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ABSTRACT
Aspergillus species contain pathogenic and opportunistic fungal pathogens which have the
potential to cause mycosis (invasive aspergillosis) in humans. The existing antifungal drugs
have limitation largely due to the development of drug-resistant isolates. To gain insight into
the mechanism of action and antifungal drug resistance in Aspergillus species including biofilm
formation, we have reviewed protein data of Aspergillus species during interaction with anti-
fungals drugs (polynes, azoles and echinocandin) and phytochemicals (artemisinin, coumarin and
quercetin). Our analyses provided a list of Aspergillus proteins (72 proteins) that were abundant
during interaction with different antifungal agents. On the other hand, there are 26 proteins,
expression level of which is affected by more than two antifungal agents, suggesting the more
general response to the stress induced by the antifungal agents. Our analysis showed enzymes
from cell wall remodelling, oxidative stress response and energy metabolism are the responsible
factors for providing resistance against antifungal drugs in Aspergillus species and could be
explored further in clinical isolates. Also, these findings have clinical importance since the effect
of drug targeting different proteins can be potentiated by combination therapy. We have also
discussed the opportunities ahead to study the functional role of proteins from environmental
and clinical isolates of Aspergillus during its interaction with the antifungal drugs.

Abbreviations: IPA: invasive pulmonary aspergillosis; IA: invasive aspergillosis; AmB: Amphotericin
B; CAS: Caspofungin; VRC: Voriconazole; ITC: Itraconazole; POS: Posaconazole; ART: Artemisinin; QRT:
Quercetin; CMR: Coumarin; MIC: minimal inhibitory concentration
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Introduction

Aspergilli contain approximately 340 species that per-
form range of biological functions in the environment
and about 40 of them are known to cause health
problems (Samson et al. 2014; Thakur et al. 2015).
Aspergillus fumigatus, A. terreus, A. flavus, A. niger and
A. oryzae are among the most studied Aspergilli due to
their medical, agricultural and industrial importance
(Krijgsheld et al. 2013; Sugui et al. 2015). Aspergillus
oryzae is widely used for traditional food fermentations
in EastAsia, and Aspergillus niger is used to produce
various enzymes (e.g. amylases and pectinases) and
organic acids (Powell et al. 2013). Aspergillosis is
a severe clinical problem caused by Aspergillus species,
especially in immunocompromised patients, hence
Aspergilli have emerged as important opportunistic
fungal pathogens (Chowdhary et al. 2014). Also,
a large number of patients have been diagnosed with
chronic pulmonary aspergillosis worldwide following

the treatment of pulmonary tuberculosis (Denning
2011). Aspergillus conidia are present in air, soil, food-
products, indoor environment and plant debris.
Conidia being smaller in size (2–5 µm) (Mousavi et al.
2016), are the main source for Aspergilli conidia distri-
bution into the environment (Latgé 1999; Zmeili and
Soubani 2007). Minuscule size of conidia enhances its
existence in the air for a longer duration because of
which it is inhaled by human beings and if these con-
idia are not cleared by phagocytic cells, may germinate
into hyphae in respiratory mucosa (Zmeili and Soubani
2007). Conidia showed metabolically less active and
possess prolonged viability in adverse conditions
(Lamarre et al. 2008). Aspergillus causes invasive asper-
gillosis (IA) to extreme complications. Huge rise in
drug-resistant isolates of Aspergillus species possess
the additional threat to human beings (Hagiwara
et al. 2016; Sanglard 2016). Currently, three class of
antifungal drugs are commonly used for the treatment
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against Aspergillus mediated infections; polyenes, tria-
zoles and echinocandin. These compounds target the
cell wall either by disrupting ergosterol biosynthesis or
β-1, 3-glucan or by targeting the ergosterol directly
(Groll and Kolve 2004). We now have understood on
how few of the existing antifungal drugs work.
However, transcriptional factors and signalling cas-
cades that are involved in providing antifungal drug
resistance in Aspergillus isolates are partly known. Thus,
we have reviewed proteins/enzymes that showed
regulated expression during the interaction with anti-
fungal agents in Aspergillus species.

Present treatment strategies for IA

Treatment options have evolved which includes three
major classes of antifungal viz. triazoles, echinocandin
and polyenes. The triazoles include Itraconazole (ITC),
VRC and POS. Isavuconazole is newly introduced azole
against Aspergillus and approved against IA (Miceli and
Kauffman 2015). Echinocandins include Caspofungin
(CAS), Anidulafungin (AND) and micafungin
(Supplementary file-1A). Treatment of IA using
Amphotericin (AmB), possesses ergosterol binding ten-
dency, forming fungicidal sterol sponge and disables
membrane functions (Anderson et al. 2014). The major
disadvantage of AmB is toxicity to humans. It has been
observed that antifungal compounds showed adverse
effects in children suffering from aspergillosis such as
3–5 mg/kg dosage of AmB per day for aspergillosis
treatment causes infusion-related infection, hypokale-
mia and nephrotoxicity (Canadian Paediatric Society ID,
UD ICA 2010). However, the liposomal AmB have shown
the minimal toxic effect in IA patients and have pro-
longed per-sistence against azole-resistant Aspergillus
species (Seyedmousavi et al. 2013). AmB is not recom-
mended for aspergillosis caused by A. terreus and also
AmB-resistant Aspergillus species, hence the combina-
tion therapy with a synergistic response is considered
as alternative approach (Dannaoui et al. 2004; Elefanti
et al. 2013). Antifungal combinational studies against
A. fumigatus using in vivo or in vitro, and clinicalmethods
have shown effective results (Ben-Ami et al. 2011;
Stergiopoulou et al. 2011).

