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Abstract

Phylogeography is a popular way to analyze virus sequences annotated with discrete, 

epidemiologically-relevant, trait data. For applied public health surveillance, a key quantity 

of interest is often the state at the root of the inferred phylogeny. In epidemiological terms, 

this represents the geographic origin of the observed outbreak. Since determining the origin 

of an outbreak is often critical for public health intervention, it is prudent to understand how 

well phylogeographic models perform this root state classification task under various analytical 

scenarios. Specifically, we investigate how discrete state space and sequence data set influence the 

root state classification accuracy. We performed phylogeographic inference on several simulated 

DNA data sets while i) increasing the number of sequences and ii) increasing the total number 

of possible discrete trait values. We show that phylogeographic models tend to perform best 

at intermediate sequence data set sizes. Further, we demonstrate that a popular metric used 

for evaluation of phylogeographic models, the Kullback-Leibler (KL) divergence, both increases 

with discrete state space and data set sizes. Further, by modeling phylogeographic root state 

classification accuracy using logistic regression, we show that KL is not supported as a predictor 

of model accuracy, indicating its limited utility for assessing phylogeographic model performance 

on empirical data. These results suggest that relying solely on the KL metric may lead to 

artificially inflated support for models with finer discretization schemes and larger data set sizes. 

These results will be important for public health practitioners seeking to use phylogeographic 

models for applied infectious disease surveillance.
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1. Introduction

For the last decade, researchers have used Bayesian phylogeography (Lemey et al., 2009) 

to investigate the epidemiology of rapidly evolving viral pathogens with the aim of 
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elucidating the contributions of discrete traits, often geographic location, to the propagation 

and persistence of disease outbreaks. Numerous examples are available in the literature 

and recent compelling studies have focused on recent Ebola (Dudas et al., 2017), Zika 

(Grubaugh et al., 2017), West Nile (Swetnam et al., 2018 and influenza H3N2 (Magee et al., 

2017), H9N2 (Yang et al., 2019 and H5N2 (Hicks et al., 2020) virus outbreaks. Bayesian 

phylogeographic discrete trait diffusion models require both a set of molecular sequences 

annotated with isolate sampling times and metadata describing a discrete traits of interest. 

Then, discrete trait diffusion is modeled as a continuous time Markov chain which evolves 

across a phylogenetic tree topology. Modeling discrete trait diffusion in this way enables 

computation of the model likelihood via Felsenstein’s pruning algorithm. (Felsenstein, 

1981). Briefly, the algorithm proceeds via a post-order tree traversal and calculates the 

partial likelihood, backwards in time, for all trait states at internal tree nodes using the 

aforementioned Markov model. In a standard analysis, sequence records with discrete trait 

metadata are assumed to have a probability mass function (PMF) which assigns all mass to 

the observed trait. Concretely, the partial likelihood vectors at the tips are one-hot encoded 

as a vector with dimension equal to the cardinality of the discrete trait state space; the total 

number of distinct values a discrete trait may take.

For many researchers, the predominant method of obtaining publicly available molecular 

sequences for phylogeographic analysis is through the use of GenBank (Benson et al., 

2018), a nucleotide sequence database maintained by the National Center for Biotechnology 

Information or NCBI (Sayers et al., 2020). Usually, researchers parse the country field 

in a GenBank record in order to obtain geographic metadata for phylogeography studies. 

However, metadata representing geographic locations, host age and species, and other 

discrete characteristics are not required when submitting new molecular sequences to 

GenBank databases leading to numerous records with missing metadata. For example, 

previous work by Scotch et al. (Scotch et al., 2011) which linked virus sequence records to 

geographical entities in the GeoNames ontology (Vatant and Wick, 2012) found that 80% 

of GenBank records contain “insufficient” geographic metadata. In this case, they defined 

geographic metadata insufficiency as data regarding the location of infected host (LOIH) 

at lst-level administrative division (ADM1) or greater granularity. This means geographic 

metadata were typically informative for the LOIH at the state (province) or country level 

but seldom contained information on finer geographic entities such as counties or cities. 

