdf
http://www.youtube.com/watch?v=S94GUmFQ7yM
http://www.youtube.com/watch?v=S94GUmFQ7yM


cellPACK Host Scene Preparation for Result Visualization and Interactive Packing

To generate a cellPACK model, a user provides an environment volume, a selection volume 

to pack, and at least one recipe of ingredients. The environment volume may be an empty 

box or divided into containers that compartmentalize the space. A selection volume defines 

some subsection of the environment volume as the volume to be packed and is independent 

of container boundaries– the inset rectangle of Supplementary Fig. 6a (labeled “User 

selection” in Supplementary Fig. 6b) is an example of a selection volume used for packing. 

Environment volumes, selection volumes, containers, recipes, and ingredients and the 

parameters that define how these packing components interact can be declared in scripts, 

imported from other file types, created live in the visualization hosting software, or modified 

live through a cellPACK GUI. When a cellPACK recipe is run to produce a new packing 

result, the result is both stored in memory and written to an .apr file along with optional 

analysis files. To visualize the result of a previous packing from a file (via the View tab) or a 

current packing from memory (via a new Packing run from within the Pack tab), cellPACK 

first generates a representation of each unique geometry that will be represented in the final 

model to prepare the software. These single geometric models get efficiently instanced 

during visualization. Certain types of packing modules can optionally use this “visualization 

root” geometry directly in combination with capabilities native to the hosting visualization 

software to provide novel packing options, such as native collision detection or physics 

engines.

Definition of Scene Components

Selection volumes define the volume to pack—A selection volume can be defined 

mathematically in a script, manually as an interactive selection in a 3D viewport, or 

automatically set equal to the environment container described in the next section. A 

selection volume is always orthogonal to the origin of the scene, but may be set to any scale 

on the x, y, and z axis including scales equal to zero to produce a point, line, or 2D plane 

selections. Selections can have names and be looped in a Python packing script, for 

example, a user could build and name multiple cubic objects in their visualization host 

software then loop through these objects as selection boundaries to pack each in succession 

(or in parallel with multiprocessing) to fill a larger volume in a checkerboard fashion. With 

scripting, a polygonal object can be used to make complex 3D selection shapes.

Environment and ultrastructure containers—Similar to the selection volume, 

cellPACK requires at least one container, which is defined by default as the environment 

selection box. The environment container may be defined mathematically in a script, 

manually as an interactive selection in a 3D viewport, or automatically as a bounding box of 

a set of polygonal data (containers), for example, a model of organelles exported from a 

segmented tomogram with surface meshes centered on the bilayers.

When visualizing a result or performing an interactive packing, cellPACK first analyzes the 

prepared cellPACK scene in the 3D host to store any existing objects and the names of any 

annotated objects found. If the declared or live selection volume intersects with any found 

container objects, and a container’s annotation name matches a recipe name, then cellPACK 

associates that specific recipe to that container. For example, polygonal mesh containers can 

Johnson et al. Page 11

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be exported from tomography software such as IMOD44 in VRML format with names 

annotated on each organelle mesh. These names get retained when imported into the host 

software and can automatically be associated with recipes if they exist when subsequently 

initializing a cellPACK recipe for a new packing run.

If surfaces are not annotated or associated recipes are not found in the library, a user may 

link to or construct them from scratch. A recipe file may also contain or reference a 

container object or container object file to build the containers into the scene as part of the 

recipe environment preparation process. Currently, containers may be imported or 

referenced as polyhedral meshes (vrml, collada, fbx, .c4d, .maya, .max, .blend, or .si file 

types), or as files of vertices and faces. The environment container may contain a recipe as 

well and the environment box is typically used to bound what cellPACK would otherwise 

consider to be an infinite “external” recipe.

Recipes—A minimal recipe HMF file contains a list of ingredients (ingredients are 

programmatically just sub-recipes) and a recipe name (often associated with a container 

name) to pack. A more typical recipe file may also include: parameter overrides for 

particular ingredients; pointers to other recipe files that the code recursively integrates into 

the model; containers or pointers to container files; a selection box or selection name (to 

pickup interactive selections) in which to bound ingredient packing; sub-recipe groups that 

combine the ingredients of multiple sub-recipes associated with each container; container or 

global environment modification parameters such as prohibited regions of packing or 

preferential packing gradient modifications; or overrides to default global packing 

parameters, result file paths, etc.

More sophisticated recipes can be scripted in Python to enable script level modification of 

cellPACK functions, for example, to loop through multiple packings, to generate multiple 

ingredients with just a few lines of code by iterating parameter values in loops, or to write 

out custom analysis files.

Ingredients—An ingredient is a specialized recipe type that has a geometric representation 

associated with it (this can be a single mesh or an entire packing result for example), most 

simply defined as an object to pack. A minimal ingredient HMF file contains an ingredient 

type, name, collisionTree list or collisionTree file pointer, and a representation or 

representation file pointer. Collision trees are used for efficient collision detection using the 

default jitter packing module– one of the local packing modules available in cellPACK and 

to update the packing grid with all other packing modules. A more typical ingredient file 

may also include: ingredient parameter default overrides (e.g., PriorityWeight, packing 

mode, rotation boundaries); interaction partners or interaction partner file pointers; data 

references (e.g., PDB or EMDB files used to generate the representation including pointers 

to custom PDB files stored in the cellPACK database, as well as non-spatial data); or 

alternate parameter triggers used by the code for logic operations, e.g., to alter parameters 

mathematically if packing in particular environments.