Triazoles are used as the more preferred choice of
antifungals in clinical practices. Inhibition of ergosterol
biosynthesis leads to the disruption of the structural
unit of the cell membrane of fungi (Sanglard and
Odds 2002). ITC, one of the triazoles, was the first drug

introduced in azole class for aspergillosis patients in
1997 and other azoles evolved later. According to cur-
rent status, azole resistance in A. fumigatus has emerged
globally, thereby threatening the azole therapy against
aspergillosis (Verweij et al. 2016). Van der Linden et al.
have provided the mortality rate data in azole-resistant
strains infected aspergillosis patients. Azoles resistant
Aspergillus isolates were categorised on the basis of MIC
values; ITC > 2 μg/ml, VRC > 2 μg/ml and posaconazole
(> 0.5 μg/ml). These data were collected as per the
guidelines mentioned in the CLSI reference method
(van der Linden et al. 2011). Recent treatment strategies
for azole-resistant as well as susceptible isolates of
A. fumigatus are focused on the combinational drug
therapy which includes azole (VRC) and echinocandin.
Echinocandin inhibits cell wall biosynthesis by blocking
the catalytic subunit of β-glucan synthase (Arendrup
2014).

According to a report by Ming Zhang 2014,
A. flavus and A. niger mediated IPA was effectively
treated by a combined effect of CAS and VRC.
However, A. fumigatus mediated IPA treatment
showed less efficacy in response to the combination
of echinocandin and triazole (Krishnan-Natesan et al.
2012; Zhang et al. 2014). In a clinical report, 27.5%
mortality rates were observed in monotherapy,
whereas for combined (VRC and AND) therapy it
was 19.3% (Marr et al. 2015). Denning, D.W. et al.,
reported that AmB- and azole-resistant Aspergillus
isolates, a more frequently occurring clinical isolates,
however, azoles are used as first-line therapy hence,
these therapeutic options for IA need revision due to
emergence of drug resistance Aspergillus isolates and
intervention of novel therapeutic strategies to over-
come this issue (Denning and Bowyer 2013).
Isavuconazole is a recently approved drug (2015)
for treatment of aspergillosis and mucormycosis,
however as per the recent U.S. guidelines voricona-
zole has been recommended as a first-line therapy
for aspergillosis (Misch and Safdar 2016).

The antifungal response is less effective when
A. fumigatus forms a biofilm. Higher MIC of antifun-
gal drug is required to destroy the biofilm structures,
which has been one of the reason for drug resistance
in A. fumigatus against the polyene, azole, and echi-
nocandin (Mowat et al. 2008; Seidler et al. 2008). It
has been hypothesised that extracellular matrix in
biofilm confers drug resistance via absorbing anti-
fungal molecules, thus disallowing their diffusion to
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the site of fungal cells. This has been supported by
the formation of extracellular matrix that sequesters
antifungal drugs and reduces drug susceptibility in
C. albicans (Nett et al. 2010). Activation of multidrug
resistance protein that pumps out antifungal drugs
has been reported in biofilm structure. Thus, the role
of efflux-pump in azole resistance has been observed
(Rajendran et al. 2011) that possibly could be one of
the reasons for treatment failure in aspergillosis
cases.

Drug toxicity and pesticides exposure to humans are
the major issues worldwide (Dorner 2004; Damalas and
Eleftherohorinos 2011). Phytochemicals have acquired
a lot of significance as a new candidate over the pre-
sent drug discovery methods (Butler 2004) and are
discussed in the later part of the review.

Epidemiological pattern of drug resistance in
Aspergillus species

Olga Rivero-Menendez recommended the need of
antifungal susceptibility assay on the Aspergillus iso-
lates derived from the clinical samples for the treat-
ment of aspergillosis cases (Rivero-Menendez et al.
2016). In clinical practices, long-term use of azole
drugs for aspergillosis is the major reason for the
emergence of azole resistance (Hagiwara et al.
2016). Another route for the increase in azole resis-
tance in Aspergillus is the extensive application of
fungicides in the agriculture (Snelders et al. 2009;
Chowdhary et al. 2013). Thus, investigations need
to focus on to screen environmental samples that
are resistant to azoles. Restricted use of azoles in
agricultural, i.e. rotation of antifungal products,
change in dosage and application periods could be
the best possible strategy to reduce the burden of
azole in the environment (Chowdhary et al. 2013;
Berger et al. 2017). Additionally, some of the
Aspergillus species has intrinsic resistant to certain
antifungal and other species are susceptible to
a certain class of drug but may become resistance
due to the prolonged incomplete dosages of anti-
fungal drugs. Recently, Rivero-Menendez et al. briefly
showed the dominance and occurrence of azole drug
resistance in Aspergillus species and reported the
highest number of azole resistance isolates in
European countries (Rivero-Menendez et al. 2016).