Similarly, Tahsin et al. (Tahsin et al., 2014) reported the proportion of GenBank virus 

records with insufficient geographic data to be between 64% and 90%. Many real-world 

public health tasks require modeling transmission patterns at high geographic granularity to 

inform control strategies necessary to curb disease spread, such as modeling viral diffusion 

between counties within a state’s boundary. Therefore, the insufficiency of GenBank 

metadata represents a major barrier to the implementation of virus phylogeography for 

applied public health surveillance.

This paucity of high resolution geographic metadata has inspired researchers to develop new 

methods and tools to ascertain the LOIH for viral sequences represented in GenBank records 

(Tahsin et al., 2014; Tahsin et al., 2017; Magge et al., 2018). Indeed, available pipelines 

for discerning the LOIH are configured such that they output not only the most probable 

location for a specific sequence, but also a vector of other possible locations along with 
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their relative probabilities (Magge et al., 2018). Building on the availability of these new 

pipelines, Scotch et al. (Scotch et al., 2019) introduced the notion of incorporating sampling 

uncertainty into phylogeographic analyses. This parameterization of the standard discrete 

trait diffusion model involves assigning a prior PMF to the set of possible geographic 

locations for each tip with an uncertain LOIH. The additional uncertainty in LOIH is 

easily incorporated into the likelihood calculation using the standard pruning algorithm 

(Felsenstein, 1981) by defining the partial likelihood vectors at the tips to be the desired 

PMF.

We note that since phylogeographic discrete trait diffusion models can be applied to general 

discrete traits, so too the phylogeographic uncertain trait model (UTM) introduced by Scotch 

et al. (Scotch et al., 2019) can be used to assign prior PMFs to tips missing arbitrary 

discrete trait information. In the case of non-geographic discrete traits, where relatively 

little attention has been paid to resolving insufficient metadata, this provides two distinct 

advantages to standard analysis workflows: it provides researchers with a coherent method 

of specifying a priori beliefs about unobserved traits and effectively increases the data 

set size by including sequences which would otherwise be excluded from an analysis 

due to missing metadata. Previously, phylogeographic researchers studying non-geographic 

discrete traits, such as host species or age, were left with two options for sequences with 

missing metadata: to manually curate locations for each unresolved record, or, to exclude 

these sequences from phylogeographic analysis (Magee and Scotch, 2018; Dellicour et al., 

2019). The former option is extremely labor intensive, difficult to replicate, and cannot be 

scaled to large data sets. Conversely, the latter has the disadvantage of reducing the amount 

of data included in a given phylogeographic analysis, which may induce biases in rate matrix 

parameters if the records with particular discrete traits are selectively over/underrepresented 

in the sample (De Maio et al., 2015)

Though phylogeographic discrete trait diffusion models remain a popular and promising 

tool for epidemiological inference, relatively few studies aim to quantify the statistical 

performance of these methods under various analysis conditions (Magee et al., 2017; Magee 

and Scotch, 2018; De Maio et al., 2015; Lemey et al., 2014). Particularly, phylogeographic 

discrete trait diffusion models are increasingly used for inference on large discrete state 

spaces and data set sizes, especially as pathogen genome sequencing continues to become 

a routine part of outbreak response. For example, recent studies commonly use state space 

sizes ranging from 10 to 56 discrete entities (Dudas et al., 2017; Magee et al., 2017; Lemey 

et al., 2014). Paradoxically, a rigorous examination of model performance with respect to 

increasing state space and data set sizes is currently absent from the literature (Lemey et 

al., 2009; Magee et al., 2017; De Maio et al., 2015; Lemey et al., 2014). Further, given 

its recent introduction, the statistical performance of the phylogenetic UTM (Scotch et 

al., 2019) compared to other established model parameterizations is yet to be established. 

Since the quantity of interest from phylogeographic discrete trait diffusion models is often 

the most likely state at the root of the phylogeny, we select this root state classification 
task as the primary axis on which we evaluate model performance. In this paper, we 

take a simulation-based approach to investigating the performance of phylogeographic 

discrete trait diffusion models, paying special attention to the roles of data set and discrete 

state space size for performance on the root state classification task. Simultaneously, we 
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compare the performance of the alternative phylogenetic UTM parameterizations against 

a reference model which omits sequences with missing metadata. This work represents, 

to our knowledge, a unique contribution to understanding the performance of popular 

phylogeographic discrete trait diffusion models under various analysis conditions and will be 

useful to researchers and public health practitioners tasked with designing phylogeographic 

studies using publicly available pathogen sequences.