Currently, cellPACK recognizes a variety of types of ingredients. These include: (1) 

ingredients that have been manually or computationally placed within the selection volume 

Johnson et al. Page 12

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prior to the cellPACK run; (2) soluble rigid-body ingredients that will be packed within 

given volumes; (3) membrane-spanning ingredients (including lipids) that orient normal and 

with defined directionality to a membrane surface with variable axial rotation and 

precession; (4) custom procedural ingredients that build an extended structure from smaller 

primitives, such as actin filaments and DNA; (5) procedural fiber ingredients that extend 

variable length wavy, kinked, and branched curves through the volume. In addition, HMF 

files allow an existing recipe or recipe result .apr file to be used as a nested-recipe 

ingredient. For example to pack a cellPACK model of HIV into Blood Plasma, the HIV 

HMF recipe or result can be treated as an ingredient for efficient referential reconstruction 

into the scene using the same methods but recursively described in Data Structure above. If 

treated as a result, the entire HIV model represented by a provided .apr file would pack as a 

single rigid body, but if treated as a recipe, the HIV envelope container would pack first into 

the serum before each of the HIV sub-recipe ingredients could pack into it, according to 

their global priority, while interacting with the blood plasma components as they 

simultaneously pack.

Producing a New Packing Result Step 1: Build a Grid (or load an existing grid)

With a recipe established, in order to produce a new result, cellPACK first organizes all of 

the containers and ingredients declared in the recipe (and recursively through any nested 

recipes) to create master lists. cellPACK uses these lists to subdivide the environment 

container into a grid that associates multiple types of data with the spatial data of the 

packing scene. The grid describes the space and tracks changes efficiently, for example, by 

enabling algebraic identification of neighboring points and previously placed ingredients for 

distance evaluations, collision tests, or agent interactions between objects.

To create the grid (Supplementary Fig. 7), cellPACK sorts the list of all ingredients by the 

packing radius parameter (by default: the radius of gyration of a molecule), and uses the 

smallest packing radius to establish a cubic grid with a diagonal spacing equal to that 

smallest packing radius (Supplementary Fig. 6c–d). By default, the grid fills the selection 

box, but can optionally be expanded to fill the environment box to reduce any boundary 

issues, to prepare for multiple consecutive packings in the same packing scene, or to 

incorporate grid-weighting effects from nearby containers or previous ingredients that are 

not already contained by the selection box.

After building the master grid, cellPACK uses the list of containers to compartmentalize the 

grid (Supplementary Fig. 6e). cellPACK uses a signed-distance function to assign each point 

in the grid to an appropriate container and to specify whether it is inside or outside of its 

surface. The system acts recursively, so surfaces can be nested in other surfaces, and the 

points inside of one surface and outside of a deeper surface remain associated with the 

recipe for the more superficial surface. For example, HIV in situ nests from superficial to 

deep as: (1) Host blood plasma (Environment recipe bound by the environment box); (2) 

HIV envelope (Surface recipe); (3) HIV matrix (Volume recipe); (4) HIV capsid (Surface 

recipe with no ingredients, only a container representation); (5) HIV genome region 

(Volume recipe). See more recipe interaction details in Supplementary Fig. 5.

Johnson et al. Page 13

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



If there are particularly small molecules (such as lipids or ions), rather than refining the 

entire master grid volume for one subset of very small ingredients, separate subdivisions are 

assigned and associated with the master grid. These finely subdivided grids are then 

associated with lookup tables in the master grid for fast sorting. For example, surface 

polygons with sides longer than the master grid spacing are subdivided to make fine surface 

points for lipid packing and tracking, allowing them to pack tightly in a continuous 

membrane. At the same time, the master grid is only as fine as it needs to be to allow all of 

the macromolecular ingredients to explore continuous space while avoiding collisions.

The grid is thus compartmentalized and each discrete voxel in space is associated with a 

container and its accompanying recipe of ingredients. In the final grid preparation step, 

cellPACK weights the grid with any optional container-level packing bias functions 

provided in the recipe (Supplementary Fig. 6f). During packing (detailed below), the signed-

distance relationships along with the nearest neighbors, weighting, and other data stored 

with each grid point get updated to provide efficient lookup tables rather than recalculating 

relationships redundantly during packing.

To calculate the total number of each ingredient instance that should be placed into each 

compartment’s surface or interior, the area for each container surface and the volume of 

each compartment (including the exterior compartment) is calculated. Each ingredient’s 

molarity or surface density is then multiplied by the organelle volume or surface, and 

modified by any special localization gradient values that may affect local concentrations 

within a volume or surface. As noted in Fig. 5, logic or mathematical operators can modify 

the total number of ingredients to recapitulate observed values. To generate a whole number 

for the number of instances that will be packed, the numberOfInstances parameter value 

calculated from the concentration gets rounded up or down probabilistically. For example, if 

the raw numberOfInstances calculates to 14.73 molecules for the container, there is a 73% 

chance that the number will round up to 15, otherwise it gets rounded down to 14. This 

ensures that for volumes and surfaces with very low concentrations, there will still be a 

finite chance to include one instance of the ingredient.