The occurrence of azoles resistant isolates of
A. fumigatus varies from 6.6 to 28% worldwide. In

the UK, it is 2.1–20%. In the Netherlands, Germany
and France resistance level has up to 10–12% in
clinical and environmental isolates. While in other
continents (Asia, Africa, America and Australia) resis-
tance level is also around 10% (Rivero-Menendez
et al. 2016). Recently, 32.4% of A. fumigatus isolates
in clinical samples were observed in India and out of
the 1.75% were azole-resistant. Thus, lower occur-
rence of resistant isolates in India was observed in
comparison to European countries that is probably
the limited application of azole fungicides in Asia
(Chowdhary et al. 2015; Directorate-General. ECHCP
2016).).

In general, resistant isolates are reported when MIC
values are above the epidemiologic cut-off values based
on these EUCAST defined breakpoints Aspergillus spp.
(susceptible or resistant) for azoles (POS > 0.25 µg/ml,
ISA > 1 µg/ml, ITC > 2 µg/ml and VRC > 2 µg/ml)
(mEUCAST 2016). The Clinical and Laboratory Stand-
ards Institute has also defined MIC cut-off for various
azoles viz. POS > 0.5 µg/ml, VRC > 1 µg/ml and
ITC > 1 µg/ml (Espinel-Ingroff et al. 2010).

In addition, drug resistance in Aspergillus spp. is
also mediated by the development of biofilms that
provided temporary antifungal drug resistance and
protects the pathogen in the hostile environment
(Seidler et al. 2008; Villena et al. 2009; Bruns et al.
2010; Kaur and Singh 2014; Paul et al. 2017). In earlier
studies, Mowat et al. showed the formation of biofilm
structures in A. fumigatus cultures which are observed
to be resistant to antifungal drugs (Mowat et al. 2007).
Beauvais et al. also reported the extracellular matrix
on the colony surface of A. fumigatus (Beauvais et al.
2007). Extracellular matrix helps hyphae to hold
together to form biofilm structure, which permits
reduced drug susceptibility. Also, major changes in
metabolic activities have been observed during bio-
film formation which might be associated with viru-
lence (Muszkieta et al. 2013). Biofilm-associated
infections have very high mortality rate and difficult
to cure with existing drug therapies, thus further stu-
dies are needed to understand the role of biofilm in
drug resistance.

Aspergillus terreus is another major cause of aspergil-
losis, reported in University andHospital of Innsbruck in
Austria and medical centres in Houston, Texas (Lass-
Florl et al. 2007; Blum et al. 2008). As per the recent
reports in India, 6.6% of A. terreus isolates were found
among the aspergillosis cases in a referral Chest
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Hospital in Delhi (Chowdhary et al. 2015). In another
study from India, it has been observed that only 8% of
A. terreus isolates were susceptible to AmB with MICs
(0.5–1 mg/L) and showed no particular genotypic pat-
tern (Kathuria et al. 2015). Previously, it has been evi-
dent from previous reports that A. terreus isolates are
naturally resistant to AmB (Steinbach et al. 2004a; Lass-
Florl et al. 2007). Also, A. terreus has shown high in vitro
and in vivo MICs for AmB which confirms the AmB
resistance (Graybill et al. 2004; Steinbach et al. 2004b;
Lass-Florl et al. 2005). Recently, failure of azole drug
treatment against A. terreus has also been observed in
Danish clinical samples by Arendrup et al. In their study
(Arendrup et al. 2012), they have reported the develop-
ment of ITC resistance in A. terreus which may be asso-
ciated with M217I Cyp51Amutation.

A. terreus isolates (approximately 5%) showed resis-
tance against posaconazole in in-vitro studies. High
percentage (10%) posaconazole resistance A. terreus s.
s. isolates were isolated from Austria, Germany and the
UK (Zoran et al. 2018). Hence, lack of AmB response and
azole (VRC) resistance has made A. terreus an infectious
threat in immunocompromised patients (Pastor and
Guarro 2014). As per another report from Alcazar-
Fuoli, Laura et al. A. niger rarely showed varying MICs
to ITC and the isolateswhich showed higherMIC for ITC
also had higher MIC values to VRC and Isavuconazole
compared with A. fumigatus MIC values (Alcazar-Fuoli
et al. 2009). Higher MICs for other Aspergillus species
such as A. awamori and A. niger have been observed in
comparison to A. tubingensis (Szigeti et al. 2012).
Additionally, biofilm formation has been reported in
A. niger (Villena et al. 2009; Paul et al. 2017) probably
accounting for high MIC against the drug.

Aspergillus flavus is mostly prevalent in arid cli-
mates and can tolerate extreme conditions and fre-
quently occur in Africa, the Middle East and
Southeast Asian countries (Krishnan et al. 2009).
A. flavus is known to produce aflatoxins (potent
carcinogen). This fungus contaminates various
crops leads to economic losses in agriculture.
Consumption of aflatoxin-contaminated foods or
feeds causes severe illness in animal and humans
such as aflatoxicosis, liver necrosis/liver cancer
(Tiwari. 2018). Prevalence of A. flavus in India is
about 45.4% and about 2.5% are resistant to VRC
(Chowdhary et al. 2015; Sharma et al. 2018). In
recent reports, some of the clinical isolates of
A. flavus showed resistance to VRC and the high

MICs linked to being T788G and Y319H alterations
in the cyp51C gene (Liu et al. 2012; Paul and
Rudramurthy 2015). Also, Aspergillus alliaceus (geno-
mic similarity with A. flavus) showed high MICs
value to AmB and echinocandins, which varies for
different azoles (Balajee et al. 2007). From the above
data, we could hypothesise that there is a large
increase in the antifungal drug resistance from
environmental and clinical Aspergillus isolates. Also,
most of the antifungal agents are also used in crop
protection and to preserve materials from fungal
decay (van der Linden et al. 2015). Thus, it leads to
the emergence of acquired resistance in this fungal
species and there is a need for systematic surveil-
lance programmes worldwide to reduce the use of
antifungals in the environment.