2. Methods

2.1. Study design

There are several ways in which the UTM can be implemented depending on the prior 

beliefs of the analyst for the missing discrete state values. For example, if no information 

a priori is available with respect to a discrete trait of interest with a molecular sequence, a 

reasonable choice may be to use a uniform prior over all possible trait values (“uniform”). 

On the other hand, it may be the case that a researcher wants to incorporate their prior 

beliefs on the relative probability of each state into the analysis. While this prior PMF can 

take many forms (indeed, there are infinitely many of them), we focused on two possibilities 

expected to arise frequently in practice: the researcher assigns most of the prior mass to 

the correct discrete trait (“informed”), or, alternatively, most of the mass is assigned to the 

incorrect state (“misspecified”). Concretely, for “informed” models, we assigned 50% of the 

prior mass to the correct discrete trait, and divided the remaining mass uniformly across 

the remaining states. Conversely, for “uninformed” models, we reverse the parameterization 

such that 50% of the prior mass is placed on an incorrect discrete state (chosen uniformly 

from the set of incorrect discrete traits) and the remaining mass distributed uniformly among 

the remaining traits. We believe these three options (uniform, informed, misspecified) are 

representative of choices likely to be made in practice. Prior to the introduction of the 

phylogenetic UTM (Scotch et al., 2019), researchers often exclude sequences with missing 

metadata from phylogeographic analyses. We specified this modeling approach (“drop”) as 

the reference to which we compared alternative UTM parameterizations.

We utilized a fully factorial, completely randomized design to quantify the relationships 

between discrete state space size, data set size and phylogeographic model performance. 

We defined 150, 250 and 500 sequences, respectively, as the factor levels for data set size. 

Similarly, we defined discrete state space sizes of 4, 8, and 16 states as factor levels for 

discrete state space size. We then simulated 25 replicate data sets under for each of 9 

combinations of the aforementioned factor levels resulting in 225 data sets. We analyzed 

each data set using the phylogeographic UTM with either: i) informed ii) misspecified or iii) 

uniform prior PMFs. We also analyzed each data set after excluding sequences with missing 

metadata to serve as a reference for model comparison. Using this design, we analyzed 

225 data sets under each of the 4 alternative model parameterization for a total of 900 

independent model analyses. We discuss the data simulation procedure including generation 

of missing discrete traits in the following sections and provide a visual summary in Fig. 1.
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2.2. Data simulation

2.2.1. Phylogenetic trees—Since virus sequences represent isolates from individuals 

infected during epidemics, we simulated phylogenetic trees using the serially-sampled 

birth-death SIR model (SSBD-SIR) (Stadler et al., 2013). The SSBD-SIR model requires 

specification of 3 parameters: β, γ, ϕ representing the transmission (birth), recovery (death) 

and sampling rates, respectively. An equivalent specification can be made in terms of RO, 

the basic reproduction number, by using a fixed recovery rate. We selected simulation 

parameters to be similar to general, seasonal influenza outbreaks with an RO value 

of 1.4 and assuming an infectious period (ϕ−1) of one week, consistent with observed 

epidemiological patterns (Connolly, 2005). Finally, we specified a sampling rate of 20%, 

reflecting a densely sampled epidemic scenario. We simulated trees until either 150, 250 

or 500 tips were sampled. We performed tree simulation using the TreeSim package in R 

(Stadler, 2011).

2.2.2. Sequence data—We converted branch lengths to units of substitutions by 

assuming a strict molecular clock model with a rate of 1 × 10−3 substitutions per site, 

per year to allow for sequence simulation on each tree. We utilized an HKY + Γ model of 

nucleotide substitution with 4 rate categories, as is commonly used for modeling influenza 

molecular sequence evolution. We simulated 1750 base-pair (bp) sequences using the 

aforementioned parameters using Phyx (Brown et al., 2017).