Producing a New Packing Result Step 2: Ingredient Packing Priority (order is important)

Prior to packing, the master list of ingredients is sorted by a PriorityWeight ingredient 

parameter that reflects the difficulty of packing. Early studies revealed that larger, longer, 

and more branched ingredients are harder to pack homogenously than smaller globular 

ingredients as a volume gets crowded. We developed a simple default definition of priority 

weighting that gives more difficult ingredients a higher probability to pack earlier in the 

process:

where the surface area and volume are calculated by MSMS45, the encompassing radius is 

the maximal extent of the molecule from its packing center, and the constant is set to one by 

default. The Constant term allows an ingredient or recipe to bias the PriorityWeight of an 

ingredient or to tailor a Constant value across multiple packing results until desired densities 

Johnson et al. Page 14

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are reached. A user can completely override the PriorityWeight of each ingredient with 

values coded into the ingredient file or broadly in the recipe file or they can override the 

default PriorityWeight function with a recipe script. Ingredients with user-defined negative 

PriorityWeights will pack first, in succession, starting from the ingredient with the most 

negative packing priority. Ingredients with a packing priority of zero will have the packing 

priority calculated by the default PriorityWeight equation shown above which will then be 

considered with ingredients that have user-defined positive PriorityWeights. Any manually 

overridden positive PriorityWeighted ingredients will be sorted with the calculated 

PriorityWeighted ingredients and will then pack in a random probability-biased order. For 

example, in the synaptic vesicle model (Fig. 5), all of the bulky vesicular ATPase proteins 

were given negative priority-weights, to ensure that they were given space to pack within the 

vesicles. Large positive priority-weights were used to “encourage” the lipids to pack as the 

last of the surface ingredients, while still tending to pack well before the small glutamates 

attempt to pack into the matrix of the vesicle. Without these empirically adjusted overrides, 

all ingredients would pack in a random but weighted order by default.

Producing a New Packing Result Step 3: Pack and Track

With all of the recipe and ingredient data connected to the spatial data of the containers via 

the grid, cellPACK uses the local packing method declared in each ingredient file, e.g., an 

agent packing spring method described in the Procedural Packing section below is detailed 

in Supplementary Fig. 8, to place recipe ingredients onto and into their appropriate 

containers (Supplementary Fig. 6h). Regardless of the local packing method, when a suitable 

place for an ingredient is found, an instance of the ingredient gets deposited and the grid is 

updated with knowledge of the ingredient and any pertinent data linked in from the 

ingredient’s file. Distances to the ingredient surfaces are updated and stored in the 

neighboring grid points and the ingredient identification is added to any points where the 

newly deposited ingredient becomes a new closest ingredient. When an ingredient gets 

picked, it searches through a list of grid point distances (that may be weighted globally or 

locally by other factors) and can only pick a point with a large enough minimum distance to 

accommodate the ingredient’s packing radius. A typical randomly-packing ingredient will 

analyze the current density of the fill, and if sparse, will pack on any random point rather 

than running the expensive sorting calculation. This calculation makes the filling more 

efficient later when the fill becomes denser and the sorting gets triggered appropriately. The 

filling loop continues until there are no more ingredients to add or until there are no more 

points available with radii large enough to accommodate more ingredients.

Procedural Packing (Branching Fibers or Crystals)

Procedural ingredients grow according to rules defined in their ingredient file 

(Supplementary Fig. 8). When a procedural ingredient is added, it can grow up to its 

maximum length immediately, or get deposited as a procedural seed for later extension 

(Supplementary Fig. 9). At any time in the fill, a live seed can be called upon (either 

initiated by an agent, random probability, or immediately upon its placement) to grow, 

pause, or die. As each unit is added, the total length or other property of the ingredient is 

evaluated and a probability is calculated to either continue or to terminate the growth. 

Growth can also be paused, returning into the main loop to continue packing other 

Johnson et al. Page 15

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ingredients elsewhere, but leaving the end of this fiber or crystal as a dormant seed that 

could continue to grow once triggered. As the ingredient is extended, other types of seeds 

can be added to create branches. For example, in the construction of an actin cytoskeleton, a 

unit of actin with Arp2/3 could be added, creating a branch that could be extended at any 

time. Crystals can be grown in a similar fashion according to spacegroups or other 

constraints and rules provided by the crystal seed’s ingredient file. Currently, cellPACK 

includes procedural processes for the construction of filaments with defined helical 

symmetry (such as actin), as well as nucleic acid, and more general spline-based filaments 

(see Fig. 4 von Willebrand Factor and Fig. 6c mycoplasma lipopolysaccharides).

Preferential Packing: Gradients, interactomes, agents, density clustering

By default, cellPACK places ingredients randomly, on, in, or around polyhedral surfaces, 

creating a homogenous distribution. If desired, global and local controls can be applied to 

generate preferential and even deterministic deposition. While placing objects, a variety of 

probability-logic driven and agent placement systems can be applied to recapitulate current 

data or theories of localization or interaction in the model. This may be specified at a global 

or local level. For instance, a Ran-GTP ingredient can be globally biased to pick a point 

closer to the center of a dividing cell or closer to the cell’s chromatin46 or on a local level, 

an ingredient with agent behaviors can bear a list of binding partners that affect how it 

packs.