Proteomic approach to characterise the
antifungal response in Aspergilli

Proteomic analysis has been applied to elucidate the
resistant mechanism in resistant vs. susceptible
strains and also in the identification of potential
biomarkers (Vermeulen et al. 2018). Various research
groups focused on the characterisation of Aspergillus
spp. at development stages (Asif et al. 2006; Suh
et al. 2012; Tiwari et al. 2016; Thakur and Shankar
2017). Comparative proteome analysis of resting con-
idia to mycelia provided biochemical and cellular
pathway during the morphotypes of Aspergilli (Asif
et al. 2006; Vodisch et al. 2009; Teutschbein et al.
2010; Tiwari et al. 2016; Thakur and Shankar 2017;
Shankar et al. 2018). To date, proteomic-based ana-
lysis on how Aspergilli adapt to host condition has
conceded information of Aspergilli infection mechan-
isms (Suh et al. 2012; Kubitschek-Barreira et al. 2013).
To get a comprehensive picture of the response of
drugs and phytochemical on Aspergillus spp., we
have found limited reports in Aspergilli on proteome
response under antifungal agents in case of drugs
AmB, CAS and azoles (ITC and VRC) (Gautam et al.
2008, 2016; Cagas et al. 2011a; Amarsaikhan et al.
2017) and some of the phytochemicals like artemisi-
nin (ART), coumarin-derivative (CMR) and quercetin
(QRT) (Gautam et al. 2011; Singh et al. 2012; Tiwari
and Shankar 2018b) which have been described. In
the remaining part of the review, we discussed the
major proteins and pathways involved during the
exposure of drugs and phytochemicals.
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Proteome analysis in response to antifungal drugs
AmB, a class of polyene, acts via primarily binding to
cell membrane ergosterol, thereby disrupting mem-
brane function as well as ROS accumulation (Valiante
et al. 2015). Gautam et al. (2008) studied the response
of AmB in A. fumigatus and observed down-regulation
of translation machinery and energy metabolism. Their
study showed the abundance of 48 proteins using
MALDI, 44 proteins were highly expressed and 4 of
them showed less abundance. Additionally, ergosterol
biosynthesis protein Erg13 (AFUA_3G10660) was up-
regulated under AmB exposure (Gautam et al. 2008)
Also, increased abundance of Hem13 (AFUA_1G07480),
a heme biosynthetic protein on AmB exposure reflects
the need of more heme-molecules; it acts as cofactor
and prerequisite for the ergosterol biosynthesis. Most
of the iron enzyme lost their activities on iron-defi-
ciency (Shakoury-Elizeh et al. 2010). Induction of oxida-
tive stress responses involves up-regulation of proteins
such as catalase, manganese superoxide dismutase
and Prx1/LsfA upon AmB treatment. Which further
provide evidence that AmB damages cell due to oxida-
tive stress (Gautam et al. 2008). ITC targets ergosterol
leading to the accumulation of sterols that is toxic to
the cells (Valiante et al. 2015). Gautam et al. (2016) also
studied proteome of A. fumigatus under ITC stress that
resulted in the differential abundance of 54 proteins. It
has been observed that 12 proteins with the increased
level of expression and 42 proteins with decrease in
abundance (Gautam et al. 2016). The increased level of
oxidative stress proteins like catalase, Cat1 were
observed similar to AmB exposure, most abundant
proteins in response to more than two antifungal
agents are summarised in Table 1. Another study by
Gautam et al. (2016) demonstrated the synergy of ITC
with the ART, indicating a positive effect of this combi-
nation (Gautam et al. 2016). On the other hand, Cagas,
Jain et al. studied the proteomic response of
A. fumigatus against CAS using iTRAQ, at 24 and 48h
and provided updated protein data set. Previously,
they attempted to profile proteins at different morpho-
types in A. fumigatus that study they provide differen-
tial protein expression patterns at various
developmental stages in A. fumigatus (Cagas et al.
2011b) .Cagas et al., has observed 58 ribosomal pro-
teins that are differentially expressed in their study,
suggesting a shift in ribosomal programming in the
cell. Also, in comparative study, ribosomal proteins at
24h post drug exposure of the susceptible strain was