2.2.3. Discrete and missing trait simulation—We simulated the evolution of 

discrete traits on each phylogenetic tree by assuming traits evolved with a rate of 0.1 

substitutions per site per year. Since a key goal of our study is to estimate the performance 

of phylogeographic trait models on a variety of state spaces, we simulated traits with 4, 

8 or 16 states. We used random symmetric Markov matrices with gamma distributed rate 

parameters. To generate missing traits, we used a binomial sampling process on the observed 

traits where each trait is dropped with 20% probability. A final data set includes sequences 

written in FASTA format with discrete trait and sampling time information annotated in the 

description line.

2.3. Bayesian phylogenetic and phylogeographic inference

We performed phylogenetic and phylogeographic inference using BEAST v 1.10.1 (Suchard 

et al., 2018). We modeled molecular evolution using an HKY + Γ model with 4 rate 

categories, reflecting the conditions under which the data were simulated. We employ 

a flexible nonparametric skygrid prior since we know a priori that the population of 

infected individuals follow non-linear SIR-type dynamics. We specified a symmetric 

Markov model for inference of discrete trait evolution, again driven by our choice of 

data simulation conditions. To estimate divergence times, we fixed tip dates as the dates 

of sampling recorded during each simulation. We ran the each MCMC for 100 million 

iterations, sampling every 10,000 steps and removed the first 20% as burn-in. We diagnosed 

convergence of the MCMC procedure using Tracer v1.7.1 (Rambaut et al., 2018) checking 

that all model parameters had Effective Sample Sizes (ESS) of 200 or greater.
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2.4. Model evaluation

Inferring the most likely state at the root of the phylogeny, akin to identifying the location 

or host species where an outbreak started, is a key output of phylogeographic discrete 

trait diffusion models. We can evaluate the performance of popular phylogeographic 

techniques by treating the root state identification problem as a classification problem, 

borrowing terms from the machine learning literature. Several metrics are available to 

summarize the a classification model with respect to its performance on a classification 

task. Given a classification model and labeled test data one can compute the accuracy of a 

classification model: the proportion of instances it classifies correctly. In phylogeography, 

a central task is to correctly classify the most likely state at the root of a phylogeny. 

We recorded the root state from which each simulation was initialized and calculated 

the accuracy of phylogeographic models when given more data (sequences) or when 

performing inference over increasing discrete state spaces. Since the result of our Bayesian 

phylogeographic analysis is a posterior distribution over root states, we follow standard 

practice in classification model evaluation and selected the most likely posterior state j as the 

root state “prediction” output by our models.

j = max
j

P(X = j ∣ θ)

Though informative, accuracy does not fully describe the characteristics of a given 

classification model. A common measure of classification model performance is the cross 

entropy. This is generally interpreted at the number of bits needed to transmit data from a 

source distribution when using a model of that distribution. In the context of classification 

model evaluation, we can interpret cross entropy as a kind of “distance” between the 

posterior distribution estimated by our model and the true root state distributions. Defining 

the true root state distribution Pj as a one-hot encoded vector permits computation of the 

cross entropy using:

C = − ∑
j ∈ J

Pj log P(X = j ∣ θ)

Another useful metric which measures the efficiency of classification models is the 

Kullback-Leibler (KL) divergence. Here, it represents the amount of information we gain 

about the distribution of the root state by using our model output relative to our a priori 

assumptions. We defined our prior Pj as a uniform distribution over all possible root states. 

Then, the KL divergence was calculated using the posterior distribution over root states 

P(X = j ∣ θ) output by our phylogeographic models.

KL = ∑
j ∈ J

Pj log Pj − log P(X = j ∣ θ)

For each combination of simulation parameters, we recorded the state at the root of the 

phylogeny and calculated the root state accuracy, cross entropy and KL divergence to 

measure the performance of the standard and uncertain phylogenetic discrete trait models. 
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We analyzed the impact of model parameterization, data set size and discrete state space size 

on model performance metrics using ANOVA.

2.5. Data availability

We provide the simulated data as analysis-ready BEAST XML files along with files 

containing the parameters associated with each data set.