If not offered in the core code, special traits can be programmed into recipe scripts. For 

example, to match the Takamori paper’s observations when constructing the Synaptic 

Vesicle recipe (Fig. 5), we found it necessary to implement a method for “quantization” 

effects: experimental observations from Takamori et al. had revealed that, perhaps through 

some unknown sorting mechanism, every observed vesicle included at least one vATPase 

regardless of the vesicle’s diameter. Within a cellPACK Python recipe script, the default 

probability of placement for the vATPase ingredient was modified with a simple logic 

operation run after the number of vAPTases was calculated for a given vesicle (if 

vATPaseCount == 0: vATPaseCount=1) to ensure that at least one of these types of low-

copy-number ingredients were included in each vesicle.

In the current release of cellPACK, we have implemented a few local agent methods. When 

an agent picks a location in which to position itself, it gets a list of neighbors in that area, 

scans the list for known binding partners, and probabilistically determines if it should be 

paired with any of them. When an agent decides to pair, one of several approaches can be 

used to position the new ingredient adjacent to an existing interaction partner: as 

demonstrated in the lipid packing of HIV in Fig. 6a, the closePacking algorithm weights the 

points surrounding the existing partner(s) and attempts to pack within this list of points; as 

demonstrated in the hexagonal packing of Gag-Ca in Fig. 7, binding transformations can be 

used to constrain growth from a selected interaction partner edge; or as demonstrated with 

the DNA binding protein HU in Fig. 6c, binding transformations can be constrained along a 

spline or surface, etc.; and a non-specific tight binding method generates a spring(s) to pair 

the two binding surfaces of the ingredients and relaxes the spring-connected system with 

appropriate collision detection that includes all neighboring geometry or atoms. This type of 

Johnson et al. Page 16

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biased interaction can assist with the construction of larger cellular environments, for 

instance, to guide the interaction of DNA-binding proteins with DNA. Another approach 

modifies the weighting of the grid that surrounds particular container or ingredient surfaces 

to increase or decrease the probability of packing for any agent ingredient parameterized to 

recognize those particular grid biases. Less specifically, an ingredient can pack against itself 

or other ingredients using an optional “closePacking” method that biases the grid to 

encourage ingredients to pack tightly against previously packed ingredients. This approach 

serves well to pack lipid bilayers up to their correct densities from large libraries of single or 

patch lipid ingredients we have isolated from molecular dynamic resolved lipid PDB files. A 

recent experimental integration of the LipidWrapper software via a postprocessing protocol 

has provided a faster and more robust solution to pack lipids into bilayers. We are now 

working with the LipidWrapper programmers to integrate this as a new optional packing 

module specifically designed to pack lipids as patches onto surfaces directly in cellPACK 

with standard priority weighting and all other cellPACK features. The integration of 3rd 

party packages such as LipidWrapper for packing molecular dynamics-solved lipid patches 

into ultrastructure surfaces (http://nbcr.ucsd.edu/data/sw/hosted/lipidwrapper), and several 

previously integrated packages including panda3D with Bullet and Open Dynamics Engine 

physics engine support in Python (http://www.panda3d.org), RAPID for triangle intersection 

detection (http://gamma.cs.unc.edu/OBB), and scipy with KDTree to quickly collect 

neighboring molecules or polygons (http://www.scipy.org), demonstrates how the modular 

framework of cellPACK can expand to interoperate an extensive variety additional of 

packing and analysis algorithms via Python as the project continues to grow.

cellPACK models and simulated fluorescence microscopy

We tested six models for distribution of HIV-1 envelope glycoprotein (Env) for consistency 

with recent observations from fluorescence nanoscopy34 (FN). In the FN experiments, Env 

distribution was visualized with fluorescent antibodies, and virions were manually classified 

into three categories: particles with a single focus of fluorescence (presumed to be one 

cluster of Env), particles with two foci, and particles with three or more foci. For an 

immature virion (the PR(−) phenotype, missing the protease essential for maturation), the 

study observed that 28% of the virions had a single focus, 24% had two foci, and 48% had 

three or more foci.

cellPACK generated ten models for the distribution of the Gag protein in the immature 

virion to be consistent with observations reported from cryo-electron tomography47 (Gag-

CET). Gag is observed to form hexamers, which assemble to form an irregular array that 

covers roughly 2/3 of the inner surface of the membrane. Our Gag models are generated 

with a cellPACK neighbor-growth packing module, which in this case extends hexagonal 

tiles from any existing hexagonal tile edges as described in the Preferential Packing section 

of the online methods. An open hexagon edge is selected randomly and a tile is hinged on 

that edge to an angle that is perpendicular to the packing surface. If this new hexagon does 

not collide with an existing tile, the position is accepted. Since it is impossible to cover 

perfectly a curved shape using regular hexagons, this tiling introduces similar defects as 

observed in the tomography models. The hexagon radii of 55 Å matches the size provided in 

the tomography models and the tiling is programmed to stop when the coverage reaches 

Johnson et al. Page 17

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://nbcr.ucsd.edu/data/sw/hosted/lipidwrapper
http://www.panda3d.org
http://gamma.cs.unc.edu/OBB
http://www.scipy.org


60% of the packing surface’s surface area to match to observed coverage by Gag. The script 

is provided at http://mgldev.scripps.edu/projects/autoPACK/web/scripts/testTiling.py

cellPACK projected the Gag hexagons onto the 150 nm diameter envelope packing surface 

of HIV-1_0.1.6, and positioned Ma hexamers to be consistent with the Gag-CET 

observations.