observed and only 4 out 19 proteins showed increased
abundance in the resistant strain. Their results specu-
lated a ribosomal reshuffling response to the CAS
(Cagas et al. 2011a, 2011b). Gautam et al. (2008)
observed that most of the ribosomal proteins in
response to AmB were down-regulated in microarray
data (Gautam et al. 2008). Interestingly, earlier reports
suggested that mitochondrial hypoxia response
domain protein (AFUA_1G12250) would be most pro-
mising biomarker which was down-regulated up to 16-
fold at both 24 and 48h in susceptible strain and was
relatively unaltered in the resistant strain under CAS
but not observed during exposure of VRC and AmB to
A. fumigatus, suggested as a biomarker specific to CAS
(Gautam et al. 2008; Cagas et al. 2011a; Amarsaikhan
et al. 2017) . From the above data, it is reflected that
each drug molecule affects proteome of Aspergilli with
a common target pathway. Some drugs may have
different targets but broadly affects the common path-
ways which ultimately lead to cell cycle arrest. On the
other hand, there is limited available protein data on
biofilms in Aspergillus spp. We have observed that sets
of protein are required for biofilm formation in
A. fumigatus. Protein associated with the biofilms for-
mation showed abundance in translational regulatory
proteins (Muszkieta et al. 2013). Whereas, in the case of
A. niger intracellular protein analysis of biofilm showed
the 19% overexpressed and 32% differentially
expressed protein spots when compared free-living
submerged cultures using 2D-PAGE and MS-TOF ana-
lysis (Villena et al. 2009). Results suggested that pro-
teins are involved in cell adhesion, which allow biofilm
development and surface adhesion fermentation. Thus,
from the discussed data available in Table 1 suggested
that antifungal drugs mediated proteome response in
Aspergilli majorly involves proteins that were found in
managing the energy oxidative stress, alteration of cell
wall biosynthesis and ribosomal reprogramming. Also,
induction of bypass energy metabolism pathways is
evident upon exposure to all the antifungal drugs
Figure 1. These pathways and proteins might be
involved in a resistant mechanism and may also be
explored as new drug targets in drug resistance
Aspergilli.

Proteome analysis in response to phytochemicals

Natural plant products with antifungal properties may
offer a safe and effective alternative treatment strategy
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against aspergillosis. As of now the antimicrobial activity
of these compounds, even studied comprehensively,
still, none of them is available for practice at the clinical
level. Screening of phytochemicals such as ART and CMR

as anti-Aspergillus agents have been carried out (Gautam
et al. 2011; Singh et al. 2012). Recently, we explored the
anti-Aspergillus property of QRT along with other phyto-
chemicals, QRT showed the strongest activity withMIC50

Table 1. Most abundant proteins in-response to more than two antifungal agents in Aspergillus species through proteomic studies.

Antifungal drugs Phytochemicals

S.
no. Name of the protein Name of organisms

AmB (24h)
(Gautam et
al. 2008)

CAS (24h &
8h)(Cagas
et al. 2011a)

VRC
(4h)

(Amarsaikhan
et al. 2017)

ITC (24)
(Gautam
et al.
2016)

ART (3h)
(Gautam
et al.
2011)

QRT (7h)
(Tiwari and
Shankar
2018b)

CMR
(16h)

(Singh et
al. 2012)

1 Mitochondrial Hsp70
chaperone (Ssc70), putative

Aspergillus fumigatus,
Aspergillus flavus

+ − + + − + +

2 Enolase Aspergillus fumigatus + − + + − − +

3 Ubiquinol-cytochrome C
reductase complex core
protein 2)

Aspergillus fumigatus − + + − + − +

4 Glutamate/Leucine/
Phenylalanine/Valine
dehydrogenase, putative

Aspergillus fumigatus + − + + − − +

5 Glutamate carboxypeptidase,
putative

Aspergillus fumigatus,
Aspergillus flavus

− − + + − + +

6 Allergen Asp F3 Aspergillus fumigatus − + + + − − +

7 Thioredoxin (Thioredoxin TrxA Aspergillus fumigatus + − + + − − +

8 Phosphoglycerate kinase Aspergillus fumigatus + + − + − − +

9 NAD-dependent formate
dehydrogenase

Aspergillus fumigatus + + − + − − +

10 Mycelial catalase Cat1 Aspergillus fumigatus,
Aspergillus flavus

+ + − + + −

11 Fumarate hydratase Aspergillus fumigatus + − + + − − −

12 Cobalamin-independent
methionine synthase MetH

Aspergillus fumigatus − + + − − − +

13 NADH-ubiquinone
oxidoreductase 213 kDa
subunit

Aspergillus fumigatus − − + − + − +

14 Translation elongation factor
EF-2 subunit, putative

Aspergillus fumigatus + − + − − − +

15 Antigenic mitochondrial
protein HSP60, putative

Aspergillus fumigatus − + + − − − +

16 Aminopeptidase P, putative Aspergillus fumigatus,
Aspergillus flavus

− − + − − + +

17 Autophagic serine protease
Alp2

Aspergillus fumigatus − − + + − − +

18 Proteasome regulatory particle
subunit (RpnL), putative

Aspergillus fumigatus + − + − − − +

19 Conidial hydrophobin RodB Aspergillus fumigatus + − + − + − −

20 1,3-beta-Glucanosyltransferase
Bgt1

Aspergillus fumigatus,
Aspergillus flavus

− − + − + +

21 Cobalamin-independent
methionine synthase MetH/
D

Aspergillus fumigatus − + + − − − +

22 Integral membrane protein Aspergillus fumigatus,
Aspergillus flavus

+ + − − − + −

23 Antioxidant protein LsfA Aspergillus fumigatus + + − − − − +

24 Malate dehydrogenase, NAD-
dependent

Aspergillus fumigatus + − − + − − +

25 ATP synthase proteolipid P2,
putative

Aspergillus fumigatus + + − − + − −

26 Aldehyde reductase Aspergillus fumigatus + − − + − − +

Time-points for drug treatment has been mentioned against the antifungal agents, “(+) represents the presence of the protein”, “(−) represents the absence
of the protein”