2.6. Factors influencing model accuracy

We modeled root state classification accuracy for our 900 models using logistic regression 

by defining factors related to phylogeographic study design choices as predictors. For these 

analyses, we set the reference levels of each factor variables to be: i) 4 discrete states ii) 

the “drop” model design (where sequences with missing metadata are excluded) and iii) 150 

molecular sequences, respectively.

3. Results

3.1. Phylogeographic models show strong performance on moderately sized data sets

In Fig. 2, we show the mean and 95% confidence intervals for each of the non-reference 

level factors included in our analysis. Using the standard interpretation of the odds ratio, we 

show that increased discrete state space sizes are associated with weaker model performance 

with respect to root state classification (Fig. 2), p-values < 0.01). We found that, for 

our analysis, increasing data set size does not significantly improve phylogeographic root 

classification performance (Dudas et al., 2017). Interestingly, we see increased performance 

at for models with 250 sequences, relative to other data set sizes, as shown by the positive 

odds ratios associated with these models (Fig. 2, p-values < 0.05). Overall, we find no 

significant effects of model implementation method on root state classification performance.

3.2. Phylogeographic information gain increases with state space and data set size

In the phylogeographic context, KL divergence is often used to quantify the amount 

of information gained from an analysis with respect to a prior distribution. Concretely, 

we are interested in quantifying the amount of information that the root state posterior 

contains relative to a uniform (uninformative) prior over all possible traits. We performed 

this calculation such that our KL divergence is expressed in units of bits; representing 

the total amount of information gained by an analyst from performing phylogeographic 

analysis to identify the root state. For many empirical analyses, since the true root state 

(and any root states of internal nodes) are unknown a priori, it is unclear how information 

gain is related to model accuracy and if increased information gain translates directly to 

improved classification performance. By including KL divergence as a predictor in our 

logistic regression analysis, we were able to infer the respective relationship between this 

metric and model accuracy. We found that KL divergence was not associated with root 

state classification performance (Fig. 2, p-value: 0.248). In Fig. 3 we present the mean 

Kullback-Leibler (KL) divergence (from a uniform prior) for 25 model replicates stratified 

by model implementation method as well as state space and data set size. Using ANOVA, 

we find that information gain and discrete state space size were significantly related to KL 

divergence and that KL divergence tended to increase along with discrete state space size (p 
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< 0.001, F-score: 255.84, Table 2). Further, we also found KL divergence to be significantly 

associated with data set size (p < 0.001, F-score: 255.84, Table 2). We visualize the results 

of this analysis and show interactions between various design factors in Fig. 4. We utilized 

Tukey’s HSD post-hoc test to identify that this effect is primarily driven by the increase in 

information gain occurring when increasing data set sizes from 250 to 500 tips (p < 0.001). 

Echoing the results of our logistic regression analysis, we find no significant differences in 

information gain between model implementation methods (p-value: 0.866, F-score: 0.242, 

Table 2). However, for models with large discrete state spaces, we observed a leveling off 

in KL divergence with increasing data set size (Fig. 4) indicating a functional limit to the 

information a phylogeographic model can extract about the root state given sufficient data. 

We also found significant interaction effects between state space size and data set size (Table 

2, p = 9.98 × 10−1).

3.3. Phylogeographic cross entropy increases with discrete state space size

By casting the phylogeographic root state inference problem in a classification framework, 

we gain access several established metrics for use in quantifying classification model 

performance. We select cross-entropy due to its usage in a wide variety of substantive 

areas. In Fig. 5, we show the cross entropy mean and and 95% confidence interval stratified 

by model implementation method as well as state space and data set size. We observed 

that cross entropy tends to increase with the size of the state space; this is intuitive since 

the complexity of the classification task is related to the size of the state space. In Fig. 6, 

we show the interaction plots between design factors and cross entropy, noting that cross 

entropy tended to increase with data set size which we confirmed using ANOVA (Table 1). 

Again, we employ Tukey’s HSD post-hoc testing to show that the sequences (p < 0.001). 