An ingredient for Env is modeled from the trimer generated from PDB entry 4nco with the 

b12 Fab fragment from PDB entry 2ny7, currently stored as HIV1_Env_4nco_0_1_3 in the 

cellPACK database. No structural information is available for the entire C-terminal 

domain48–50, so it is approximated as a sphere of 450 amino acids, with a radius of 2.4 nm.

The Env model is placed randomly within the constraints of the six competing hypotheses 

represented in six recipes with hypothesis labels from Fig. 7: R-noMa places Env randomly 

on a uniform virion membrane as a control; R-offMa places Env in any empty space with no 

Gag hexagon (i.e., onto the 40% empty region of the envelope surface); R-inMa places in 

the center of any Gag hexagon (i.e, restricted to the 60% Gag covered region); Close-Ma 

places Env next to any of the Gag hexagons to simulate a 100% Env binding to Gag, but 

with some occlusion by the Env C-terminal tail; Close-Ma-Env places Env next to any of the 

Gag or next to any existing Env with a 50% chance to choose either; Close-Env places Env 

next to any existing Env.

For each hypothesis, cellPACK performed 100 models of Env distribution on each of the 10 

Gag virion models. Each model included 7±5 Env trimers, with the number chosen 

randomly to sample the range of values provided in Fig. 2b from the FN study. The Env 

positions are computed using standard cellPACK recipes with the constraints provided for 

each hypothesis.

The resultant models are viewed from three orthogonal directions and fluorescence images 

are simulated using a Gaussian filter that approximates the point spread function, which 

assumes a 400 Å resolution of the STED setup. The 3D coordinates of the fluorophores are 

interpolated within a 3D grid of a with 100 Å gridpoint spacing. The interpolation to the 

camera resolution is done by incrementing the closest grid point to each Env positions. The 

grid is then convoluted with a 3D Gaussian function with HWFM = 400.0 Å to produce a 

simulated fluorescence image. The convoluted grid is summed individually on the three axes 

and interpolated to the proper resolution of 1 pixel = 200 Å. The 2D grid is then displayed 

using an offset “hot” color map.

Images are automatically separated into the three categories used in experimental FN work 

(single, two, and multiple foci) to generate the statistics for each model, for comparison with 

Fig. 3b from the FN paper. Before the counting, the images are filtered by removing 

background values below a certain threshold, and are then subject to a feature detection 

algorithm provided by the package scipy51 (http://www.scipy.org). This approach returns 

the number of connected pixels forming a blob. In order to make the distinction between the 

three categories, we look at the size of each of these features, assuming a small blob 

represents a unique foci, while a large diffuse one can represent multiple foci 

(Supplementary Fig. 2). Supplementary Fig. 3 describes the sensitivity of the three 

Johnson et al. Page 18

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mgldev.scripps.edu/projects/autoPACK/web/scripts/testTiling.py
http://www.scipy.org


categories to the parameters of this counting algorithm, which was used to provide a more 

objective and controlled measure compared to manual human counting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank Takamori et al for the model of an average synaptic vesicle, C.P. Arthur for his synaptic 
cleft tomogram model, K. Schulten and A. Shih for their HDL models from molecular dynamics, K. Schulten and 
J.R. Perilla for their extra HIV capsid models, M. Yeager for his HIV capsid model, T.D. Goddard for developing 
Chimera’s .apr reader and for simplified HIV capsid models, J.A. Briggs and his lab for discussions on details on 
their HIV Ca tomography models, and J. Klusak (http://www.jiriklusak.cz) for his award-winning model of the HIV 
life cycle. We thank our colleagues for detailed suggestions on cellPACK experiments and extended analysis tools 
that can more easily bridge gaps to experimental biology. This is manuscript number 25098 from the Scripps 
Research Institute. This work was supported in part by a predoctoral fellowship from NSF (NSF 07576 to G.T.J.), 
gift donations from Autodesk, grants from the NIH (P41 GM103426 to L.A., M.F.S., and A.J.O., and 
P50GM103368 to D.S.G. and A.J.O.), a QB3 Fellowship grant from the California Institute for Quantitative 
Biosciences, qb3@UCSF to G.T.J., and a UCSF School of Pharmacy, 2013 Mary Anne Koda-Kimble Seed Award 
for Innovation to G.T.J.

References

1. Stölken M, et al. Maximum likelihood based classification of electron tomographic data. J Struct 
Biol. 2011; 173:77–85. [PubMed: 20719249] 

2. Yu Z, Frangakis AS. Classification of electron sub-tomograms with neural networks and its 
application to template-matching. J Struct Biol. 2011; 174:494–504. [PubMed: 21382496] 

3. Ball P. Portrait of a molecule. Nature. 2003; 421:421–2. [PubMed: 12540914] 

4. Harrison SC. Whither structural biology? Nat Struct Mol Biol. 2004; 11:12–5. [PubMed: 14718917] 

5. Wong B, Kjaegaard RS. Pencil and paper. Nat Methods. 2012; 9:1037. [PubMed: 23281572] 

6. Goodsell DS. Escherichia coli. Biochem Mol Biol Educ. 2009; 37:325–32. [PubMed: 21567766] 

7. Goodsell DS. Miniseries: Illustrating the machinery of life: Eukaryotic cell panorama. Biochem Mol 
Biol Educ. 2011; 39:91–101. [PubMed: 21445900] 

8. Vendeville A, Lariviere D, Fourmentin E. An inventory of the bacterial macromolecular 
components and their spatial organization. FEMS Microbiol Rev. 2011; 35:395–414. [PubMed: 
20969605] 

9. Karr JR, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012; 
150:389–401. [PubMed: 22817898] 

10. Szpiro, G. Kepler’s conjecture: how some of the greatest minds in history helped solve one of the 
oldest math problems in the world. John Wiley & Sons; New Jersy: 2003. 