156 S. K. SHISHODIA ET AL.



at 36 µg/ml in A. parasiticus and 113 µg/ml in toxigenic
A. flavus (Tiwari et al. 2017). In addition, proteome
response under QRT exposure showed the abundance
of proteins of oxidative stress, cell wall proteins and
membrane transport activity (influx and efflux proteins).
Also under QRT stress switching of the signalling from
MAPK to cAMP/PKA in A. flavus has been observed
(Tiwari and Shankar 2018b). The similar kind of trend in
signalling pathway was observed in Saccharomyces cer-
evisiae and Candida albicans, a remarkable decrease in
PKC signalling was noted. In case of CAS drug treatment
which involves drug resistance through calcineurin func-
tion, the activation of downstream MAPK pathway was
also noted (LaFayette et al. 2010). In addition, HPLC
analysis of A. flavus conidia grown for 48 h time point
under influence of QRT showed a significant decrease in
production of AFB1 (up to 51%) (Tiwari and Shankar
2018b). Gautam et al. (2008) investigated the exposure
of ART toA. fumigatususingMALDI-ToF/ToF that leads to
the differential abundance of 85 proteins; 29-increased
and 56-decreased. Decreased expression of proteins
included conidial hydrophobin (RodB), thaumatin
domain protein (PhiA), galactomannan protein indicat-
ing remodelling of the cell wall, similar to AmB expo-
sure (Gautam et al. 2008). Also, down-regulation of two

mitochondrial genes, NADH dehydrogenase and
NADH-ubiquinone oxidoreductase in microarray data
and absence in protein dataset under ART exposure,
reflects ART targets NADH dehydrogenase of
A. fumigatus (Gautam et al. 2011). It was supported by
the earlier study that deletion of NADH gene in yeast
confers more resistance to ART, whereas overexpres-
sion of the NADH gene leads to more susceptibility in
the yeast (Li et al. 2005). However, most of the other
genes related to oxidative phosphorylation pathway
showed up-regulation under ART exposure. As, it has
been reported by Gautam et al. (2011) that ART may
disrupt the membrane potential. Up-regulated tran-
scripts may allow to re-established membrane poten-
tial by over-expressing these genes belonging to this
pathway (Gautam et al. 2011). Importantly, the oxida-
tive phosphorylation pathway was not affected signifi-
cantly in C. albicans, S. cerevisiae and A. fumigatus
(Zhang et al. 2002; Agarwal et al. 2003; Liu et al. 2005;
Da Silva Ferreira et al. 2006; Yu et al. 2007; Gautam et al.
2008) upon standard antifungal drug treatment.

Subsequently, Singh et al., provided the proteome
profile in A. fumigatus under exposure to synthetic
coumarin-derivatives (SCD-1) and demonstrated the
antifungal mechanism. Previously, Singh et al. showed

Figure 1. Probable determinants involved in the drug-resistance mechanism of Aspergillus species. Different colours of boxes
represent antifungal drugs. In susceptible isolates, antifungal drugs targets cell wall, and generates oxidative stress. In resistance
isolates, antifungal drugs showed the increased level of proteins from cell stress pathways and alternative metabolic pathways.
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SCD-1 a potent inhibitor of pathogenic Aspergilli at
MIC90 of 15.62 μg/ml. In their study, differential abun-
dance of 143 proteins was observed; 96-up and 30-
down. Also, 4 proteins in control alone and 13 pro-
teins in SCD-1 treated sample were reported. Proteins,
involved in riboflavin biosynthesis fall under the cate-
gory of decreased abundance, have been suggested
as a novel target of SCD-1 (Singh et al. 2012). The
proteomic analysis of antifungal treated A. fumigatus
and A. flavus indicated that the different targets with
similar or different altered pathways. Whereas there is
no such proteomic data on A. terreus and A. niger in
response to antifungal drugs. Researcher attempted
to profile proteomic data on various morphotypes
and at various stress conditions in A. terreus and
A. niger (Sorensen et al. 2009; Lu et al. 2010; Thakur
and Shankar 2017) and recently it has been reviewed
(Shankar et al. 2018) on underlying mechanism to exit
conidial dormancy in Aspergillus species.

Most abundant proteins under the exposure of
both antifungal drug and phytochemicals

Proteins involved in cell stress viz. Aspf3 and enolase
(glycolytic enzyme) which were frequently seen under
the exposure of all drugs (AmB, VRC, CAS, ITC) and CMR
(Gautam et al. 2008, 2016; Singh et al. 2012;
Amarsaikhan et al. 2017). iTRAQ analysis was per-
formed to check the effect of CAS on the expression
level of Aspf3 at 48 h time point in A. fumigatus suscep-
tible strain showed an increase of 3.5-fold and the
resistant strain showed a decrease of 1.5-fold (Cagas
et al. 2011a). Aspf3 encodes, a thioredoxin peroxidase,
and an increase in the expression has been reported in
response to hydrogen peroxide oxidative stress
(Lessing et al. 2007; Cagas et al. 2011a) which clearly
indicate that CAS mediated oxidative injury can easily
cope up in resistant strains. Differential expression of
a variety of antioxidant enzymes and enzymes of car-
bohydrate metabolism indicate the sensitivity of these
metabolic pathways to antifungals. In case of oxidative
stress mycelial catalase (Cat1) and aldehyde reductase
was reported which induces oxidative stress, revealed
that drugs mediate damage of fungal cell membrane
resulting in oxidative stress conditions via ROS activa-
tion. Whereas, antifungal agents induce the proteins of
regulation of ROS homeostasis significantly (Cowen
and Lindquist 2005; Blum et al. 2013; Jukic et al. 2017)

validate the existing reports on the role of oxidative
stress response in drug resistance studies.