This is congruent with the results obtained from our logistic regression analysis which 

indicates that models fit to intermediate data set sizes tend to perform better than models 

with larger data set sizes. Since we generally expect classification model performance to 

generally increase with data set size, we offer an explanation of the apparent increase 

in model complexity arising from increasing data set sizes. We expect that classification 

performance diminished on larger data set sizes since phylogeographic classification models 

perform trait state estimation for all n − 1 internal nodes before making a final classification 

for the root trait state; if any errors are made at intermediate nodes, these errors are 

propagated back toward the root.

4. Discussion

4.1. Performance of phylogeographic models for root state classification

Pathogen molecular sequence data are being created at an unprecedented rate. So too has 

interest increased in methods and tools which leverage this new data stream for public 

health application. Examples in the literature include evaluating the impact of hypothetical 

interventions on epidemic spread (Dellicour et al., 2018) as well as identifying specific 

groups or locations responsible for driving epidemic spread (Lemey et al., 2009; Dudas 

et al., 2017; Grubaugh et al., 2017; Swetnam et al., 2018; Magee et al., 2017; Lemey et 

al., 2014). With increasing metadata availability, the resolution with which phylogeographic 

analyses are performed is increasing (Dudas et al., 2017; Grubaugh et al., 2017; Dellicour 
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et al., 2018). Concretely, this translates into specification of models with large number of 

discrete states and sequences. Reconstructing epidemiological patterns of infectious disease 

spread using pathogen genomes is often achieved by modeling the epidemiological trait of 

interest as a continuous time Markov chain which evolves across a phylogeny. The ability 

of these models to accurately reconstruct these traits of interest is paramount to their use in 

applied public health settings for modeling infectious disease outbreaks.

In this paper, we took a simulation-based approach and quantified the role of discrete 

state space and sequence data set sizes on the root state classification performance 

of modern phylogeographic models. We focused specifically on root state classification 

since, in infectious disease epidemiology, this task is analogous to identifying the 

discrete trait (i.e. geographic location, host species, etc.) associated with the origin of 

an outbreak. We simulated 225 data sets which we then analyzed using standard and 

uncertain phylogeographic discrete trait diffusion models. For the uncertain trait models, 

we performed analyses using three distinct prior specifications: i) a uniform prior across 

states ii) an informed prior which assigns most of the prior mass to the correct state and 

iii) a misspecified prior, which assigns most of its mass to an incorrect state. We compared 

characteristics of each model’s MCC phylogeny to characterize model performance on 

the root state classification task. We found no significant differences between model 

implementation methods and model performance, suggesting that while the phylogeographic 

UTM does not substantially increase or decrease model performance. Therefore, it remains 

an attractive alternative for researchers wanting to include sequences with missing metadata 

in their analyses. Interestingly, a misspecified prior for the tip trait states did not seem to 

substantially effect root state predictive accuracy. We expect this is similarly due to errors in 

the state at each node being propagated back through the phylogenetic tree during inference. 

We expect that while the tip prior misspecification may influence the classification error at 

proximal internal nodes, as the model is applied backward in time toward the root, the partial 

likelihood vector begins to resemble the stationary distribution of the associated Markov 

model. This is especially likely for fast evolving traits, since the total evolutionary time for 

the model is the sum of all branch lengths across the tree.

Though phylogeographic models are popular epidemiological tools in an era of pathogen 

genomes aplenty, relatively few studies have characterized the performance of these methods 

under various analysis conditions (Scotch et al., 2019; Magee and Scotch, 2018; De Maio 

et al., 2015; Lemey et al., 2014). Indeed, much of this previous work is concerned with 

empirical analyses of virus sequence data sets (Magee et al., 2017; Scotch et al., 2019; 

Magee and Scotch, 2018) and often compares model root state posterior probabilities as a 

proxy for performance. The informativeness of the analysis is then typically assessed by 

calculating the Kullback-Leibler (KL) divergence between the root state prior and posterior 

distributions (Magee et al., 2017; Magee and Scotch, 2018; Lemey et al., 2014). Work by 

de Maio et al. (De Maio et al., 2015) established performance characteristics for several 

phylogeographic models using 200 tips and either two to eight discrete states, while focusing 

on the role of migration rates and sampling bias on inference quality. In contrast, we focus 

on the combined roles of data set and discrete state space sizes and how they impact discrete 

trait diffusion model inference.
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We found that KL divergence is significantly positively associated with both discrete state 

space and data set size. This suggests caution when relying on this metric as it may 

erroneously suggest more granular discretization schemes or reward more data intensive 

models though this may not translate to increased performance on the root classification 

task. For example, though Scotch et al. (Scotch et al., 2019) found that the phylogeogephic 