11. Borkovec MDPW, Peikert R. The Fractal Dimension of the Apollonian Sphere Packing. Fractals. 
1994; 2:521–526.

12. Altendorf H, Jeulin D. Random-walk-based stochastic modeling of three-dimensional fiber 
systems. Phys Rev E Stat Nonlin Soft Matter Phys. 2011; 83:041804. [PubMed: 21599195] 

13. Weber, J.; Penn, J. Creation and Rendering of Realistic Trees. SIGGRAPH ‘95 Proceedings of the 
22nd annual conference on Computer graphics and interactive techniques; 1995. p. 119-128.

14. Löhner R, Oñate E. A general advancing front technique for filling space with arbitrary objects. 
International Journal for Numerical Methods in Engineering. 2004; 61:1977–1991.

15. Lubachevsky BD, Stillinger FH. Geometric properties of random disk packings. Journal of 
Statistical Physics. 1990; 60:561–583.

16. Zhang W, Thompson KE, Reed AH, Beenken L. Relationship between packing structure and 
porosity in fixed beds of equilateral cylindrical particles. Chemical Engineering Science. 2006; 
61:8060–8074.

Johnson et al. Page 19

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jiriklusak.cz


17. Stannarius R. Granular materials of anisometric grains. Soft Matter. 2013; 9:7401–7418.

18. Williams SR, Philipse AP. Random packings of spheres and spherocylinders simulated by 
mechanical contraction. Phys Rev E Stat Nonlin Soft Matter Phys. 2003; 67:051301. [PubMed: 
12786140] 

19. Russel D, et al. Putting the pieces together: integrative modeling platform software for structure 
determination of macromolecular assemblies. PLoS Biol. 2012; 10:e1001244. [PubMed: 
22272186] 

20. Blanco M. Molecular silverware. 1. General solutions to excluded volume constrained problems. 
Journal of Computational Chemistry. 1991; 12:237–247.

21. Byholm T, Toivakka M, Westerholm J. Effective packing of 3-dimensional voxel-based arbitrary 
shaped particles. Powder Technology. 2009; 196:139–146.

22. Ando TSJ. Brownian Dynamics Simulation of Macromolecule Diffusion in a Protocell. 
Proceedings of the International Conference of the Quantum Bio-Informatics IV. 2011; 28:413–
426.

23. McGuffee SR, Elcock AH. Diffusion, crowding & protein stability in a dynamic molecular model 
of the bacterial cytoplasm. PLoS Comput Biol. 2010; 6:e1000694. [PubMed: 20221255] 

24. Ludovic, A. uPy: A Ubiquitous CG Python API with Biological-Modeling Applications. Graham, 
J.; Johan, H.; Arthur, O.; Michel, S., editors. Vol. 32. 2012. p. 50-61.

25. Sanner MF. Python: a programming language for software integration and development. J Mol 
Graph Model. 1999; 17:57–61. [PubMed: 10660911] 

26. Pettersen EF, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J 
Comput Chem. 2004; 25:1605–12. [PubMed: 15264254] 

27. Putnam, FW. The Plasma Proteins. Vol. IV. Academic Press; 1984. Progress in Plasma Proteins; p. 
1-44.

28. Takamori S, et al. Molecular anatomy of a trafficking organelle. Cell. 2006; 127:831–46. 
[PubMed: 17110340] 

29. Arthur CP, Dean C, Pagratis M, Chapman ER, Stowell MH. Loss of synaptotagmin IV results in a 
reduction in synaptic vesicles and a distortion of the Golgi structure in cultured hippocampal 
neurons. Neuroscience. 2010; 167:135–42. [PubMed: 20138128] 

30. Johnson GT, et al. 3D molecular models of whole HIV-1 virions generated with cellPACK. 
Faraday Discussions. 2014

31. Pornillos O, Ganser-Pornillos BK, Yeager M. Atomic-level modelling of the HIV capsid. Nature. 
2011; 469:424–7. [PubMed: 21248851] 

32. Zhao G, et al. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular 
dynamics. Nature. 2013; 497:643–6. [PubMed: 23719463] 

33. Gardner MK, Odde DJ, Bloom K. Hypothesis testing via integrated computer modeling and digital 
fluorescence microscopy. Methods. 2007; 41:232–7. [PubMed: 17189865] 

34. Chojnacki J, et al. Maturation-dependent HIV-1 surface protein redistribution revealed by 
fluorescence nanoscopy. Science. 2012; 338:524–8. [PubMed: 23112332] 