Enolase (Aspf 22) has been reported an allergen
which stimulates a strong IFNγ immune response in
humans and its homolog in C. albicans showed partial
protection as a vaccine candidate (Denikus et al. 2005;
Chaudhary et al. 2010). Presence of enolase (involved
in energy metabolism) in hyphae of Aspergilli suggests
that this enzyme may facilitate tissue invasion in the
host (Denikus et al. 2005; Moloney et al. 2016; Shankar
et al. 2018). In A. fumigatus, enolase was abundantly
expressed under the influence of antifungal drug sug-
gesting energy metabolism is vital to overcoming the
drug stress. We also observed heat shock protein
Hsp70 was overexpressed during antifungal drug
treatment. The role of other heat shock proteins in
response to an antifungal drug has been recently
discussed (Cowen and Lindquist 2005; Blatzer et al.
2015; Tiwari et al. 2015; Tiwari and Shankar 2018a).
Various enzymes of the glycolytic pathway, TCA cycle
and electron transport chain were abundant under
antifungal agent exposure (Table 1). Similarly, the
abundance of TCA cycle proteins has also been
observed in the proteome of biofilm of A. fumigatus
that may contribute towards the persistence of the
organism inside the host (Muszkieta et al. 2013). These
results reflect a shift in energy metabolism to glyox-
ylate cycle under antifungal and biofilm conditions to
combat the shortage of energy. Thus, up-regulation of
TCA cycle proteins under antifungal stress may sug-
gest their role in resistance mechanism in Aspergilli.
Under the exposure of CAS and AmB, ribosomal pro-
teins were found to be highly expressed, which indi-
cates drug-mediated ribosomal reshuffling (Gautam
et al. 2008; Cagas et al. 2011a). It reflects the require-
ment of more protein synthesis under antifungal
stress to overcome the inhibitory effects of antifungal
agents. Proteasome regulatory protein, RpnL (Gautam
et al. 2008; Singh et al. 2012; Amarsaikhan et al. 2017)
was also observed under the influence of antifungal
agents (AmB, VRC and CMR).

The proteins/enzymes which are commonly tar-
geted by antifungals are of great interest to increase
the efficacy of treatment by using it in combination
therapy. After reviewing the existing literature, we have
compiled a dataset with similar proteins under the
antifungal stress in different Aspergillus species
(Supplementary file-1B). Out of 72 most abundant pro-
teins, 26 proteins belonging to different metabolic
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pathways showed higher abundance underexposure of
more than two antifungal agents (Table 1) whereas
nine proteins are specific to one antifungal agent and
remaining showed differential presence in antifungal
agents. Most of these antifungal agents targeted the
metabolism of the cell wall, ergosterol and oxidative
stress proteins.

Insight into the drug-resistance mechanism in
Aspergillus species

Antifungal drugs used for the treatment of various forms
of aspergillosis face challenges due to the development
of resistance inAspergillus. Also, the prolonged use of the
antifungal drug is one of the major causes of acquired
drug resistance. It also depends on the type ofAspergillus
species, antifungal drugs as well as on the geographical
location. Though, the data on drug-resistance genes and
mutations in the genome are available, but therapeutic
choices are limited that make it difficult to control the
invasive secondary fungal infections.

Themajor categories ofmechanismofdrug resistance
include (1)Alterations in drug targets, due tomutations in
target which reduces binding of drug to the target, (2)
loss in drug efficacy, due to increase in drug efflux, over-
expression of drug targets and sequester of antifungal
agents and (3) Metabolic bypass, involves the activation
of compensatory mechanisms which nullifies the toxic
effects exerted by antifungals (Sanglard 2016). More
recently, different resistance patterns with newmechan-
isms were observed, including intrinsic resistance in
Aspergillus spp. and the emergence of simultaneous
resistance to more than one class of drugs. Further, to
increase the efficacy of existing drugs (combination of
drugs) and through targeted drug therapy could be the
future. The occurrence of drug resistance inAspergilli and
known mechanism of resistance of standard antifungal
drugs are summarised in (Supplementary file-1A).