UTM improved performance relative to other popular heuristics, these conclusions were 

based on a empirical comparison between model posteriors. Additionally, we show that 

KL divergence was not predictive of root state classification performance suggesting more 

informative models may still ultimately produce incorrect results. So, while empirical 

studies are informative for assessing congruence between root state inferences drawn by 

different phylogeographic methods, they are not informative with respect to the absolute 

accuracy (i.e. classification) of these methods for root state inference. We also find that 

root classification performance is the best at intermediate data set sizes. We believe that 

our models show poorer performance on larger data sets since as data set size increases, 

the number of internal nodes for which trait reconstruction must occur also increases. We 

expect that any errors in internal node classification (that is, internal node distributions 

which assign the most mass to an incorrect trait state) are propagated back toward the root. 

However, this could also be influenced by uncertainty in the phylogenetic tree topology. 

Changes in fast evolving traits, such as host age or geography during disease outbreaks, will 

be sensitive to uncertainty in branch lengths since as time increases, the partial likelihood 

vectors at internal nodes begin to more closely resemble the stationary distribution of their 

evolutionary Markov models. Since tree space is known to grow factorially (Felsenstein and 

Felenstein, 2004) with respect to tip number, it is likely that a combination of posterior tree 

uncertainty, mediated through the effect of increasing tip numbers, also impacted our results. 

Following this line of reasoning, we expect that increases in molecular sequence length will 

improve model performance since increasing the data available to models (via including 

more sites independently evolving across a tree) will reduce tree topological uncertainty.

4.2. Limitations and future work

Phylogeographic discrete trait diffusion models have emerged as the primary statistical tool 

for analyzing pathogen genomes annotated with discrete trait metadata. Given the increasing 

interest in the application of genome sequencing for public health outbreak response, it is 

prudent to establish the performance of phylogeographic models on different size data sets. 

This is of direct interest to public health practitioners who may be tasked with designing 

molecular epidemiological studies within budgetary, computational or data constraints. 

Overall, this study aimed to evaluate the performance of popular phylogeographic models 

under various analysis conditions, focusing on the roles of discrete state space and data 

set size on phylogeographic model performance. While we find that model performance 

is significantly increased at intermediate data set sizes, our results paint suggest caution 

when relying solely on KL divergence and other metrics calculated from purely empirical 

studies. However, our study is not without limitations. We limited our simulation study to 

discrete traits simulated from symmetric Markov rate matrices. This represents the simplest 

of the phylogeograhic models; we focused on this case to estimate a baseline for model 

performance. In reality, there are several ways in which trait states models are specified 

and inferred. Of particular note is the use of Bayesian Stochastic Search Variable Selection 
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(BSSVS) which augments the model state space such that each instantaneous rate parameter 

r,, is multiplied by a binomial random variable whose value represents the inclusion (or 

conversely, exclusion) of a given rate parameter in the matrix. The BSSVS parameterization 

effectively reduces the number of estimated transition rates which may lead to increased 

model performance on root state classification. Another popular approach for parameterizing 

discrete trait diffusion models is to model each transition rate as linear combination of 

covariates of interest. This reduces the problem of estimating transition rates to estimating 

the coefficients of the resulting generalized linear model (GLM). Clearly, our results do 

not extend to these parameterization methods. Finally, we quantified model performance 

with respect to root state classification only. It may be the case that the UTM increases 

classification performance on intermediate nodes in the phylogeny and that phylogeographic 

methods in general perform better on inferring the discrete states for proximal ancestral 

nodes. Quantifying the treewide classification performance of phylogeographic models 

under various conditions remains an open area of research.
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Fig. 1. 
Visual summary of data simulation procedure. We simulated phylogenetic trees under the 

serially sampled birth-death SIR model using an R0 of 1.4 and an infectious period of 7 

days. We simulated molecular sequence evolution on each tree topology using an HKY85 