35. Ridgway D, Broderick G, Lopez-Campistrous A, Ru’aini M, Winter P, Hamilton M, Boulanger P, 
Kovalenko A, Ellison MJ. Coarse-grained molecular simulation of diffusion and reaction kinetics 
in a crowded virtual cytoplasm. Biophys J. 2008; 94:3748–3759. [PubMed: 18234819] 

36. Johnson GT, Autin L, Goodsell DS, Sanner MF, Olson AJ. ePMV embeds molecular modeling 
into professional animation software environments. Structure. 2011; 19:293–303. [PubMed: 
21397181] 

37. Battle, G.; Costanzo, LD.; Goodsell, DS.; Hudson, B.; Lawson, C.; Voigt, M.; Zardecki, C. RCSB 
Protein Data Bank 2014 Calendar. RCSB; Piscataway: 2013. 

38. Johnson, GT. AMI Newsletter. AMI; Lexington: 2013. Announcing the Winners of the autoPACK 
Visualization Challenge2012: Present HIV in Blood Plasma. 

39. Ahmed T, Shimizu TS, Stocker R. Microfluidics for bacterial chemotaxis. Integr Biol (Camb). 
2010; 2:604–29. [PubMed: 20967322] 

40. Niethammer P, Bastiaens P, Karsenti E. Stathmin-tubulin interaction gradients in motile and 
mitotic cells. Science. 2004; 303:1862–1866. [PubMed: 15031504] 

Johnson et al. Page 20

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Lipkow K, Odde DJ. Model for protein concentration gradients in the cytoplasm. Cellular and 
Molecular Bioengineering. 2008; 1:84–92. [PubMed: 21152415] 

42. Johnson KA, Rosenbaum JL. Polarity of flagellar assembly in Chlamydomonas. J Cell Biol. 1992; 
119:1605–11. [PubMed: 1281816] 

43. Schuster SC, Khan S. The bacterial flagellar motor. Annu Rev Biophys Biomol Struct. 1994; 
23:509–39. [PubMed: 7919791] 

44. Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image 
data using IMOD. J Struct Biol. 1996; 116:71–6. [PubMed: 8742726] 

45. Sanner MF, Olson AJ, Spehner JC. Reduced surface: an efficient way to compute molecular 
surfaces. Biopolymers. 1996; 38:305–20. [PubMed: 8906967] 

46. Clarke PR, Zhang C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol 
Cell Biol. 2008; 9:464–77. [PubMed: 18478030] 

47. de Marco A, et al. Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS 
Pathog. 2010; 6:e1001215. [PubMed: 21151640] 

48. Postler TS, Desrosiers RC. The tale of the long tail: the cytoplasmic domain of HIV-1 gp41. J 
Virol. 2013; 87:2–15. [PubMed: 23077317] 

49. Santos da Silva E, Mulinge M, Perez Bercoff D. The frantic play of the concealed HIV envelope 
cytoplasmic tail. Retrovirology. 2013; 10:54. [PubMed: 23705972] 

50. Steckbeck JD, Kuhlmann AS, Montelaro RC. C-terminal tail of human immunodeficiency virus 
gp41: functionally rich and structurally enigmatic. J Gen Virol. 2013; 94:1–19. [PubMed: 
23079381] 

51. Oliphant TE. Python for scientific computing. Computing in Science & Engineering. 2007; 9:10–
20.

Johnson et al. Page 21

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
cellPACK creates 3D models of the cellular mesoscale. (a) This hand-drawn painting of 

HIV shows three complex packing types–volumetric, surface, and procedural (fibrous)–that 

must interoperate in a mesoscale modeler. (b) autoPACK is a generalized packing algorithm 

that positions collections of objects (ingredients) into, onto, or outside of volumes to satisfy 

provided constraints. It operates multiple types of packing algorithms efficiently on a single 

unified model using an efficient global tracking grid. (c) cellPACK is a biological extension 

of autoPACK optimized to pack molecular structures and other data types into biological 

volumes. In this image cellPACK generates an editable model of HIV by packing a from a 

recipe of molecular ingredients30 into the ultrastructure of an HIV envelope surface.

Johnson et al. Page 22

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Users interact with cellPACK through a variety of different interfaces. (a) User interfaces 

have been developed for modeling, animation, and analysis. uPy generates consistent GUIs 

and models across all supported molecular viewer and professional animation software 

packages to provide sensible modeling, animation, and analysis interfaces rather than 

constructing mesoscale viewers from scratch. Users can construct models de novo as 

described in the online methods and in greater detail in cellPACK’s online documentation, 

or they can adjust the parameters of existing models to modify cellPACK results. In either 

case, users can modify scripts directly or interact through provided GUIs and export the 

modified parameters as a new recipe. (b) Several online tools are available for model 

viewing and interaction. cellPACK results may be displayed online as libraries of static 

images, movies, zoomable images, and interactive 3D models. Online multiscale viewers 

such as Gigapan enable users to register, critique, and annotate models and provide 

interactive guided walkthroughs that highlight notable details. The gallery pages for each 

model at cellPACK.org currently encourage visitors to suggest changes to the models by 

submitting emails or commenting publically on the pages.