Aspergillus fumigatus and A. terreus are most exten-
sively studied in the clinical spectrum due to the pre-
sence of high level of resistant isolates in comparison to
other Aspergillus species. The major targets of the azoles
reported by Mellado, E et al., are cyp51A and cyp51B
(Cyp51 proteins (Mellado et al. 2001). These two
encoded by different genes sharing 63% of sequence
identity. Azole-resistant strains of A. fumigatus contain
point mutations or overexpress cyp51A to provide resis-
tance. The cyp51A encodes 14-sterol-demethylase,
ergosterol is one of the major constituents of fungal

cell structure (Snelders et al. 2010). Triazoles interact
with the active site of Cyp51A, thus, hinder theergosterol
biosynthesis. Fungal cell death occurs due to the altera-
tion in membrane fluidity (Snelders et al. 2009;
Chowdhary et al. 2014). The wide use of other azole
fungicides in agricultures exhibited a similar molecular
structure to medical triazoles causing the evolution of
cross-resistance in clinical practice (Snelders et al. 2012).
Hagiwara et al. recently reviewed mutation at different
sites in the cyp51 genes or tandem repeats in promoter
region (TR34/L98H and TR46/Y121F/T289A) in Aspergilli
contributing to resistance against azoles (Hagiwara et al.
2016). The whole genome sequencing of azole-resistant
and susceptible (clinical and environmental) strains of
A. fumigatus (from India, Netherlands and UK) have
revealed that the environmental route is dominating
with mutations in the cyp51A gene (TR34/L98H) in pro-
viding azole resistance (Abdolrasouli et al. 2015). On the
other side, mutant study on biofilms of A. fumigatus, it
has been observed that glycophosphatidylinositol-
anchored cell wall protein (cspA) plays role in biofilm
development, cell wall integrity and affects the drug-
response (Fan et al. 2015). In addition, the substitution
of S678P in Fks1p, the major subunit of glucan synthase,
imparts resistance against echinocandin in Aspergillus
fumigatus (Rocha et al. 2007). Thus, the data suggested
that Alterations in drug targets is the most common
strategy for resistance against antifungal drugs in
Aspergilli.

A. terreus has been observed to be an intrinsic resis-
tant to AmB in comparison to other Aspergilli, however,
underlying molecular machinery is less unclear. The up-
regulation of ergosterol biosynthesis genes (ERG5, ERG6
and ERG25) has been suggested to provide resistance
against AmB (Walsh et al. 2003; Barker et al. 2004; Deak
et al. 2009). Whereas, another study suggested that
ergosterol content in A. terreus may have a little role in
providing resistance against AmB. They further added
AmB resistance Aspergillus strains absorb less amount of
AmB drug, and also showed better protection manage-
ment against oxidative damage due to the drug in
A. terreus resistance isolates (Blum et al. 2013).
According to a recent report in AmB resistance strains,
SOD activity was more in comparison to susceptible
isolates in Aspergilli (Jukic et al. 2017). Superoxide dis-
mutase detoxifies superoxide anions, which are the pre-
cursor of ROS. Also, high production of gliotoxin (redox-
active-metabolite) in biofilms of A. fumigatus was
observed which confers resistance by enabling its
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growth and persistence in the host tissue (Bruns et al.
2010).

Another important key protein Hsp70 could be
the regulator of AmB resistance, Blatzer et al. Use of
inhibitors of Hsp70 and Hsp90, significantly increase
the efficacy of AmB and azole drugs in resistant
A. terreus isolates (Cowen and Lindquist 2005;
Blatzer et al. 2015; Tiwari et al. 2015). However, the
mechanisms by which heat shock proteins involved
in drug resistance needs to be fully investigated. It
primarily suggested that Metabolic bypass is the com-
mon strategy for the AmB resistance in A. terreus.
Protein level analysis of host and pathogen under
antifungal exposure may reveal the role of enzyme
and protein which will be further investigated for
their role in signalling and stress pathways. Thus,
the advancement of existing technologies to fill the
research gap is the challenges ahead.

Future aspects and conclusion

The mechanisms contributing to drugs-resistance
include reducing drug-target interactions by increas-
ing/decreasing expression of proteins involved in cell
wall modulation, oxidative stress, heat shock proteins
and energy metabolism. Also, other modes such as
redox imbalance, ROS homeostasis and alteration in
membrane fluidity contribute to the drug resistance.
Another strategy of antifungal drug resistance includes
biofilm formation, which allows adhesion of fungal cells
on host surface. Similarly, efforts have been made to
identify the specific protein in response to antifungal
drugs that include overexpression of Cat1, Prx1/LsfA,
enolase, thioredoxin peroxide (Aspf 3), Sod2. Fewer
proteins enlisted are less abundant belonged to cyto-
chrome C, RodA, PhiA. The major targets of the azoles
are Cyp51A and Cyp51B. Hsp70 and Hsp90 contribute
to protect cells during stress conditions. Proteins such
as Sod2, Cat1, thioredoxin peroxide, Hsp70 and Hsp90
could be explored further as targets in resistant
Aspergillus isolates. Following the facts that the level
of certain protein was changed under drug exposure
does not really mean its involvement in the drug-resis-
tant mechanism, but provide opportunities that it can
be tested by comparing proteome from drug-suscepti-
ble and resistant Aspergillus. Alterations in drug targets
and metabolic bypass are common strategy for resis-
tance against antifungal drugs in Aspergilli. Further,
expression and mutation studies are required to

understand the exact resistance pattern of these prob-
able resistance determinants in Aspergilli. Synergistic
drug combinations affecting different targets could
provide an effective and alternate treatment strategy
against drug-resistance fungal pathogens in immuno-
compromised patients. Furthermore, advances in the
proteomic analysis of clinical vs. environmental isolates
of Aspergillus may add detail insight into the drug-
resistance mechanism.
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