model and a strict molecular clock with a rate of 1 × 10−3 substitutions per site, per year. We 

also simulated discrete traits on each tree topology, using symmetric Markov rate matrices 

with rate parameters drawn from a gamma distribution and a strict molecular clock with 

a rate of 0.1 substitutions per site, per year. This results in a set of molecular sequences 

annotated with discrete traits and sampling time information. We simulated missing traits 

using a binomial sampling process for each tip, indicating the presence, or conversely, the 

absence of discrete trait metadata. Finally, each data set was analyzed using one of four 

phylogeographic model parameterizations.
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Fig. 2. 
Odds ratios show the effect of design factors on model accuracy. We used logistic regression 

analysis to estimate the effects of design choices on phylogeographic model accuracy. 

For the purposes of analysis, we defined our reference factor levels to be 4 state, 150 

sequence and drop model design, respectively. We show the factor found to be significant 

as red points, where grey points represent insignificant factors. Our analysis shows that 

relative to this reference level that increasing discrete state space size reduces the root 

state classification accuracy of phylogeographic models. We find that, independently, 

data set size and implementation method have no significant effects on model accuracy. 

However, our analysis shows increased root state classification performance for models 

with 250 sequences, suggesting that phylogeographic models may perform most favorably 

at intermediate data set sizes. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Comparison of Kullback Leibler (KL) divergence stratified by model design factor. Here, 

we show the mean and 95% confidence intervals for KL divergence arranged by increasing 

data set and discrete state space size. We observed an upward trend in information gain 

associated with both increasing discrete state space and data set sizes. We confirmed 

the presence of this trend using ANOVA (Table 2). As suspected, ANOVA suggests no 

statistically significant differences in posterior information gains between various model 

implementation heuristics (Table 2). We observed a tendency for information gain to 

increase when increasing data set size from 250 to 500 sequences.
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Fig. 4. 
Interaction effects between model design factors and information gain.

We show that estimated mean KL divergence tended to increase when increasing the data set 

size from 250 to 500 sequences and that this effect was generally consistent across model 

implementations. From this perspective, it is further illustrated that we find information gain 

tended to increase with discrete state space size.
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Fig. 5. 
Comparison of Cross Entropy stratified by model design factor.

We present the mean and 95% CIs of the cross-entropy stratified by data set and discrete 

state space size. Similar to KL divergence (Fig. 3), we show that cross entropy tends to 

increase with discrete state space size. This is expected since the classification problem 

becomes more challenging as the total number of states increases. We also find that cross 

entropy tends to increase with data set size. This could be due to phylogegraphic the fact 

that phylogeographic root state classification first requires the model infer the discrete state 

probabilities at all n − 1 intermediate tree nodes. We expect that inference for an increasing 

number of internal tree nodes similarly increases the difficulty of the phylogeographic root 

state classification task.
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Fig. 6. 
Interaction effects between cross entropy and model design factors.

By visualizing the interaction between each model design factor, we can observe that 

cross entropy remains relatively consistent between models with 150 and 250 sequences. 

However, it sharply increases significantly when models increase from 250 to 500 sequences 

(Tukey’s HSD post-hoc analysis, p = 4.2 × 10−6) similar to the trends observed with KL 

divergence.
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Table 1

Analysis of variance: cross entropy.

Factor Deg. Freedom Sum Sq Mean Sq F-value p-value

Model 3 19 6 0.27 0.846

Tips 2 667 333 14.498 6.36 × 10−7

States 2 8900 4450 193.481  < 2 × 10−16

Tips * States 4 70 18 0.762 0.550

Residual 888 20,147 23 – –

Bolded p-values represent statistical significance < 0.05.
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Table 2

Analysis of variance: Kullback-Leibler divergence.

Factor Deg. Freedom Sum Sq Mean Sq F-value p-value

Model 3 0.3 6 0.27 0.867

Tips 2 8.2 4.09 14.498 6.39 × 10−5

States 2 214.3 107.16 255.884  < 2 × 10−16

Tips * States 4 7.8 1.95 4.662 9.98 × 10−4

Residual 888 366.9 0.42 – –

Bolded p-values represent statistical significance < 0.05.
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