Johnson et al. Page 23

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Analysis tools quantify randomness and packing bias. (a) Two methods for packing are 

evaluated with the autoPACK analysis tools. The upper method, using random ingredient 

selection, shows a clear bias, as quantified in the void-pore network, the box and whisker 

plot of distribution statistics, and the graph of occupancies binned along the two axes. The 

lower method, which uses the current default packing modes of autoPACK, shows a more 

uniform distribution by all of these analysis methods, and fills models up to and beyond the 

most common biological densities. (b) Three complex ingredients with different packing 

types can interact while recapitulating the intended distribution functions in this 2D packing. 

Two difficult ingredients (a concave ‘C’ shape and a procedurally grown flexible fiber) pack 

randomly amongst a red convex polarized object that is given two intentional packing 

biases: a distribution39–41 and orientation42,43 preference for the lower left corner of the 2D 

fill area. All graphs show data averaged over 1000 independent runs chosen to have an error 

bound <5%. Histogram bar heights indicate the average frequency per bin with error bars 

equal to the margin of error at 95% confidence interval (1.96*SEM) and Supplementary Fig. 

4 provides larger graphs with values labeled.

Johnson et al. Page 24

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The Human Blood Plasma mesoscale recipe contains information for the most abundant 

macromolecules. This 1,000 × 1000 × 50 nm volume of blood plasma contains 28,755 

ingredient instances that cellPACK calculated in 116 seconds on a typical laptop computer. 

When printed or viewed on screen with the scalebar equal to 150mm wide, the model 

visualization is enlarged to 1,500,000x and the inset is1,000,000x where 1mm of the image 

equals 1nm of the model. In the top half and inset, each ingredient has a unique color. The 

bottom half color-codes the ingredients by their data-source type, which highlights 

molecules with structural uncertainty. Interactively explore and comment on the full micron 

square of blood plasma online at http://gigapan.org/gigapans/85568

Johnson et al. Page 25

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gigapan.org/gigapans/85568


Figure 5. 
Surface and volume packers interoperate to fill complex multi-organelle volumes. A 

synaptic vesicle recipe28 is used to model a single spherical vesicle with multiple stochastic 

variations (a) to the random seed parameter or (b) to the vesicular ATPase ingredient 

density parameter. (c) cellPACK scales to pack more than one interacting container. A 

100nm cube of synaptic vesicle surfaces (center), isolated from the tomogram of an axon 

terminus29 (left) packed tightly with vesicles, reveals a complex intervesicular space that 

creates a difficult packing problem. The molecules belonging to each packed vesicle (right) 

are colored per-vesicle. Note that vesicles in c were modeled as spheres– a common 

technique for hand-segmenting in tomography. These estimating spheres generate a more 

constrained negative space in which to pack a high density of surface proteins compared to 

carefully traced vesicles, but cellPACK can pack the reduced tight negative space that 

results outside of the mathematical spheres. In this particular fill, a probabilistic soft 

collision was applied which very rarely allows proteins to penetrate neighboring bilayers. 

This option is turned off by default, but we applied it here to highlight cellPACK’s flexible 

ability to control interaction across scales, from proteins to organelles in this case.

Johnson et al. Page 26

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
cellPACK can integrate recipes into unified hybrid models that may be iteratively refined by 

content experts and systems-biology database improvements for each organelle system. (a) 
An HIV-in-BloodPlasma model shows seven different recipes (each a different color coding) 

unified into a single model. (b) As part of the autoPACK Visualization Challenge, J. Klusak 

generated this complete model of the HIV life cycle (including an animated version of most 

components) using the cellPACK software in conjunction with molecular modeling 

packages mMaya (http://www.molecularmovies.com/toolkit) and Chimera to generate 

additional molecular ingredients (see http://www.cgsociety.org/index.php/CGSFeatures/

CGSFeatureSpecial/autopack_challenge_winners). (c) Our first model of a whole cell, 

Mycoplasma mycoides integrates recipes with surface, fibrous, and volumetric ingredients 

into a single comprehensive model. Interactive versions, updates and variations of these 

models can be viewed online at http://www.autopack.org/gallery/autofill-viewers.

Johnson et al. Page 27

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.molecularmovies.com/toolkit
http://www.cgsociety.org/index.php/CGSFeatures/CGSFeatureSpecial/autopack_challenge_winners
http://www.cgsociety.org/index.php/CGSFeatures/CGSFeatureSpecial/autopack_challenge_winners
http://www.autopack.org/gallery/autofill-viewers


Figure 7. 
cellPACK models may be used to simulate and interpret results from fluorescence 

microscopy. We constructed a cellPACK recipe for six hypotheses for the interaction of 

HIV-1 Env and Gag in immature virions. (a) Three cellPACK HIV models with Env 

fluorophores are superimposed over their corresponding simulated fluorescence images. (b) 
Samples from each of six the models are shown. (c) A direct comparison of cellPACK 

results to observed data identify ingredient parameter ranges that lead to specific emergent 

behaviors. An automated foci counting algorithm was used to analyze the 3,000 images 

generated for each model, with the sample number chosen to have an error bound <5%. χ2 

analysis with two degrees of freedom, performed to duplicate the significance assessment 

reported in the original experiment, shows that several models with specific interaction 

between Gag and Env are consistent with the observed distribution for the immature PR(−) 

virion, where as a completely random distribution (R-noMa) and a model that clusters Env 

(closeEnv) do not.

Johnson et al. Page 28

Nat Methods. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


